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ABSTRACT
We aim at modeling the performance of linear algebra al-
gorithms without executing either the algorithms or any
parts of them. The performance of an algorithm can be
expressed in terms of the time spent on CPU execution and
memory-stalls. The main concern of the study is to build
analytical models to accurately predict memory-stalls. We
construct an analytical formula for modeling cache misses
of fundamental linear algebra operations such as those in-
cluded in the Basic Linear Algebra Subprograms (BLAS)
library. The number of cache misses occurring in higher-
level algorithms—like a matrix factorization—is then pre-
dicted by combining the models for the appropriate BLAS
subroutines. As case studies, we consider the LU factor-
ization and GER—a BLAS operation and a building block
for the LU factorization. We validate the models on both
Intel and AMD processors, attaining remarkably accurate
performance predictions.

Categories and Subject Descriptors
B.3.2.b [Cache Memories]; B.3.3 [Performance Anal-
ysis and Design Aids]; G.4.a [Algorithm design and
analysis]

General Terms
Measurement, Performance

Keywords
Performance prediction, Performance model, Cache misses,
Memory-stalls

1. THE MODEL
Predicting the performance of an algorithm is a problem

that, although widely investigated, is still far from solved.
Our objective is to predict performance without executing ei-
ther the target algorithm or parts of it. We first focus on the
basic linear algebra operations like the ones included in the
BLAS library. For these, we develop analytical models that
predict the amount of computation and data movement to
be performed. The performance of higher-level algorithms,
like those included in the LAPACK library, is then built by
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composing the models for the BLAS subroutines used within
the algorithm.

In general, the performance of an algorithm can be defined
as a ratio between the number of floating point operations
(#FLOPS) performed by the algorithm and the execution
time:

Performance =
#FLOPS

Execution time
. (1)

For direct algorithms, #FLOPS can be calculated a priori;
the prediction of performance therefore reduces to the pre-
diction of Execution time.

Our strategy consists of exploiting detailed information
about the algorithm, the CPU, and the memory hierarchy.
Since memory-stalls idle the CPU and add a significant over-
head to the computational time, we model Execution time
not only by means of the CPU execution time, but also
through the time in which the CPU is idle due to memory-
stalls:

Execution Time = (2)
n∑

i=1

αi × Li cache misses× time(Li cache miss)

+ β × TLB misses× time(TLB miss)

+ γ ×#FLOPS× time(FLOP).

The memory-stalls play an especially important role in ope-
rations—like those included in the Levels 1 and 2 of BLAS,
and the unblocked algorithms in the LAPACK library—that
are memory-bound. Conversely, Level 3 BLAS operations
are compute bound; for those, the execution time can be
predicted rather accurately by a mere count of the floating
point operations to be performed. For this reason, here we
focus on the more challenging goal of predicting performance
for memory-bound operations.

We restrict this study to a scenario where data resides in
L2 cache, so only L1 data cache misses (L1 misses) occur.
In our experiments, we use an unblocked variant of an LU
factorization that is built on top of the BLAS routines GER
and SCAL:

a21 := a21/α11 (SCAL)

A22 := A22 − a21a
T
12 (GER)

SCAL only operates on one vector and its impact on the
total number of floating point operations is negligible. Con-
sequently, we model the cache misses for the unblocked LU
factorization by modeling the misses for GER, for which we



provide an analytic formula:

L1 misses = ζ +
⌈p
d

⌉
+

⌈ q
d

⌉
, (3)

where d is the number of double precision floating point
values in a cache line; m × n and p × q are the sizes of

a general matrix A and the matrix A22, respectively;
⌈p
d

⌉
and

⌈ q
d

⌉
are the numbers of cache misses when reading the

vectors a21 and aT12. The quantity

ζ =


⌊mq
d

⌋
, if m−

⌊p
d

⌋
d < d⌈p

d

⌉
+

n−1∑
i=1

⌈p+ (mi mod d)

d

⌉
, otherwise

indicate L1 misses when reading the matrix A22.
We validate our approach on two architectures with dif-

ferent processor types and memory systems. By working on
two different architectures, we show that the basic formula
needs to be tailored according to a number of parameters.
Nevertheless, the advantage of the formula is that it can be
used for other algorithms with the same structure.
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Figure 1: Deviation between predicted and measured L1 misses
for GER from the GotoBLAS2 library on Intel Core 2; p ≥ q,
LDA = 512.

2. RESULTS
Fig. 1 presents the results of modeling L1 misses of GER

in the general scenario p ≥ q (LDA = 512). The figure
indicates that in the area close to the origin the deviation is
slightly higher than for the rest of the spectrum. However,
such deviations do not affect the accuracy of the model for
the whole LU factorization.

We also look at the scenario in which the unblocked al-
gorithm is a building block for a blocked variant of an LU
factorization; in this case, q is small, p ≥ q, and LDA might
be much greater than p. To model the L1 misses of the un-
blocked algorithm, we aggregate the models for GER from
of size p×q, p−1×q−1, down to p−q+1×1. Fig. 2 shows
the modeled and measured L1 misses for LDA = 2048 and
fixed q = 128. Since q is fixed and only p varies, the mod-
eled and measured misses demonstrate linear behavior. In
summary, the results are very accurate—the model is within
2-4% of the measurements.
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Figure 2: Deviation between predicted and measured L1 misses
for the unblocked LU factorization when used as part of a blocked
algorithm on Intel Core 2; q = 128; LDA = 2048.

3. CONCLUSIONS
We set out to predict the performance of linear algebra

algorithms without any actual code execution. In fact, we
proposed an analytical model solely based on detailed knowl-
edge of the algorithm as well as the CPU and the memory
hierarchy. As it was shown, modeling performance is equiv-
alent to modeling both the CPU execution time and the
time spent on memory-stalls. Our main focus is mainly on
memory-stalls. We considered the scenario in which the in-
put data resides in the L2 cache, and built an analytical for-
mula for modeling L1 cache misses. As target algorithms,
we considered kernel linear algebra operations like those in-
cluded in the BLAS library. To verify the model, we con-
ducted a set of experiments using GER from the reference
BLAS and the highly optimized GotoBLAS2 libraries. By
working on two architectures, we tailored the basic formula
for different processor types and memory systems. In all
cases, the model resulted extremely accurate, with devia-
tions normally lower than 2%. We chose the GER kernel
because it is responsible for most of the computation of an
unblocked variant of an LU factorization. By composing
modeled L1 misses of GER, we then predicted the number
of misses for the LU factorization. A comparison between
the model and the actual measurements yielded deviations
below 3 %. The full paper will be published in [1].
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