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Abstract. One of the main hurdles of a broad distribution of PGAS
approaches is the prevalence of MPI, which as a de-facto standard ap-
pears in the code basis of many applications. To take advantage of the
PGAS APIs like GASPI without a major change in the code basis, inter-
operability between MPI and PGAS approaches needs to be ensured. In
this article, we address this challenge by providing our study and prelim-
inary performance results regarding interoperating GASPI and MPI on
the performance crucial parts of the Ludwig and iPIC3D applications.
In addition, we draw a strategy for better coupling of both APIs.

Keywords: Interoperability, GASPI, MPI, Ludwig, iPIC3D, halo ex-
change.

1 Introduction

The Message Passing Interface (MPI) has been considered the de-facto stan-
dard for writing parallel programs for clusters of computers for more than two
decades. Although the API has become very powerful and rich, having passed
through several major revisions, new alternative models that are taking into
account modern hardware architectures have evolved in parallel. Such a model
is the Global Address Space Programming Interface (GASPI) [9], with GPI—aﬂ
representing an open source implementation of the GASPI standard.

The GASPI standard promotes the use of one-sided communication, where
one side, the initiator, has all the relevant information for performing the data
movement. The benefit of this is decoupling the data movement from the syn-
chronization between processes. It enables the processes to put or get data from
remote memory, without engaging the corresponding remote process, or having
a synchronization point for every communication request. However, some form
of synchronization is still needed in order to allow the remote process to be no-
tified upon the completion of an operation. In addition, GASPI provides what
is known as weak synchronization primitives which update a notification on the
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remote side. The notification semantics is complemented with routines that wait
for the update of a single or a set of notifications. GASPI allows for a thread-
safe handling of notifications, providing an atomic function for resetting a local
notification. The notification procedures are one-sided and only involve the local
process.

Thus, there is a potential of enhancing applications’ performance by shift-
ing to one-sided communication like in GASPI. There are two possibilities for
such shift: 1. Rewriting large legacy MPI codes to use a different inter-node
programming model is, in many cases, highly labor intensive and, therefore, not
appealing to developers; 2. Replacing MPI with another API — such as GASPI
— only in performance critical parts of those codes is an attractive solution from
a practical perspective, but this requires both APIs to interoperate effectively
and efficiently on sharing communication and on data management. In this ar-
ticle, we address the latter and aim to study interoperability of GASPI and MPI
in order to allow for incremental porting of applications. GPI-2 supports [5]
this interoperability with MPI in a so-called mixed-mode, where the MPI and
GASPI interfaces can be mixed in a simple way. As a case study, we consider
two large-scale scientific applications: iPIC3D [7] (see Section [3) — an implicit
Particle-In-Cell code for space weather simulations; Ludwig [3] (see Section
— a large scale Lattice-Boltzmann code for complex fluids. We collect the pre-
liminary performance results for both applications (see Section [5). Furthermore,
we derive a strategy for enhancing the MPI and GASPI coupling using so-called
shared notifications (see Section |2)) and provide evidences that this strategy is
beneficial (see Section [5)) on simple operations such as Allreduce.

2 A Strategy to Better Interoperate GASPI and MPI

Scientific applications may use MPI features — such as MPI derived data types
— not known in the GASPI specification. Due to the fact that GASPI does not
support the derived data types the interoperability between MPI and GASPI
within a program using MPI derived data types lacks ease of use, because the
data of each local process on a node have to be packed, sent, and, then, unpacked.

To mitigate the adverse effect of MPI derived data types on the MPI plus
GASPI interoperability so-called shared notifications have been recently imple-
mented in the GPI implementation of the GASPI standard. This feature allows
a smoother interoperability between a flat MPI code with shared windows and
GASPI. With shared notifications a GASPI memory segment is shared between
all processes local to a node. GASPI segments can be created with user allo-
cated memory, e.g. using MPI shared windows in an MPI plus GASPI mixed
program. Instead of implicit (via derived data types) or explicit packing/un-
packing of communication data, application can share information about node
local data layout, structure, and computational state. As all node-local pro-
cesses can access this shared data, the node local explicit ghost cell exchanges in
applications can be replaced with the corresponding state notifications, where
the required data can be directly read from the neighboring processes based on
previously exchanged information of data layout and type. We believe that the
correspondingly required programming interface can be generic and — for node
local exchanges — common for both MPI and GASPI. The interface will require



an allocation of a shared memory segment across node-local processes. It will
require a universally acceptable format for sharing of process local data layouts
and corresponding data offsets. It will require the ability to automatically detect
whether or not a neighboring process is node-local; the latter information can
be used to signal node-local readiness for the ghost-cell exchange or to perform
explicit packing and/or unpacking into/from linear communication buffers for
remote nodes. The interface will also require the ability to trigger node-local no-
tifications in shared memory. This will include required memory fences between
neighboring node local processes. Last not least — by using shared notifications
— the interface becomes able to aggregate data for remote nodes and to per-
form one single write to the other node (for all local processes on that node)
and notify all remote local processes in one step. As all remote processes can
detect and access this common buffer, each remote process/rank can retrieve the
required partial data for its ghost cell exchange. The ongoing, but converging,
development of this generic interface will facilitate the interoperability of MPI
and GASPI significantly.

3 iPIC3D: implicit Particle-in-Cell Code

iPIC3D is a Particle-in-Cell (PIC) code for the simulation of space plasmas in
space weather applications during the interaction between the solar wind and the
Earth’s magnetic field. The magnetosphere is a large system with many complex
physical processes, requiring realistic domain sizes and billions of computational
particles. The numerical discretization of Maxwell’s equations and particle equa-
tions of motion is based on the implicit moment method that allows simulations
with large time steps and grid spacing still retaining the numerical stability.
Plasma particles from the solar wind are mimicked by computational particles.
At each computational cycle, the velocity and the location of each particle are
updated, the current and charge densities are interpolated to the mesh grid, and
Maxwell’s equations are solved. Figure [1| depicts these computational steps in
iPIC3D.

Integration of particles Interpolation of particles
equation of motion to the grid

Every time step

Interpolation of fields to Integration of Maxwell's
particles equations on the grid

Fig. 1: Structure of the iPIC3D code.

iPIC3D is parallelized using domain decomposition and message-passing com-
munications: an iPIC3D simulation is being run on a number of processors and
on a network of cells, so each processor handles a number of cells. However, at
certain intervals, each processor must find out the values of the cells adjacent
to those in its own domain. The procedure of finding these values out is called



halo exchange. To achieve the full 3D halo exchange, the standard approach of
shifting the relevant data in each co-ordinate direction in turn is adopted. This
involves extensive communication between processes and requires appropriate
synchronization — a receive in the first co-ordinate direction must be complete
before a send in the second direction involving relevant data can take place,
and so on. Note that only “outgoing” elements of the distribution need to be
sent at each edge. In the particle mover part hundreds of particles per cell are
constantly moved, resulting in billions of particles in large-scale simulations. All
these particles are completely independent from each other, which ensures very
high scalability. MPI communication at this stage is only required to transfer
some of the particles from one cell or a subdomain to its neighbor.

The iPIC3D MPI communication is dominated by non-blocking point-to-
point communication, occurring from communication of particles and ghost cells
among neighboring processes (halo exchange), and by global reductions resulting
from solving two linear systems every simulation time step. In order to reduce the
communication burden in iPIC3D, we aim at replacing the MPI communication
with the GASPI asynchronous one-sided communication on the communication
critical parts of the code such as halo exchange in the field solver and with the
GASPI reduction communication in the iPIC3D linear solver.

Implementation Highlights The main halo exchange routine uses non-blocking
MPI and MPI derived datatypes. MPI derived datatypes allow us to specify non-
contiguous data in a convenient manner and yet treat it as if it was contiguous.
GASPI requires the creation and later use of the so-called GASPI segments.
In the case of iPIC3D, there is one GASPI segment per plane and direction.
As there are three planes and two directions per plane, iPIC3D will require six
different GASPI segments. The size of the segments is defined as twice the size
of buffer to be sent as we will use the same segment to send and receive data
from the neighbor subdomains. As iPIC3D uses MPI datatypes, complex data
layouts, it is necessary to unpack the MPI datatypes and copy the data contigu-
ously into a GASPI segment. Once the data has been sent and notified, we need
to put the data back from the GASPI segment to the original buffer to be able
to continue with the execution of iPIC3D.

To implement the halo exchange with GASPI, firstly the field values belong-
ing to the boundary are being copied to the local GASPI segment. Secondly,
segments of neighbors are being read to get their ghost cells and copied to the
local segment. The local copy does not require a barrier: each process writes to
its neighbor process’ segment directly and sends a notification to that process
in order to notify that data writing has accomplished. The remote process does
not know that another process writes something into its memory and will not
wait for when data writing ends, until it receives a notification from its neighbor.
The remote process checks for locally posted notifications to get the informa-
tion about changes related to a segment. Once a notification arrives, the process
starts to work with data related to that particular notification.

In addition, the MPI reduction operations were replaced with the GASPI
communication in the linear solvers (CG and GMRes) to calculate the inner
products and the norm of vectors located on different processes.



4 The Ludwig Application

Ludwig [3] is a versatile code for the simulation of Lattice-Boltzmann models in
3D on cubic lattices. Some of the problems that could be simulated with Ludwig
include detergency, mesophase formation in amphiphiles, colloidal suspensions,
and liquid crystal flows. Broadly, the code is intended for complex fluid prob-
lems at low Reynolds numbers, so there is no consideration of turbulence, high
Mach number flows, high density ratio flows, and so on. Ludwig uses an effi-
cient domain decomposition algorithm, which employs the Lattice-Boltzmann
method to iterate the solution on each subdomain. The domain decomposition
is carried out by splitting a three dimensional lattice into smaller lattices on
subdomains and exchanging information with adjacent subdomains [4]. For each
iteration, Ludwig uses MPI for communications with adjacent subdomains using
halo exchange [2].

In the original implementation of
the Ludwig halo exchange, the num-
ber of messages sent and received by
each MPI process is reduced as much
as possible. Each subdomain needs
to exchange data with its 26 neigh-
bors in three directions to continue
with the solution of the problem. This
means that synchronization between
the different planes is required. To
coordinate the solution, communica-
tion between adjacent subdomains is
required after each iteration. This is
done by creating halos around the di-
mensions of the subdomain, i.e. ex-
tending the dimension of the subdo-
main by one lattice point in each direction as depicted in Figure [2| After each
time step, MPI processes will have to communicate a 2D plane of m velocities to
their adjacent MPI processes. Since each plane shares some sites with the other
planes, the exchange of information in each direction should be synchronized
before continuing with the execution.

GASPI promotes the use of one-sided communication, where the initiator
has all the relevant information for performing the data movement. This idea
decouples the data movement from the synchronization between processes and it
is especially relevant in applications that rely on continuous halo communications
between neighbors. We aim at reducing the synchronization between subdomains
by porting Ludwig’s main halo exchange routines form MPI to GASPI.

Fig. 2: Lattice subdomain where the in-
ternal section represents the real lattice
and the external region the halo sites.

Implementation Highlights The halo exchange routine responsible for ex-
changing data between neighbor subdomains uses non-blocking MPI and MPI
derived datatypes. MPI derived datatypes allow us to specify non-contiguous
data in a convenient manner and yet treat it as if it was contiguous.

GASPI requires the creation and later on use of what is known as GASPI
segments. A GASPI segment is window of memory allocated to be used with the



GASPI model. In our case we have created one GASPI segment per plane and
direction. Therefore, since we have three planes and two directions per plane,
we will require six different GASPI segments. This number of GASPI segments
is sufficient for each subdomain to communicate its faces with its immediate
neighbors in the 3D space. The size of the segments is defined as twice the size
of buffer to be sent since we will use the same segment to send and receive data
from neighbor subdomains.

Listing 1.1: GASPI pointers to GASPI segments in the YZ plane.
int YZ_size = lb—>ndist*NVEL«nyxnz;

/+* Segment size is ezactly twice the size of the buffer.x/
const gaspi_size_t seg._size = 2 x YZ_size x sizeof(double);

/x segment ids x/

const gaspi_segment_id_t seg_id_YZ_L
const gaspi_segment_id_t seg_id_-YZ_R
gaspi_-pointer_t gptr_-YZ_L, gptr-YZ_R;

0;
1;

/% pointer to the right x/
GASPIERROR( gaspi_segment _ptr (seg_id_YZ_L, &gptr.YZ_L));
doublex ptr.YZ_L = (doublex)gptr_-YZ_L;

/* pointer to the left x/
GASPIERROR ( gaspi-segment_ptr (seg_.id_.YZ_R, &gptr.-YZ_R));
doublex ptr.YZ_R = (doublex)gptr_-YZ_R;

For purposes of clarity, Listing shows the GASPI pointer creation only in
the YZ plane. For instance, in the YZ plane, each created segment is assigned
with an independent id number. Hence, the data is already contiguous in memory
and, therefore, a simple copy directly from the buffer that contains the data to a
GASPI segment is straightforward. However, since Ludwig uses MPI datatypes,
more complicated layouts of the data exist for other planes and it is necessary
to unpack the MPI datatypes and copy the data contiguously into a GASPI
segment. Once the data has been sent and notified we need to recover the data
back from the GASPI segment to the original buffer to be able to continue with
the normal execution of Ludwig.

5 Performance Results

iPIC3D We performed our tests on the Beskow supercomputer (Cray XC40)
equipped with two 16-core @ 2.3 GHz Intel Haswell-EP processors. To compare
the original version of the iPIC3D code with the new, GASPI-based, version,
we used a standard simulation cases called Geospace Environment Modeling
(GEM) Reconnection Challenge that is adapted to the Earth’s magnetotail re-
connection [II6]. In addition, we used two different simulation cases, namely
field- and particle-dominated, with a fixed number of iterations (20) in the field
solver.

Figure [3| shows the results of the weak scaling tests for one of the iPIC3D
simulations. Three-dimensional decomposition of MPI processes on X-, Y- and Z-
axes was used, resulting in different topologies of MPI processes. For this particle
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Fig.3: Weak scaling results for the GEM 3D simulation of the particle-mover
dominated regime of iPIC3D on Beskow.

dominated Magnetosphere 3D simulation on 64 cores (4x4x4 MPI processes x
4 OpenMP threads), 27x106 particles and 30x30x30 cells were used, and the
simulation size increased proportionally to the number of processes.

For this simulation test case, the new version, based on GASPI, is slightly
faster (by 1-2%) on different number of cores. The challenge of a successful
porting of iPIC3D to GASPI depends on the optimal utilization of one-sided
communication mechanism to achieve performance gain and scalability on pre-
Exascale supercomputers. GASPI provides the one-sided communication that
facilitates asynchronous procedures between processes. However, this requires
the local processes to manage the communication in an optimized way to maxi-
mum the overlapping of communication and computation. The trade-off between
asynchronicity and data synchronization requires further investigation.

Ludwig A set of performance tests were carried out on ARCHER, a Cray
X(C30 system equipped with two 12-core @ 2.7 GHz Intel Ivy Bridge processors.
All simulations were executed five times on fully populated nodes, i.e. using 24
MPI/GASPI processes per node.

The time to transfer a message depends on the network latency and band-
width. The latency is independent of the size of the message being sent, but
dependent of the MPI implementation and network use. Figure [ shows the
measured bandwidth against the message size using Cray MPI. The bandwidth
is low at very small message sizes because the time spent to send each message
is dominated by the latency. As soon as the message size is increased over 0.2
MBytes, the bandwidth quickly rises to the maximum allowed by the fabric in-
terconnect. We have also measured the amount of data required to be sent and
received from each process at the end of each iteration in 1922 lattice size, as
represented in Figure [f]

Figure [6] shows the strong scaling results of running Ludwig on up to 3,072
processes on ARCHER. The total time that Ludwig spends on the main stepping
loop is represented in Figure[6a] showing small difference in performance between
the pure MPI version and the MPI+GASPI version of Ludwig; the performance
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Fig. 6: Strong scaling results of Ludwig for a 1923 lattice size on ARCHER.

overhead is negligible with less than 1000 processes. When narrowing our focus
to the halo exchange (see Figure , which is one of the key components in



the main stepping loop, we can see that this performance penalty is low for
a small processes count, but it grows as the number of processes is increased.
This is probably due to the fact that the bandwith is at its best in that region
as Figure [] indicates Thus, there is a direct connection between the overhead
in the halo exchange and the total loop. Nevertheless, given the performance
benefits of one-sided communication in GASP]EI, we attribute this performance
penalty to tedious process of unpacking and packing back and forth between the
MPI datatypes and the GASPI segments.

Shared Window Communication in GASPI In order to validate this new
programming paradigm of shared notifications in GASPI, we have implemented
an equivalent to the MPI Allreduce for large messages. The implementation
makes substantial use of pipelined rings. The algorithm consists of two stages.
In the first stage, each of the N nodes performs a reduction of 1/N of the dataset
(via the pipelined ring). In the second stage, the partial result from each node
is broadcasted to the other nodes (again in the pipelined ring) such that after
the broadcast all nodes have access to the complete reduced dataset.
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Fig. 7: Performance results of the pipelined ring implementation of Allreduce.

In order to split the reduction and communication loads across all processes,
each of the N parts is again subdivided into at least M parts (where M is the
number of processes per node) such that there are at least N x M messages
in the ring at any point in time. The GASPI shared notification model allows
any process to detect any of these N x M incoming asynchronous and one-
sided notified messages, to reduce and forward them along the pipelined ring.
Figure [7] shows a comparison of Allreduce implemented on top of GASPI shared
windows against various Allreduce MPI low-level implementations in Intel MPI
5.1.2. Those are 1. Recursive doubling; 2. Rabenseifner’s; 3. Reduce + Bcast;
4. Topology aware Reduce + Bcast; 5. Binomial gather + scatter; 6. Topology
aware binominal gather + scatter; 7. Shumilin’s ring; 8. Ring; 9. Knomial; 10.
Topology aware SHM based flat; 11. Topology aware SHM based Knomial. Some
of these implementations feature an optimal bandwidth term (Ring based or
Rabenseifner’s), however they are not able to leverage pipelining as efficiently
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as the high-level GASPI Implementation. The main problem here is that the
underlying MPI point-to-point low-level frameworks (such as e.g. UCX) are not
able to make efficient use of notified communication either.

6 Conclusions

The original versions of both iPIC3D and Ludwig — like many other MPI appli-
cations — use MPI datatypes. That soon became a problem while interoperating
with GASPI since GASPI works on segments of data. This means that we had
to unpack the data from the MPI datatypes, copy them to a GASPI segment,
send them, and, then, unpack the data. We believe this packing-unpacking was
the major burden for the applications’ performance.

In order to improve the interoperability with a flat MPI programming model,
GASPI has introduced a novel allocation policy for segments where data and
GASPI notifications can be shared across multiple processes on a single node.
To that end, any incoming one-sided GASPI notification will be visible node-
locally across all node-local ranks. The shared notifications should be used with
GASPI segments that are employing shared memory, such as MPI windows,
provided by the applications under the interoperability mode.

We are currently developing a generic interface which can make use of these
shared memory segments for the specific purpose of ghost cell exchanges. The de-
veloped interface will not only facilitate the interoperability of MPI plus GASPI
significantly, but it will also substantially enrich the programming paradigm of
MPI shared windows.
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