Interoperability of GASPI and MPI in a large
scale Lattice-Boltzmann code

Roman Takymchuk!, Luis Cebamanos?, Tiberiu Rotaru®, Mirko Rahn?, Erwin
Laure', Stefano Markidis!, Valeria Bartsch®, Christian Simmendinger*

! KTH Royal Institute of Technology, Stockholm, Sweden
{riakymch,erwinl,markidis}@kth.se
2 EPCC, The University of Edinburgh, Edinburgh, UK
1.cebamanos@epcc.ed.ac.uk
3 Fraunhofer ITWM, Kaiserslautern, Germany
{tiberiu.rotaru,mirko.rahn,valeria.bartsch}@itwm.fraunhofer.de

4 T-Systems Solutions for Research, Stuttgart, Germany

christian.simmendinger@t-systems-sfr.com

Abstract. One of the main hurdles of a broad distribution of PGAS
approaches is the prevalence of MPI, which as a de-facto standard ap-
pears in the code basis of many applications. To take advantage of the
PGAS APIs like GASPI without a major change in the code basis, in-
teroperability between MPI and PGAS approaches needs to be ensured.
In this article, we address this challenge by providing our study and pre-
liminary performance results regarding interoperating GASPI and MPI
on the performance crucial parts of the Ludwig application.

Keywords: Interoperability, GASPI, MPI, Ludwig, halo exchange.

1 Introduction

The Message Passing Interface (MPI) has been considered the de facto standard
for writing parallel programs for clusters of computers for more than two decades
already. Although the API has become very powerful and rich, having passed
through several major revisions, new alternative models that are taking into
account modern hardware architectures have evolved in parallel. Such a model
is the Global Address Space Programming Interface (GASPI) [3], with GPI—@
representing an open source implementation of the GASPI standard.

The GASPI standard promotes the use of one-sided communication, where
one side, the initiator, has all the relevant information for performing the data
movement. The benefit of this is decoupling the data movement from the syn-
chronization between processes. It enables the processes to put or get data from
remote memory, without engaging the corresponding remote process, or having a
synchronization point for every communication request. However, some form of
synchronization is still needed in order to allow the remote process to be notified
upon the completion of an operation. In addition, GASPI provides the so-called
weak synchronization primitives which update a notification on the remote side.
The notification semantics is complemented with routines that wait for the up-
date of a single or a set of notifications. GASPI allows for a thread-safe handling

% www.github.com/cc-hpc—itwm/GPI-2

www.github.com/cc-hpc-itwm/GPI-2

of notifications, providing an atomic function for resetting a local notification.
The notification procedures are one-sided and only involve the local process.

Thus, there is a potential of enhancing applications’ performance by shift-
ing to one-sided communication like in GASPI. There are two possibilities for
such shift: 1. Rewriting large legacy MPI codes to use a different inter-node
programming model is, in many cases, highly labor intensive and, therefore, not
appealing to developers; 2. Replacing MPI with another API — such as GASPI -
only in performance critical parts of those codes is an attractive solution from a
practical perspective, but this requires both APIs to interoperate effectively and
efficiently on sharing communication and on data management. In this article,
we address the latter and aim to study interoperability of GASPI and MPI in
order to allow for incremental porting of applications. GPI-2 supports [2] this
interoperability with MPI in a so-called mixed-mode, where the MPI and GASPI
interfaces can be mixed. As a case study, we consider the Ludwig application [I]
(see Sect. — a large scale Lattice-Boltzmann code for complex fluids — for
which we collect the preliminary performance results (see Sect. .

2 A Case Study: The Ludwig Application

Ludwig [1] is a versatile code for the simulation of Lattice-Boltzmann models
in 3D on cubic lattices. Ludwig uses an efficient domain decomposition algo-
rithm, which employs the Lattice-Boltzmann method to iterate the solution on
each subdomain. The domain decomposition is carried out by splitting a three
dimensional lattice into smaller lattices on subdomains and exchanging informa-
tion with adjacent subdomains. For each iteration, Ludwig uses MPI for commu-
nications with adjacent subdomains, using a technique commonly referred to as
halo exchange. In the original implementation of the Ludwig halo exchange, the
number of messages sent and received by each MPI process is reduced as much
as possible. Each subdomain needs to exchange data with its 26 neighbors in 3
directions (X, Y, Z) to continue with the solution of the problem. This means
that synchronization between the different planes is required.

To coordinate the solution, com-
munication between adjacent subdo-
mains is required after each iteration.
This is done by creating halos around
the dimensions of the subdomain, i.e.
extending the dimension of the sub-
domain by one lattice point in each
direction as depicted in Fig. [1 Af-
ter each time step, MPI processes will
have to communicate a 2D plane of m
velocities to their adjacent MPI pro-
cesses. Since each plane shares some
sites with the other planes, the ex-

Fig. 1: Lattice subdomain where the in- c.hange of information in .each direc-
ternal section represents the real lattice tion should be synchronized before

and the external region the halo sites. ~ continuing with the execution. We
aim at reducing the synchronization

between subdomains by porting Ludwig’s main halo exchange routines form
MPI to GASPL.

Implementation Highlights The halo exchange routine responsible for ex-
changing data between neighbor subdomains uses non-blocking MPI and MPI
derived datatypes. MPI derived datatypes allow us to specify non-contiguous
data in a convenient manner and yet treat it as if it was contiguous.

GASPI requires the creation and later on use of the so-called GASPI seg-
ments. In our case we have created a GASPI segment per plane and direction.
Therefore, since we have 3 planes and 2 directions per plane, we will require 6
different GASPI segments. The size of the segments is defined as twice the size
of buffer to be sent since we will use the same segment to send and receive data
from neighbor subdomains. For instance, in the YZ plane, each created segment
is assigned with an independent id number. Hence, the data is already contigu-
ous in memory and therefore a simple copy directly from the buffer that contains
the data to a GASPI segment is straightforward. However, since Ludwig uses
MPI datatypes, more complicated layouts of the data exist for other planes and
it is necessary to unpack the MPI datatypes and copy the data contiguously
into a GASPI segment. Once the data has been sent and notified we need to
recover the data back from the GASPI segment to the original buffer to be able
to continue with the normal execution of Ludwig. To differentiate the data sent
and received in a GASPI segment, we use an offset variable.

3 Performance Results

We carried out a set of performance tests on ARCHER, which is a Cray XC30
system equipped with two 12-core @ 2.7 GHz Intel Ivy Bridge processors. All
simulations were executed five times on fully populated nodes, i.e. using 24
MPI/GASPI processes per node.

e—e GASPI e—e GASPI
*—+ MP| *—+ MPI|

Loop Time (s)
Time Halo Exchange (s)

10°
10

2 3

10° 10

Number of processes Number of processes

(a) Total loop time. (b) Total halo exchange time.

Fig. 2: Strong scaling results of running Ludwig simulation for a 1923 lattice size
implemented with pure MPI and GASPI-MPI on ARCHER.

Fig. [2| shows the strong scaling results of running Ludwig on up to 3,072 pro-
cesses on ARCHER. The total time that Ludwig spends on the main stepping

loop has been represented in Fig. [2a] showing small difference in performance
between the pure MPI version and the MPI-GASPI version of Ludwig; the per-
formance overhead is negligible with less than 1000 processes. When narrowing
our focus to the halo exchange (see Fig. , which is one of the key components
in the main stepping loop, we can see that this performance penalty is low for
a small processes count, but it grows as the number of processes is increased.
Thus, there is a direct connection between the overhead in the halo exchange
and the total loop. Nevertheless, given the performance benefits of one-sided
communication in GASP]EL we attribute this performance penalty to tedious
process of unpacking and packing back and forth between the MPI datatypes
and the GASPI segments.

4 Discussion

The original version of Ludwig like many other MPI applications, uses MPI
datatypes. That soon became a problem for the porting process since GASPI
works on segments of data. This means that we had to unpack the data used
by MPI datatypes, copy the data required to a GASPI segment, send and then
unpack the data. We believe this packing-unpacking was the major burden for
Ludwig’s performance. In order to improve the interoperability with a flat MPI
programming model, GASPI will introduce a novel allocation policy for segments
where data and GASPI notifications can be shared across multiple processes on
a single node. To that end GASPI will use System V or POSIX shared memory
for storing notifications such that any incoming one-sided GASPI notification
will be visible node-locally across all node-local ranks. The shared notifications
should be used with GASPI segments that are using shared memory provided
by the applications, such as MPI windows, in interoperability mode. Instead of
node locally packing/unpacking datatypes, the implementation then will publish
its respective rank-local datatype layout and will subsequently and merely notify
the availability of rank-local data for node-local reading. Data for remote nodes
can be aggregated across multiple node-local ranks. As the GASPI notifications
will be globally visible on the remote target node all the corresponding remote
processes running on that node will be able to see and extract their communi-
cation parts. All these features are planned to be releases in the new version of
GASPI by mid-July 2017 and, therefore, will be tested in Ludwig.

Acknowledgement This work was funded by the European Union’s Horizon
2020 Research and Innovation programme through the INTERTWinE project
under Grant Agreement no. 671602 (www.intertwine-project.eu).

References

1. JC. Desplat, I. Pagonabarraga, and P. Bladon. Ludwig: A parallel lattice-boltzmann
code for complex fluids. Computer Physics Communications, 134(3):273-290, 2001.

2. R. Machado, T. Rotaru, M. Rahn, and V. Bartsch. Guide to porting MPI applica-
tions to GPI-2. Technical report, Fraunhofer ITWM, 2015.

3. C. Simmendinger, M. Rahn, and D. Griinewald. The gaspi api: A failure tolerant
pgas api for asynchronous dataflow on heterogeneous architectures. In Sustained
Simulation Performance 2014, pages 17-32. Springer International Publishing, 2015.

S http://www.gpi-site.com/gpi2/benchmarks/

www.intertwine-project.eu
http://www.gpi-site.com/gpi2/benchmarks/

