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1 Introduction

Let us consider the nonlinear least squares problem [2]:

min
x∈IRn

1

2
(F (x) +G(x))T (F (x) +G(x)), (1)

where the residual function F +G is de�ned on IRn with its values on IRm

and it is nonlinear by x; F is a continuously di�erentiable function; G is a
continuous function, di�erentiability of which in general is not required.

We propose a two-step iterative method, for solving the problem (1),
which considers the decomposition of the nonlinear operator, as follows{

xk+1 = xk − [AT
kAk]

−1AT
k (F (xk) +G(xk)),

yk+1 = xk+1 − [AT
kAk]

−1AT
k (F (xk+1) +G(xk+1)), k = 0, 1, . . . ,

(2)

where Ak = F ′((xk + yk)/2) +G(xk, yk); F
′(xk) is a Fr�echet derivative of

F (x); G(xk, yk) is the divided di�erence of the �rst-order of the function
G(x) at points xk, yk; x0, y0 are given starting points. In case of m = n,
the problem (1) converges to solving a system of n nonlinear equations
with n unknown and the method (2) to the two-step method [4]. In case
when G(x) = 0, we obtain the two-step modi�cation of the Gauss-Newton
method [1]; when F (x) = 0, we obtain the two-step method with divided
di�erences [3].

We investigate the convergence of this method under the classical
Lipschitz condition for the �rst- and second-order derivatives of the di-
�erentiable part and for the �rst-order divided di�erences of the non-
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di�erentiable part of the decomposition. The convergence order as well
as the convergence radius of the method are studied and the uniqueness
ball of the solution of the nonlinear least squares problem is examined.

2 Convergence analysis of the method (2)

Theorem 1. Let F +G : IRn → IRm , m ≥ n, be continuous, where F is a
twice Fr�echet di�erentiable operator and G is a continuous operator on a
subset D ⊆ IRn . Assume that the problem (1) has a solution x∗ ∈ D and
an operator F ′(x∗)+G(x∗, x∗) has full rank. Suppose that Fr�echet derivati-
ves F ′(x) and F ′′(x) satisfy the Lipschitz conditions on
B(x∗, r) = {x ∈ D : ‖x− x∗‖ ≤ R}

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖, (3)

‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖,

and the function G has the �rst-order divided di�erence G(x, y) and

‖G(x, y)−G(u, v)‖ ≤M(‖x− u‖+ ‖y − v‖) (4)

for all x, y, u, v ∈ D; L, N , and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

βNp2 + 120βTp+ 48
√
2αβ2T − 24 = 0,

where 2
√
2αβ2T < 1.

Then, for all x0, y0 ∈ B(x∗, r) the sequences {xk} and {yk}, which are
generated by the method (2), are well de�ned, remain in B(x∗, r) for all
k ≥ 0, and converge to x∗ such that

ρ(xk+1) ≤
β

1− βTτk
(
(N/24)ρ(xk)

3 + Tρ(xk)ρ(yk) +
√
2αβTτk

)
,

ρ(yk+1) ≤
β

1− βTτk
(
(N/24)ρ(xk)

3 + T (ρ(xk+1) + ρ(xk) + ρ(yk))×

× ρ(xk+1) +
√
2αβTτk

)
,

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,

where

0 < q =
β
(
(N/24)ρ(x0)

2 + T (2ρ(x0) + ρ(y0)) +
√
2αβTτ0/r0

)
1− βTτ0

< 1,
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ρ(x) = ‖x − x∗‖, τk = ‖xk − x∗‖ + ‖yk − x∗‖, r0 = max{ρ(x0), ρ(y0)},
zk = (xk + yk)/2, α = ‖F (x∗) + G(x∗)‖, β = ‖(AT

∗A∗)
−1AT

∗ ‖,
A∗ = F ′(x∗) +G(x∗, x∗), T =

L+ 2M

2
, βTτ0 < 1.

Convergence order of the iterative method (2) in case of zero residual
is equal to 1 +

√
2.

Theorem 2. Suppose x∗ satis�es (1) and F (x) has a continuous
derivative F ′(x) and G(x) has a divided di�erence G(x, y) in B(x∗, r).
Moreover, F ′(x∗) + G(x∗, x∗) has full rank; F ′(x) satis�es the Lipschitz
condition as in (3); the divided di�erence G(x, y) satis�es the Lipschitz
condition as in (4). Let r > 0 satis�es β(Lr/2+M) +αβ0(L+2M) ≤ 1,
where β0 = ‖(F ′(x∗) + G(x∗, x∗))

T (F ′(x∗) + G(x∗, x∗))‖. Then, x∗ is a
unique solution of the problem (1) in B(x∗, r).

3 Numerical experiments

We carried out a set experiments on test problems and compared the
number of iterations under which the two-step Secant method{
xk+1 = xk − [H(xk, yk)

TH(xk, yk)]
−1H(xk, yk)

TH(xk),
yk+1 = xk+1 − [H(xk, yk)

TH(xk, yk)]
−1H(xk, yk)

TH(xk+1), k = 0, 1, . . .
(5)

and the method (2) converge to the solution; H(x) ≡ F (x) + G(x). We
used the same initial points for all methods and the following stopping
criteria: ‖xk+1 − xk‖ ≤ ε.

Let us denote h(x) = (H(x))TH(x). Below we list several examples.
Example 1. n = 3, m = 15;

Hi(x1, x2, x3) = x1e
−x2(ti−x3)

2

2 − yi + (yi − 1)|x21 − x3 + tix3x
2
2 + 1|,

ti = 4− i/2, i = 1,m,
y = (0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, 0.3989,
0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009),

x∗ = (1, 0, 1), h(x∗) = 0.

Example 2. n = 2, m = 8;

Hi(x1, x2) = 1− e−
(

ti
x1

)x2

− yi + 0.01ti
∣∣x1
x2
− x1

∣∣, i = 1,m,

t = (0.1, 0.5, 0.7, 1.0, 1.2, 1.7, 2.2, 4.5),
y = (0.005, 0.1175, 0.2173, 0.3939, 0.5132, 0.7643, 0.9111, 0.99961),

x∗ ≈ (1.439857, 1.962064), h(x∗) = 0.001082.
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In Table 1 we present the amount of iterations spent by each method
to compute an approximation to the solution of both examples with the
accuracy of ε = 10−7. The additional initial point y0 we calculated by
setting y0 to x0 + 0.0001. Since methods (2) and (5) for problems with
zero residual have convergence order 1+

√
2, we obtain the same number of

iterations for them. However, the method (2) has advantages for problems
with nonzero residual.

Table 1: Number of iterations for solving Examples 1-2.
Example The initial Combined Secant

approximation x0 method (2) method (5)
(0.7, 0.01, 0.7) 4 4

1 (0.6, -0.1, 1.4) 7 8
(1.4, -0.1, 0.6) 6 6

(1.4, 2) 7 10
2 (2, 1.3) 38 43

(1.1, 2.2) 11 34
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