
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2010/06-1

10/June/2010

Underutilizing Resources for HPC on Clouds

R. Iakymchuk, J. Napper and P. Bientinesi

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through

grant GSC 111 is gratefully acknowledged.

©R. Iakymchuk, J. Napper and P. Bientinesi 2010. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

Underutilizing Resources for HPC on Clouds

Roman Iakymchuk1, Jeff Napper2 and Paolo Bientinesi1

1 RWTH Aachen, AICES, Aachen, Germany,
{iakymchuk,pauldj}@aices.rwth-aachen.de,

2 Vrije Universiteit, Amsterdam, The Netherlands,
jnapper@cs.vu.nl

Abstract. We investigate the effects of shared resources for high-per-
formance computing in a commercial cloud environment where multiple
virtual machines share a single hardware node. Although good perfor-
mance is occasionally obtained, contention degrades the expected per-
formance and introduces significant variance. Using the DGEMM kernel
and the HPL benchmark, we show that the underutilization of resources
considerably improves expected performance by reducing contention for
the CPU and cache space. For instance, for some cluster configurations,
the solution is reached almost an order of magnitude earlier on average
when the available resources are underutilized. The performance benefits
for single node computations are even more impressive: Underutilization
improves the expected execution time by two orders of magnitude. Fi-
nally, in contrast to unshared clusters, extending underutilized clusters
by adding more nodes often improves the execution time by exploiting
more parallelism even with a slow interconnect. In the best case execu-
tion time, performance was improved enough by underutilizing the nodes
to entirely offset the cost of an extra node in the cluster.

Key words: cloud computing, Amazon EC2, high-performance com-
puting.

1 Introduction

The cloud computing model emphasizes the ability to scale compute resources
on demand. The advantages for users are numerous. Unlike conventional cluster
systems, there is no significant upfront monetary or time investment in infras-
tructure or people. Instead of allocating resources according to average or peak
load, the cloud user can pay costs directly proportional to current need. When
resources are not in use, total cost can be close to zero. Individuals can quickly
create and scale-up a custom compute cluster, paying only for sporadic usage.
However, there are also disadvantages to cloud computing services. Costs can
be divided into different categories that are billed separately: for example, net-
work, storage, and CPU usage. This model can be complex when attempting
to minimize costs [8]. Further, the setup time for computation resources is cur-
rently quite long (on the order of minutes), and the granularity for billing CPU
resources is coarse: by the hour. These two factors imply that resources should

2 Roman Iakymchuk et al.

 0

 100

 200

 300

 400

 500

 600

16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
s)

Time of day

Average

Fig. 1. DGEMM’s execution time over 6 hours using all 8 cores of a c1.xlarge Amazon
EC2 instance. The matrix size is n = 10 k.

be very conservatively scaled in current clouds, reducing some of the benefits of
scaling on demand. Finally, in many cloud environments, physical resources are
shared among virtual nodes belonging to the same or different users [11], which
can negatively impact performance.

In order to determine the impacts of shared physical resources and the achiev-
able efficiency of current cloud systems for HPC, we consider the execution of
dense linear algebra algorithms, which provides a favorable ratio of computa-
tion to communication: O(n3) operations on O(n2) data. Dense linear algebra
algorithms overlap the slow communication of data with quick computations
over much more data [1]. However, HPC on cloud systems will still generally
be limited by slow communication more than specialized HPC systems with
high-throughput, low-latency interconnects.

We evaluate the performance of HPC on shared cloud environments, per-
forming hundreds of high-performance experiments on Amazon Elastic Compute
Cloud (EC2). The experiments occur while nodes are shared with unknown other
applications on Amazon EC2. The results show that the performance of single
nodes available on EC2 can be as good as nodes found in current HPC sys-
tems [9], but on average performance is much worse and shows high variability
both on single node and small cluster evaluations. Fluctuation in the results is
easily observed in Fig. 1. The graph presents the time of repeated DGEMM—the
matrix-matrix multiplication kernel of BLAS—using all eight cores of a c1.xlarge
instance. The standard deviation is 33% of the average performance.

Due to the high variability in EC2 performance, we present not only the
best performance, but also the average performance a computation is expected
to achieve taking into account performance fluctuations. In light of the high-
contention we witness, we believe that alternative definitions of efficiency for
cloud environments should be introduced where strong performance guarantees

Underutilizing Resources for HPC on Clouds 3

do not exist. Concepts like expected performance or execution time, cost to
completion, and variance measures—traditionally ignored in the HPC context—
now should complement or even substitute the standard definitions of efficiency.

This article also empirically explores computational efficiency in a cloud en-
vironment when resources are underutilized. We observe an abnormal behavior
in the average performance on EC2: the peak average performance is reached
when only a portion of the available resources is used, typically 25–50%. This
behavior occurs both in single node performance and on clusters of up to 32
compute cores. Our results show that it is often more efficient to underutilize
CPU resources: The solution can be obtained sooner, and thus the corresponding
cost is also lower. Finally, we show that there is still available parallelism when
underutilizing resources. In some cases, adding an extra node to the cluster is
free: the computation finishes enough earlier to compensate for the marginal
price of the extra node.

The rest of this paper is organized as follows: we first give an overview of the
Amazon EC2 environment, then we describe the single-node evaluations followed
by the EC2 cluster evaluation. We summarize our results at the end of the paper.

2 Amazon Elastic Compute Cloud

Commercial vendors have discovered the potential of leasing compute time to
customers on the Internet. For instance, Amazon, through the Amazon Elastic
Compute Cloud (EC2) [7], provides the user with virtual machines to run dif-
ferent types of applications. Nodes allocated through EC2 are called instances.
Instances are combined into entries known as availability zones. These zones are
further combined into geographical regions: US, Europe, and Asia.

Table 1. Information about various instance types: processor type, number of cores
per instance, installed RAM (in Gigabytes), and theoretical peak performance (in
GFLOPS/sec). Prices are on Amazon EC2 as of May, 2010.

Instance Processor Cores RAM Peak Price
(GB) (GFLOPS) ($/hr)

m1.large Intel Xeon E5430 2 7.5 21.28 $0.34
m1.large AMD Opteron 270 2 7.5 8.00 $0.34
m1.xlarge Intel Xeon E5430 4 15 42.56 $0.68
m1.xlarge AMD Opteron 270 4 15 16.00 $0.68
c1.xlarge Intel Xeon E5345 8 7 74.56 $0.68
m2.2xlarge Intel Xeon X5550 4 34.2 42.72 $1.20
m2.4xlarge Intel Xeon X5550 8 68.4 85.44 $2.40

4 Roman Iakymchuk et al.

Table 1 describes the differences between the available instance types: num-
ber of cores per instance, installed memory, theoretical peak performance, and
the cost of the instance per hour. We only used instances with 64-bit processors.
The costs per node vary by a factor of 7 from $0.34 for the smallest to $2.40
for nodes with the biggest theoretical peak performance and installed memory.
We note that cost scales more closely with installed RAM than with peak CPU
performance with the c1.xlarge instance being the exception. Peak performance
is calculated using processor-specific capabilities. For example, the c1.xlarge in-
stance type consists of 2 Intel Xeon quad-core processors operating at a frequency
of 2.3GHz. Each core is capable of executing 4 floating point operations (flops)
per clock cycle, leading to a theoretical peak performance of 74.56 GFLOPS/sec
per node.

All instance types (with Intel or AMD CPUs) execute the RedHat Fedora
Core 8 operating system using the 2.6.21 Linux kernel. The 2.6 line of Linux ker-
nels supports autotuning of buffer sizes for high-performance networking, which
is enabled by default. The specific interconnect used by Amazon is unspecified [7].
In order to reduce the number of hops between nodes, we run all experiments
with cluster nodes allocated in the same availability zone.

There have been previous evaluations of HPC performance on cloud systems.
Edward Walker compared EC2 nodes to current HPC systems [10]. We also
demonstrated through empirical evaluation the computational efficiency of high-
performance numerical applications on EC2 nodes [5]. We antecedently reported
the preliminary results in [4].

3 Single Node Evaluation

We analyze the performance of EC2 instances on dense linear algebra algorithms.
We begin the study with the single node performance. Our goal is to analyze
the stability of achievable performance and to characterize how performance
varies with the utilized number of cores. In order to evaluate the consistency
of EC2 performance, we execute compute intensive applications such as the
DGEMM matrix-matrix multiplication kernel and High-Performance Linpack
(HPL) benchmark—based on LU factorization—for 24 hours, repeating the ex-
periments over different days. We first present results for DGEMM and then
discuss the results for HPL.

3.1 DGEMM Kernel

We perform measurements of the execution time of DGEMM under different
scenarios to determine peak and expected performance of single allocated VMs.
The matrix-matrix multiplication kernel (DGEMM) of the BLAS library is the
building block for all the other Level-3 BLAS routines, which form the most
widely used API for basic linear algebra operations. DGEMM is highly opti-
mized for target architectures, and its performance is typically taken as the

Underutilizing Resources for HPC on Clouds 5

 0

 50

 100

 150

 200

 250

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
s)

Time of day

Average

Fig. 2. DGEMM’s execution time over 6 hours using 1 of 8 cores of the c1.xlarge
instance. The size of the input matrices is n = 10 k.

peak achievable performance for a processor, often in the 90+% range of effi-
ciency. To measure the achievable performance on allocated VM instances, we
initialize three square matrices and invoke the GotoBLAS [2] implementation
of DGEMM. We only measure the time spent in the BLAS library and not the
time spent allocating and initializing the matrices.

Our experiments show that contention among the co-located VMs (and pos-
sibly the hypervisor itself) degrades performance. Fig. 2 shows the execution
time of repeated DGEMM on the c1.xlarge instance over 6 hours for matrices of
size n = 10 k; the size is such that the input matrices do not to fit in the 8 MB
L2 cache of the instance. For space reasons we show only 6 hours; however, the
results over 24 hours and on different days show similar behavior. In this figure,
only one of the eight cores of the c1.xlarge instance was used, and the results
are quite stable. The average execution time over all our experiments is 227.9 s
with standard deviation of only 0.23 s, i.e., 3 orders of magnitude smaller than
the average. We calculate the average using the arithmetic mean of the samples,
to demonstrate the statistically expected execution time of the computation. In
the rest of this paper we use average, arithmetic mean, and expected execution
time interchangeably.

Executing on only 1 of 8 cores in an instance heavily underutilizes the paid
resources. However, attempting to increase utilization quickly degrades perfor-
mance. For example, in Fig. 3 we present the time to complete the same DGEMM
experiments using only 4 of the 8 cores of the c1.xlarge instance. The results al-
ready show very high variability in the execution time: the average execution
time is 191.8 s, with standard deviation of 68.6 s. The average execution time
is 84% of the single core case using four times the resources. In addition, the
standard deviation is of the same order (36%) as the expected execution time.
For comparison, we also ran the same DGEMM experiments on a node of a stan-

6 Roman Iakymchuk et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
s)

Time of day

Average

Fig. 3. DGEMM’s execution time over 6 hours using 4 of 8 cores of the c1.xlarge
instance. The size of the input matrices is n = 10 k.

dard cluster: Intel Harpertown E5450 processor with 8 cores and 16 GB RAM.
The node is quite similar to the c1.xlarge instance on Amazon EC2, but shows
very little variability: when using 4 of 8 cores the average execution time is
43.73 s (25% of single core), with standard deviation of only 0.053 s (0.1% of the
average).

On the c1.xlarge instance we note that occasionally DGEMM executes with
very high performance so that the best results are as fast as they would be ex-
pected, achieving 90% efficiency. These fast executions imply that the virtualiza-
tion itself is not limiting the efficiency of the computation; instead, competition
for the CPU and cache space through multi-tenancy significantly degrade the
expected performance. The timings for the same experiments executed with all
the eight cores show an even higher level of variability and much worse average
execution times as shown previously in Fig. 1.

The change in average and minimum execution times as utilization increases
appears in Fig. 4. The figure presents times for DGEMM executed over 24 hours
with n = 10 k. Error bars show the standard deviation from the average. The
best performance (minimum) line indicates that DGEMM can reach 90% of the
efficiency. Such performance is close to the optimal achievable. As the number
of cores increases, the average execution time significantly increases along with
the standard deviation. The standard deviation increases by four orders of mag-
nitude. For comparison we present in Fig. 5 the average and minimum execution
times of repeated DGEMM on the node of a standard cluster (as described pre-
viously). The difference between the average and minimum execution times is
negligible, and thus the standard deviation of the average is always close to zero.

Underutilization is clearly a good policy on EC2 to reduce overhead due to
contention between VMs. Conversely, the results from the standard, unshared
cluster imply the extra parallelism provided by more cores should reduce the

Underutilizing Resources for HPC on Clouds 7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 4 6 8

T
im

e
 (

se
c
s)

Number of cores

Minimum
Average

Fig. 4. DGEMM’s average and best execution time on c1.xlarge vs. number of cores.
The size of the input matrices is n = 10 k; error bars show one standard deviation.

execution time correspondingly. Each execution uses roughly the same amount
of RAM with more cores using more (small) temporary buffers. Memory alloca-
tion is identical between the EC2 and cluster experiments. We infer that due to
colocation of tenants, the higher pressure on cache space due to increased paral-
lelism has the opposite, negative effect on EC2 than on an unshared cluster. As
utilization increases, the performance on EC2 actually degrades roughly expo-
nentially as the widening gap between the minimum performance—the expected
performance on the unshared node—and the average performance demonstrates.

Using two cores appears to be the optimal case; however, this sweet spot
does not necessarily hold true for different workloads in the allocated VM or
the co-allocated tenants. In our DGEMM experiment, using 4 of the 8 cores of
a c1.xlarge instance takes longer on average than using only 2, and the trend
worsens as the number of cores increases. Adding parallelism after two cores
only succeeds in increasing contention. We conclude that multi-tenancy on EC2
probably does not go beyond 3–4 VMs per physical node (each with 2 cores)
since some benefit from parallelism is still available.

Since the average performance is better (best) on 2 cores or even 1 core than
on 8 cores, it would be better to rent part of the node than the whole node. By
multiplexing several VMs on the same hardware, Amazon effectively supplies
only part of the node to the customer, but provides access to all of the cores.
We have shown that it is better to ignore the access to all of the cores and
underutilize the instance to reduce the overhead of contending VMs.

8 Roman Iakymchuk et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 6 8

T
im

e
 (

se
c
s)

Number of cores

Minimum
Average

Fig. 5. DGEMM’s average and best execution time on a standard cluster vs. number
of cores. The size of the input matrices is n = 10 k; error bars show one standard
deviation.

3.2 HPL Benchmark

The GotoBLAS implementation of DGEMM supports parallelism only on shared
memory architectures. In order to determine whether the effects we have seen
using DGEMM extends to multiple nodes, we use the HPL benchmark [6] that
can be scaled to large compute grids using MPI [3]. HPL computes the solution
of a random, dense system of linear equations via LU factorization with partial
pivoting and two triangular solves. The actual implementation of HPL is driven
by more than a dozen parameters, many of which may have a significant impact
on performance. Here we briefly describe our choices for the HPL parameters
that were tuned:

1. Block size (NB) is determined in relation to the problem size and the per-
formance of the underlying BLAS kernels. We used four different block sizes,
namely 192, 256, 512, and 768.

2. Process grid (p× q) represents how the physical nodes are logically arranged
onto a 2D mesh. For instance, six nodes can be arranged in four different
process grids, namely 1× 6, 2× 3, 3× 2, and 6× 1. We empirically observe
that HPL performs better with process grids where p ≤ q.

3. Broadcast algorithm (BFACT) depends on the problem size and network
performance. Testing suggested that on EC2 the best broadcast parameters
are 3 (increasing-2-ring modified) and 5 (long bandwidth-reducing modified).
For large machines featuring fast nodes compared to the available network
bandwidth, algorithm 5 is observed to be best.

Underutilizing Resources for HPC on Clouds 9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 4 6 8

T
im

e
 (

se
c
s)

Number of cores

Minimum
Average

Fig. 6. Average and minimum execution time of HPL on c1.xlarge vs. number of cores.
The input configuration to each execution of HPL is identical.

We first consider HPL on a single-node to provide a basis for comparison
with the DGEMM kernel, and then extend the analysis to small clusters of
instances. In Fig. 6 we execute HPL with n = 25 k on the c1.xlarge EC2 instance.
We plot average and minimum execution times against the number of utilized
cores. As with the previous DGEMM kernel experiments, error bars show the
standard deviation. The input\output matrix for the computation fits in the
main memory of a single instance. We do not directly compare the DGEMM
and HPL experiments because of the different operations that they implement;
however, we do note that Figs. 4–6 show similar behavior.

From the single node experiments we can conclude that the fastest perfor-
mance of DGEMM and HPL on the EC2 cloud is nearly the same as on standard
clusters. While the individual nodes provided are capable of efficient HPC com-
putations even within virtual machines, the expected performance represented
by the arithmetic mean can be several orders of magnitude worse than the best
performance. Virtualization by itself is not the culprit. As the number of uti-
lized cores per node increases, both the average and the standard deviation in-
crease considerably. We infer that competition for CPU and cache space among
co-located VMs causes significant performance fluctuations and overall degra-
dation. On the c1.xlarge “High-CPU” instances, the best expected performance
is obtained using from a quarter to half of the number of cores available. Ama-
zon provides no quality of service guarantees on the number of VMs that might
be multiplexed on a single hardware node so this ratio is subject to change as
Amazon changes the rate of multitenancy within EC2 nodes.

10 Roman Iakymchuk et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4

T
im

e
 (

se
c
s)

Number of cores

Minimum 2 nodes
Average 2 nodes

Minimum 3 nodes
Average 3 nodes

Fig. 7. Average execution time of repeated HPL on m1.xlarge (AMD) by number of
cores used per each node.

4 Performance Experiments: Multiple Nodes

In the previous section we described the significant benefits of the underuti-
lization of resources on the performance of single-node computations. In this
section, we extend our empirical analysis to parallel multi-node computations
by measuring the HPL benchmark on a cluster composed of allocated EC2 in-
stances. We execute HPL for one problem size, n = 50 k, on different clusters
of EC2 instance types. We again observe significant performance improvements
when underutilizing the resources on clusters of instances. In the rest of this
section we show that not only does underutilization decrease the overall time to
solution for computations across multiple nodes, sometimes adding extra nodes
also increases performance and decreases marginal cost.

We analyze the performance results on multiple nodes by determining the
expected execution time using the arithmetic mean over many sample runs:
on Intel instances we use 7–29 executions to determine the average, and on
AMD instances, we use 3–11. The AMD instances have fewer runs because those
instances became increasingly difficult to allocate starting in the Fall of 2009.
We believe that those nodes were replaced by nodes with Intel processors in the
availability zone that we used. We calculate average performance in GFLOPS
by dividing the required flops for the operation (2n3/3) by the average execution
time of the samples.

To demonstrate the effects of contention among clusters of multi-tenant VMs,
in Figs. 7–9 we present the minimum and average expected execution times
(along with standard deviation) for different instance types, varying the num-

Underutilizing Resources for HPC on Clouds 11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4

T
im

e
 (

se
c
s)

Number of cores

Minimum 2 nodes
Average 2 nodes

Minimum 3 nodes
Average 3 nodes

Fig. 8. Average execution time of repeated HPL on m1.xlarge (Intel) by number of
cores used per each node.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 6 8

T
im

e
 (

se
c
s)

Number of cores

Minimum 3 nodes
Average 3 nodes

Minimum 4 nodes
Average 4 nodes

Fig. 9. Average execution time of repeated HPL on c1.xlarge (Intel) by number of
cores used per each node.

bers of nodes allocated and cores used. For each instance type we find the min-
imum number of nodes—and the corresponding maximum number of cores—by
maximizing the usage of the total RAM of nodes. Using the minimum number

12 Roman Iakymchuk et al.

of nodes would typically provide the best performance in an unshared cluster
environment. In this paper we limit the allocation of cores across different num-
bers of nodes to the calculated maximum to facilitate comparisons to unshared
clusters. The matrix of size n = 50 k requires around 19 GB of RAM for the
input\output matrix in HPL, which requires 3 c1.xlarge nodes (7 GB of RAM
per node), for example, and thus a maximum of 24 cores.

The execution times for the m1.large instances (not shown in a figure), which
have two cores per node, improve when using both cores. In contrast, the fig-
ures show that on nodes with four or more cores, similarly to the single node
evaluation, the average performance is substantially worse than the best perfor-
mance. The variance on multiple nodes is smaller than the variance on single
nodes, possibly because a conspicuous fraction of the execution time is spent on
network overhead. The benefit of underutilization—that contention on memory
is reduced—appears to extend to clusters of nodes.

Although the interconnects used by Amazon are not specified, it is conjec-
tured that nodes are typically connected with Gigabit ethernet [10]. It is not
obvious that while using such a slow interconnect (compared to specialized HPC
interconnects) the different CPU performance obtained with underutilization
would have a tangible effect on the overall performance or whether the varia-
tion in CPU performance will have a significant effect on network performance.
However, Figs. 7–9 show that underutilization is still effective for cluster com-
putations. Moreover, using extra underutilized nodes can achieve better results.

Fig. 9 demonstrates clearly that the expected execution time of HPL is faster
using a 4 node cluster than using a 3 node cluster although the degree depends
upon the level of underutilization. Note that the fastest expected execution time
is obtained using 50% of a 4 node cluster, which is slightly faster than using 50%
or more of a 3 node cluster even though the data easily fits within the RAM of the
3 node cluster. The 50% utilization is unsurprising because it was also optimal
for expected execution time in the single node experiments. Using more nodes to
achieve a quicker result is the opposite of what typically occurs on an unshared
cluster with a slow interconnect where 3 nodes would perform better than 4 due
to the reduced network overhead. The extra network overhead incurred on EC2
using 4 nodes is more than compensated by the extra parallelism. However, the
computation time does not decrease linearly with the number of nodes; we infer
that the extra network overhead remains significant.

On a fixed cluster infrastructure, higher efficiency for each job increases the
number of jobs that can be completed in a given time. Increasing overall through-
put indirectly reduces costs per job since the cost of the cluster is typically fixed.
On commercial clouds instead, each computation can be priced individually. We
empirically studied the costs of using EC2 as determined by the execution time
and instance types in our experiments. Figs. 10–12 provide the average cost for
different instance types by utilized cores per node. To illustrate the marginal
costs incurred when allocating a cluster to solve several problems, the average
cost is prorated to the second and given as a rate, average cost per FLOPS,
calculated using the ratio between the (prorated) expected average cost to solu-

Underutilizing Resources for HPC on Clouds 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4

A
v
e
ra

g
e
 c

o
st

 p
e
r

G
F

L
O

P
 (

$
)

Number of cores

2 nodes
3 nodes

Fig. 10. Average cost per GFLOP ($/GFLOP) prorated to actual time spent for
m1.xlarge (AMD, 4 cores, 15GB RAM) by number of cores used per each node.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 2 3 4

A
v
e
ra

g
e
 c

o
st

 p
e
r

G
F

L
O

P
 (

$
)

Number of cores

2 nodes
3 nodes

Fig. 11. Average cost per GFLOP ($/GFLOP) prorated to actual time spent for
m1.xlarge (Intel, 4 cores, 15GB RAM) by number of cores used per each node.

tion and the total GFLOPS achieved by the computation. This measure allows
a rough estimation of expected cost for other problem sizes including other sci-
entific applications that have similar computational needs.

14 Roman Iakymchuk et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 4 6 8

A
v
e
ra

g
e
 c

o
st

 p
e
r

G
fl

o
p
 (

$
)

Number of cores

3 nodes
4 nodes

Fig. 12. Average cost per GFLOP ($/GFLOP) prorated to actual time spent for
c1.xlarge (Intel, 8 cores, 7GB RAM) by number of cores used per each node.

Since marginal cost is directly proportional to execution time, we include the
standard deviation as well as the expected average cost. Figs. 11–12 show that
the underutilization of resources on EC2 is not only a good approach from time
to solution perspective, but it is also the most cost-effective strategy of using
the commercial cloud. For instance, on the m1.xlarge (Intel) instances it is more
cost-effective to use only 75% of the available resources: the average cost is 18%
less than when using all the cores. The results on the c1.xlarge instances are
even more dramatic: it is more than 3 times cheaper to use 50% of the resources
than 100%. In fact, for a 4 node cluster, any underutilization, even 12.5%, is
more effective than using all the cores of each machine.

There is clearly a tradeoff between price and speed in our EC2 cluster exper-
iments. To demonstrate this tradeoff, Figs. 13–16 plot time to solution versus
prorated cost for the HPL cluster evaluation. In these graphs closer to the origin
is better. In each figure, using fewer nodes is cheapest, but for the c1.xlarge in-
stance, an additional node can be added to get a noticeable speedup at the same
cost. In this case, the extra parallelism speeds up the computation enough to
offset the extra cost of the node. This is quite different from a unshared cluster
with fixed costs. Finally, Fig. 16 combines the results from all instance types
to show that for our problem size underutilizing (by 50%) a c1.xlarge instances
with 4 nodes is the fastest and most cost effective strategy. This strategy differs
significantly from the expectation on an unshared cluster where performance is
more stable and using fewer nodes is typically the optimal strategy.

Underutilizing Resources for HPC on Clouds 15

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
im

e
 (

se
c
s)

Cost ($)

2 nodes
3 nodes

1 core (25%)
2 cores (50%)
3 cores (75%)
4 cores (100%)

Fig. 13. Time to solution versus prorated cost for m1.xlarge (AMD, 4 cores, 15GB
RAM).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
im

e
 (

se
c
s)

Cost ($)

2 nodes
3 nodes
4 nodes

1 core (25%)
2 cores (50%)
3 cores (75%)
4 cores (100%)

Fig. 14. Time to solution versus prorated cost for m1.xlarge (Intel, 4 cores, 15GB
RAM).

5 Conclusions

In this article we investigated the beneficial effects of underutilizing resources
for high-performance computing in a commercial cloud environment. Through a

16 Roman Iakymchuk et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
im

e
 (

se
c
s)

Cost ($)

3 nodes
4 nodes
5 nodes
6 nodes

1 core (12.5%)
2 cores (25%)
4 cores (50%)
6 cores (75%)
8 cores (100%)

Fig. 15. Time to solution versus prorated cost for c1.xlarge (Intel, 8 cores, 7 GB RAM).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
im

e
 (

se
c
s)

Cost ($)

m1.large (Intel)
m1.xlarge (Intel)

m1.xlarge (AMD)
c1.xlarge (Intel)

Fig. 16. Time to solution versus prorated cost for different instance types.

case study using the DGEMM kernel and the HPL benchmark, we showed that
the underutilization of resources can considerably improve performance. For in-
stance, for some cluster configurations, on average the solution can be reached
almost an order of magnitude earlier when the available resources are under-
utilized. The performance benefits for single node computations are even more

Underutilizing Resources for HPC on Clouds 17

impressive: underutilization can improve the expected execution time by two
orders of magnitude. Finally, extending underutilized clusters by adding more
nodes can often improve the execution time by exploiting more parallelism. In
the best case in our experiments, the execution time was improved enough to
entirely offset the cost of the extra node in the cluster, achieving faster compu-
tation at the same cost using extra underutilizes nodes.

We presented the average execution time, cost to solution, and variance
measures—traditionally ignored in the high-performance computing context—
to determine the efficiency and performance of the commercial cloud environ-
ment where multiple VMs share a single hardware node. Under virtualization
in this competitive environment, the average expected performance diverges by
an order of magnitude from the best achieved performance. We conclude that
there is significant space for improvement in providing predictable performance
in such environments. Further, adaptive libraries that dynamically adjust uti-
lized resources in the shared VM environment have the potential to significantly
increase performance.

Acknowledgement

The authors wish to acknowledge the Aachen Institute for Advanced Study in
Computational Engineering Science (AICES) as sponsor of the experimental
component of this research. Financial support from the Deutsche Forschungsge-
meinschaft (German Research Association) through grant GSC 111 is gratefully
acknowledged.

References

1. Jack Dongarra, Robert van de Geijn, and David Walker. Scalability issues affecting
the design of a dense linear algebra library. Journal of Parallel and Distributed
Computing, 22(3):523–537, September 1994.

2. Kazushige Goto. GotoBLAS. Available via the WWW. Cited 1 Jan 2010. http:

//www.tacc.utexas.edu/resources/software/#blas.
3. Argonne National Laboratory. MPICH2: High-performance and widely portable

MPI. Available via the WWW. Cited 1 Jan 2010. http://www.mcs.anl.gov/

research/projects/mpich2/.
4. Jeff Napper and Paolo Bientinesi. Can cloud computing reach the Top500? In

Unconventional High-Performance Computing (UCHPC), May 2009.
5. Paolo Bientinesi, Roman Iakymchuk and Jeff Napper. HPC on Competitive Cloud

Resources. In Handbook of Cloud Computing. Springer, 2010.
6. Antoine Petitet, R. Clint Whaley, Jack Dongarra, and Andrew Cleary. HPL

- a portable implementation of the high-performance LINPACK benchmark for
distributed-memory computers. Available via the WWW. Cited 1 Jan 2010.
http://www.netlib.org/benchmark/hpl/.

7. Amazon Web Services. Amazon elastic compute cloud (EC2). Available via the
WWW. Cited 1 Jan 2010. http://aws.amazon.com/ec2.

18 Roman Iakymchuk et al.

8. Jörg Strebel and Alexander Stage. An economic decision model for business soft-
ware application deployment on hybrid cloud environments. In Matthias Schu-
mann, Lutz M. Kolbe, and Michael H. Breitner, editors, Tagungsband Multikon-
ferenz Wirtschaftsinformatik, 2010. forthcoming.

9. TOP500.Org. Top 500 supercomputer sites. Available via the WWW. Cited 1 Jan
2010. http://www.top500.org/.

10. Edward Walker. Benchmarking Amazon EC2 for High-Performance Scientific Com-
puting. ;login:, 33(5):18–23, October 2008.

11. Guohui Wang and Eugene Ng. The impact of virtualization on network perfor-
mance of Amazon EC2 data center. In INFOCOM ’10: Proceedings of the 2010
IEEE Conference on Computer Communications. IEEE Communication Society,
2010.

