
Visualizing Glacier Ice Flow in an Immersive

Environment

P. Ekman

November 13, 2000

Abstract

This report describes the application of immersive visualization techniques to
the problem of visualizing glacier ice flow. An application based on IRIS Per-
former, pfCAVE and VTK was developed to implement the visualization. A
high degree of interactivity is maintained in the application through the use of
movable probes controlled by a positional tracker. VTK proves to be a very
powerful visualization tool but one that has to be used with care in order to
achieve good performance. A major problem with the development of visualiza-
tion applications for immersive environments is the lack of a general graphical
user interface system designed for these environments.

Visualisering av isflöden i glaciärer i en immersiv miljö

Denna rapport beskriver hur isflöden i glaciärer kan visualiseras i en immersiv
miljö. En applikation, baserad p̊a IRIS Performer, pfCAVE och VTK, som
implementerar visualiseringen har utvecklats. God interaktivitet uppn̊as genom
användandet av positionssensorer kopplade till verktyg i applikationen. VTK
visar sig vara ett kraftfullt visualiseringsverktyg som dock måste användas med
viss försiktighet om god prestanda skall kunna uppn̊as. Bristen p̊a generella
grafiska användargränssnitt för immersiva miljöer är det problem som utgör det
största hindret vid utveckling av immersiva applikationer.

Contents

1 Introduction 1

2 Glaciology 2
2.1 Basic concepts : Storglaciären . 3
2.2 The model . 4

3 Visualization 5

4 Choosing the tools: COVISE vs VTK 7
4.1 Data Flow Networks . 7
4.2 COVISE . 7
4.3 VTK . 9
4.4 Performer . 10
4.5 CAVElib . 10
4.6 vtkActorToPF . 11

5 Implementation 12
5.1 Data format issues . 12

5.1.1 Data reading . 13
5.2 Creating the visualization . 14
5.3 Application framework . 17
5.4 Performance issues . 19

5.4.1 Performance experiments 20
5.5 Qualitative analysis . 22

6 Future Work 23

7 Conclusions 24

8 Acknowledgements 25

Bibliography 27

A Foo Data Format specification 28

1

Chapter 1

Introduction

In the autumn of 1998 I was approached by Peter Jansson, associate professor of
glaciology at the Department of Physical Geography, Stockholm University. He
was involved in a collaboration with scientists from Eidgenössische Technische
Hochschule, ETH, in Zürich where they applied a numerical model of glacier
evolution developed in Zürich to Storglaciären, a much studied glacier in the
north of Sweden. Jansson was dissatisfied with the quality of visualization in
the glaciology area. He wanted to know if I had any ideas on how to visualize
the output data from the glacier model. At this time the Center for Parallel
Computing, PDC, at the Royal Institute of Technology in Stockholm, was in the
process of installing a CUBE, a CAVE-like system for immersive visualization.
The intention was to provide the Swedish scientific community with the means to
create advanced immersive scientific visualizations. I discussed the problem with
Johan Ihrén at PDC and he agreed to get PDC to sponsor the development of a
visualization application for the visualization of glacier ice flow in an immersive
environment as my masters project. What Peter Jansson was interested in was
to see what could be done with the kind of visualization technology available at
PDC. If immersive visualization would lead to new insights and whether it would
be a useful educational tool. The goal of this work is to provide an interactive
visualization application for glacier ice flow utilizing immersive environment
technologies to try to answer those questions.

1

Chapter 2

Glaciology

What is a glacier? A glacier is a mass of ice and snow that is deformed by its
own weight and is in motion under the influence of gravity. Glaciers are formed
in places where it is cold enough that some or all of the snow that falls there
remains frozen throughout the year. Glaciers range in size from small glaciers of
a few hundred m3 of ice to the east and west Antarctic ice sheets that together
contain 30 million km3 of ice — 70% of the planet’s fresh water [Näslund, 1998].

Glaciers are studied for a variety of reasons. A glacier has a profound effect
on the landscape upon which it rests since it efficiently erodes its bed. Large
amounts of debris is picked up by the ice, moved around and finally deposited,
creating features such as moraines and eskers. Since large areas of the Earth’s
surface have been covered by ice during various times in the past understanding
how a glacier works is imperative to understand how the landscape of these
areas was formed.

Glaciers can also have a more immediate impact on their surroundings. A
jökulhaup is when a reservoir of liquid water is catastrophically drained through
some conduit in a glacier. The reservoir can be formed by normal melt, volcanic
activity, or when an advancing glacier dams a stream. In 1996 a large jökulhaup
occured in Iceland when a volcano erupted beneath the Vatnajökul icecap. More
than 3 km3 of water was discharged over a period of two days washing out
bridges and powerlines, causing damage to the cost of approximately 15 million
US dollars [Brandsdòttir, 1996]. Successful prediction of these events would
greatly reduce the risk of living or working close to glaciers.

There is much talk about global warming and a fear that the Antarctic ice
sheets would melt and cause a significant rise in sea level. In these discussions
there are many questions that glaciology can help answer. What will happen to
the ice sheets when the temperature rises? When precipitation increases? How
fast do the ice sheets react to climatic changes?

The ice that is formed at the surface of a glacier by falling snow can be
preserved for hundreds or even thousands of years. This ice contains a record of
the chemical composition of the atmosphere at the time when it was first frozen.
Old ice recovered from boreholes can thus be used to reveal what the climate
was like in the past (paleoclimatology). Glaciers also act as climate indicators.
As they react to changes in precipitation and temperature their shape changes.
This change can be observed to provide an indication of what is happening to
the climate.

2

2.1 Basic concepts : Storglaciären

Figure 2.1: Storglaciären.

The glacier chosen to verify the model on is Storglaciären, a small subpolar
valley glacier. Storglaciären is located at 67◦55’N 18◦35’E in the Kebnekaise
massif in the north of Sweden. It is 3.2 km long, has a surface area of 3.1
km2 and an average thickness of 93 m. Storglaciären is one of the most stud-
ied glaciers in the world. In 1947 the Tarfala Research Station was founded
primarily to support the mass balance measurements started on Storglaciären
in 1945 [Jansson and Holmlund, 1998]. This station is located in the Tarfala
valley within easy walking distance of several glaciers in the area, including
Storglaciären, and it has facilitated much research in the area.

Storglaciären emerges from two basins on the northeast and southeast side
of the north peak of Kebnekaise, and an ice tongue extends down to the Tar-
fala valley. The basins make up the accumulation area of the glacier. In the
accumulation area the loss of mass, or ablation, due to melt is less than the
accumulation of mass during the winter. The tongue of the glacier makes up
the ablation area. This part of the glacier loses more mass due to melting than
is gained by accumulation.

The mechanics of a glacier is described in detail in [LeB Hooke, 1998]. The
main source of accumulation is precipitation although drifting, avalanching and
condensation also contribute. At the end of the winter season the whole glacier
is covered with snow. As the temperatures rises with the onset of summer the
snow at the surface starts to melt. The difference in temperature due to altitude
causes more ablation in the lower reaches of the glacier. In the ablation area the
snow eventually melts altogether, revealing the ice below. As the summer passes
the snow line retreats up the glacier. When the melt season ends the snow line
defines the boundary between the accumulation and the ablation areas.

The ice is formed in the accumulation area. As the thickness of the snow
pack grows the pressure from the overlying snow causes the snow deeper in the
pack to start to turn into ice. Snow that is older than a year is called firn. As
the pressure increases and melt water from the snow surface percolates down
and refreezes in the firn layers the firn eventually turns into ice. Gravity causes
the ice to flow downwards where the temperature is higher and the ablation is

3

higher than the accumulation. At some point the ice reaches the bare ice surface
in the ablation area where it melts.

The evolution of a glacier is governed by its mass balance. The mass bal-
ance is the amount of mass (expressed as volume of water) lost or gained by
the glacier during a year. A positive mass balance means that the total accu-
mulation was greater than the total ablation and the glacier experienced a net
growth that year. The mass balance is a function of the climate. A year of
low temperatures or high levels of precipitation causes the mass balance to be
positive and, conversely, high temperatures or low levels of precipitation cause a
negative mass balance. The mass balance averaged over time indicates whether
the glacier is advancing or retreating and is also a measure of the climatological
trend. The mass balance of Storglaciären has been continously recorded since
1945 and constitutes a unique data resource. The wealth of knowledge about
Storglaciären, particularily the mass balance measurements and mappings of
the bed and surface topography, makes it a good choice for the verification of
the ice flow model.

Ice is, to a good approximation, an incompressible crystalline material. The
flow, or strain, of ice is usually taken to be related to the applied stress by Glen’s
flow law

ε̇e = (
σe

B
)n.

Here ε̇e is the effective strain rate tensor, σe is the effective stress tensor, B
is a viscosity parameter and n is a parameter that depends on the dominant
deformation mechanism but is commonly considered to be a constant ≈ 3.
Glen’s flow law can be expanded to take into account effects such as temperature,
hydrostatic pressure and crystal orientation.

2.2 The model

The glacier ice flow model was developed by Olaf Albrecht at ETH in Zürich
Switzerland [Albrecht, 1999]. The model consists of a glacier mechanics part
based on a model developed by Blatter [Blatter, 1995, Blatter and Colinge, 1998],
and a glacier surface evolution part developed by Albrecht [Albrecht, 1999]. The
model has been used to study the relationship between the geometry of a glacier
and its mass balance. The model is controlled by a bed topography, an initial
surface topography and a set of mass balances. It calculates the glacier reac-
tion to the given mass balance and generates velocity and stress fields and the
calculated ice geometry [Albrecht et al., 1999].

4

Chapter 3

Visualization

A scientific computational code run on a supercomputer-class machine today
commonly produces many gigabytes of data. These data must usually be pro-
cessed in some way to enable researchers to draw conclusions from it. Scientific
visualization is the process of generating images from these kinds of data. Large
data sets with three or more dimensions are difficult to visualize effectively us-
ing a normal 2D display. Important features and the structural information of
the data is frequently lost by the transformation to two dimensions. Even if
a 2D picture would be enough to bring out the important parts of the result
extracting that picture from gigabytes of data poses a difficult problem.

There are several difficulties with visualizing large datasets. Much extra
computation is required to generate graphics from the numerical results. High
graphical complexity means that powerful graphics workstations are required
to generate the graphics. Efficient algorithms and methods have to be devel-
oped to bring out features of interest in the results. One major problem is the
difficulty to comprehend and manipulate complex three-dimensional graphics
on a two-dimensional display. Effects such as fog can be used to increase the
spatial awareness but this may obscure details and hide larger scale patterns.
Interaction methods in visualization programs are most commonly based on the
keyboard and mouse, but these tools were not designed to work well in three
dimensions. Trying to accurately manipulate a 3D-structure with a mouse is
often an exercise in frustration.

Using Virtual Reality (VR) technology to do scientific visualization in an
immersive environment can alleviate some of these problems. In this text I
will take the term immersive environment to mean something that involves
stereographic real time imaging and an intuitive way of interacting with, and
moving around, objects in the virtual space.

The VR equipment that was the target hardware of the developed visual-
ization application consists of three principal parts. A 3D display device, a 3D
position tracking system and a host computer. The 3D display systems at PDC
utilize so-called shutter glasses. Human stereo vision is mainly based on the
difference in position between the two eyes, the parallax. The view for the left
eye has a different perspective than that for the right eye. The display system
mimics this effect. A pair of LCD shutter glasses obscures the vision of one eye
at a time. The host computer renders the viewed scene from the perspective
of the unobscured eye. Every other frame the glasses switch between obscuring

5

the left and right eye and the host computer is synchronized so that it renders
the right frame at the right time. Since two frames have to be drawn for each
effective frame in the graphic being displayed the effective frame rate is half
that of the actual frame rate. For the systems at PDC the frame rate is 96Hz
and the effective frame rate is thus 48Hz.

A 3D position tracking system is employed to be able to intuitively control
the applications and to enable the computer to draw the viewed geometry ac-
cording to the position of the head of the viewer. The tracking systems used
at PDC are electromagnetic. A fixed emitter generates a magnetic field that is
picked up by small sensors whose position relative to the emitter can then be
calculated.

Applications are controlled with an interaction device called a wand. The
wand is a small stick with three buttons and an analogue joystick with an
attached positional tracker. The wand is free-floating, the tracker system feeds
the position and orientation of the wand in space to the application and the
state of the joystick and the buttons can be tested.

The display devices available at PDC are an ImmersaDesk and a CUBE.
They both utilize a combination of back-projection displays and 3D tracking
that was pioneered by the Electronic Visualization Laboratory (EVL) at the
University of Illinois [Cruz-Neira et al., 1993]. The ImmersaDesk is a back-
projected 1.3 m × 1.6 m screen that is tilted at a 45◦ angle, encased in a large
wooden box. The CUBE is based on the same technology as the ImmersaDesk.
It consists of six back-projected screens arranged as a 3 m × 3 m × 2.5 m cube
with one screen mounted on a door frame. This arrangement gives the user a
much greater sense of immersion than with a single screen.

Although there are other types of VR equipment, such as head-mounted
displays, the projection based system described above has several advantages.
It is easier to get sharp pictures with good resolution from a projection based
system. People are often reluctant to put on bulky helmets whereas simple stereo
glasses are usually perceived as less restrictive. Several people can share the view
without having to duplicate expensive display systems, a crucial property if the
system is to be used for education. PDC also has a lot of experience with these
types of systems which made development much easier.

The host computer receives tracking data from the position tracking system
and sends it to the application program which proceeds to generate the graph-
ics to be displayed. It also makes sure that the shutter glasses are properly
synchronized with the graphics refresh. The details of the host computers used
with the CAVE and ImmersaDesk are tabulated below.

CAVE ImmersaDesk
Machine SGI Onyx2 SGI Octane
CPU 12 × MIPS R10000@195Mhz 2 × MIPS R10000@250Mhz
Memory 4096MB 1024MB
Graphics 3 × IR EMXI

6

Chapter 4

Choosing the tools:
COVISE vs VTK

Two visualization systems were considered during the first part of this work:
COVISE and VTK. These two systems are architecturally similar in that they
both are based on the data flow network paradigm. However they differ in
implementation and thus have different advantages and disadvantages.

4.1 Data Flow Networks

In the data flow network paradigm a visualization system is constructed by
building a directed graph, the network. Conceptually, data flows between the
nodes in the network along the edges. The nodes perform operations on the
input data and pass it on to their outputs. In both the systems considered, a
node in the network is called a module. The network is constructed by connect-
ing the outputs of some modules to the inputs of others. A typical visualization
network using this paradigm might consist of a data-read module that read the
data to be visualized from file and passes it on to one or several processing
modules that might extract the data of interest from the dataset, color it and
create the geometry that makes up the visualized result. The last module in
the network is commonly a rendering module, a module that opens a window
and renders the geometry, but can also be output modules of other kinds, for
instance modules that write an image or movie file to disk. The visualization
network is also sometimes referred to as the visualization pipeline in an analogue
to a graphics rendering pipeline.

4.2 COVISE

COVISE stands for Cooperative Visual Simulation Environment. COVISE de-
velopment was initiated in the Pilot Applications in a Gigabit European Inte-
grated Network (PAGEIN) project, and has continued at the Computer Centre
of the University of Stuttgart (RUS) since 1993 [Lang et al., 1997]. Salient fea-
tures of the COVISE system are support for distributed applications, the Ma-
peditor for graphical design of the visualization networks and the VR renderer
module COVER (COVISE Virtual Reality Environment).

7

The visualization networks in COVISE are created in the Mapeditor (Figure
4.1), on a graphical “canvas”. Modules are selected from a library and placed
on the canvas. Each module has a number of ports that can be connected to
other modules. There are three kinds of ports. Data input ports recieve the
data for the module to operate on, such as pure application data, geometry
or color information. Data output ports output the data generated by the
module. Parameter input ports are used to control the operation of the module.
A window can be opened with controls for the enabled parameter ports or the
ports may recieve their input from other modules. An Application Programming
Interface, or API, is provided for writing new COVISE modules.

Figure 4.1: The COVISE Mapeditor.

As its name implies COVISE was designed with cooperative visualization in
mind. Several instances of COVISE can work on the same data simultaneously.
Data are stored in a Shared Data Space (SDS). The SDS will most likely be
implemented as shared memory but could concievably be some other data shar-
ing facility. Each SDS is managed by a COVISE Request Broker (CRB). When
the application wants to access a data object in the SDS it presents the request
broker with a handle, the CRB looks up the object – or creates one if necessary
– and returns a pointer to the object in the shared data space. A COVISE ap-
plication can access data from different shared data spaces transparently. The
local request broker takes care of contacting brokers for other data spaces it
knows about and transfers data objects between the data spaces as necessary.

8

COVISE has several standard rendering modules, the three major ones are
the Inventor- and Performer-based renderers and the COVER renderer. The ap-
plication is controlled by enabling parameter inputs in the modules that make
up the visualization network. When enabled, inputs get their controls added to
the ControlPanel window where they can be manipulated. Most renderers con-
tain controls for manipulating the geometric objects rendered, for moving the
viewpoint, and for changing rendering properties such as fog, wireframe render-
ing, textured rendering etc. The three major renderers all support headtracking
and stereo rendering. The COVER renderer can be used with immersive de-
vices such as ImmersaDesks or CAVE’s. It supports viewpoint transformations
controlled by a 3D-tracker, input devices such as the Polhemus Stylus and the
Pyramid Systems wand and multiple display devices such as those employed in
a CAVE. An important distinction of the COVER renderer is that it is the only
renderer to support integrated control of modules in the visualization network.
This is, however, limited to cutting surfaces, isosurfaces and particle traces for
unstructured grids.

4.3 VTK

VTK stands for Visualization Toolkit and is a C++ class library for visu-
alization and image processing. VTK was written by Will Shroeder, Ken
Martin and Bill Lorensen at GE Corporate Research [Schroeder et al., 1996,
Schroeder and Martin, 1999]. The visualization network is constructed by writ-
ing code in C++, Java, Python or TCL which means that some programming
knowledge is required to write VTK applications. The VTK source code is open
and available free of charge although under a license that governs the terms of
use. The major features of VTK is the availability of the source code, the fine
granularity of the modules, the dynamic development of VTK itself and the
textbook The Visualization Toolkit.

ActorMapperFilterSource Renderer

Figure 4.2: The VTK visualization pipeline.

The VTK visualization pipeline (see figure 4.2) starts with a source object.
A source is either a data reader module or a module that generates data from
scratch. The data from a source is passed through filters that treat the data in
some way. Filters may filter the data or implement some visualization algorithm.
The output of the filters – or from the source if the filters are bypassed – is
passed to a mapper that generates geometry from the input. The geometry
generated by a mapper is embedded in an actor which contains the geometry
and the properties of the geometry such as color, textures, position and so
on. Finally the actor objects are added to a renderer module that renders
the geometry. Changes to parameters in the pipeline are propagated through
the modules downstream and cause them to update themselves. Although the

9

data conceptually flows through the network it is usually passed by reference
whenever possible.

VTK users are encouraged to write their own VTK modules and make them
available to the VTK community. The availability of the source code, the ex-
tensive documentation, the large amount of example code and the usefulness of
the toolkit has made VTK popular and the number of modules/classes that is
part of VTK today is large. Bug fixes, performace improvements and new mod-
ules are added to VTK almost daily by both its authors and users. The large
number of modules in VTK makes it a flexible tool, but can also be confusing
since there are generally many ways to accomplish a certain task and it is not
always apparent which one is most efficient.

The Visualization Toolkit [Schroeder et al., 1998] is a general visualization
textbook written by the creators of VTK. The book describes the basics of
scientific visualization and the algorithms used and uses VTK to illustrate the
techniques described. Although the aim of the book is placed firmly on visu-
alization techniques it still constitutes a good introduction to the use of VTK
and is a useful index into the multitude of example codes that are supplied with
VTK.

4.4 Performer

Performer is a scene graph API developed by SGI (formerly Silicon Graphics).
A scene graph is a way of structuring the geometric objects in a scene so that
they can be rendered as efficiently as possible. A scene graph is a tree structure
with nodes that contain the geometry and some sort of ordering that governs
the tree traversal. Any serious graphical application employs some sort of scene
graph, be it a highly optimized application specific BSP-tree or a more general
structure. The Performer scene graph is designed for visual simulation such
as for instance flight simulators and is highly optimized for this task. This
makes applications that use Performer to navigate around mainly static geome-
try efficient at the cost of generality. Performer applications with a high degree
of dynamic geometry will perform poorly compared to special purpose scene
graphs. The interior nodes in a Performer scene graph contain transformation
matrices and various kinds of special purpose functionality such as animation
and level-of-detail. The leaf nodes contain the geometry and its state (such
as texture and color). The most basic type of geometry node is the geoset, it
contains a set of homogenous geometric primitives such as points, lines or trian-
gles. Sets of geosets are grouped together in geodes which are used to represent
a graphical object in the scene.

4.5 CAVElib

The most common API for writing CAVE applications is CAVElib, a C library
that wraps around OpenGL. CAVElib was developed at EVL and provides func-
tions that transform the viewpoint so that the viewed geometry is rendered in
stereo, functions that transform the viewpoint according to the position of a
tracker, and functions that access the buttons and joystick on the Pyramid Sys-
tems wand controller. The biggest benefit of using CAVElib is that it is a very

10

thin and low-level layer. It imposes little overhead on the rendering process and
thus has limited impact on performance. Dave Pape at EVL has written an
API called pfCAVE that embeds the functionality of CAVElib in a form that is
easily usable from Performer [Pape, 1997].

Graphics hardware

CAVElib

pfCAVEPerformer

OpenGL

Figure 4.3: Rendering pipeline.

4.6 vtkActorToPF

Paul Rajlich at the National Center for Supercomputing Applications (NCSA),
in the United States, has written a VTK module called vtkActorToPF. It con-
verts vtkActors to Performer geodes. Since there was no CAVE renderer in
VTK at the time work was begun the VTK-vtkActorToPF-pfCAVE combina-
tion was the easiest way to get a visualization up and running in an immersive
environment quickly [Rajlich, 1998b, Rajlich et al., 1998].

11

Chapter 5

Implementation

The problem of visualizing the glacier flow data can be divided into a couple of
distinct steps.

• Data format conversion and processing

• Reading the data into the application

• Applying visualization techniques to generate geometry and color from
the data

• Rendering the geometry and providing a way of controlling the application

The first point above is independent of the system chosen to implement the
visualization application, all others are more or less affected by the APIs and
visualization systems used.

5.1 Data format issues

The data from the model is stored in ASCII format. Each row consists of the
X (latitude), Y (longitude) and Z (altitude) coordinates and the velocity vector
and stress tensor at this point. The dataset is topologically a hexahedron, a
structured grid, and regular in the X and Y dimensions but irregular in the Z
dimension. The resolution of the grid is 150 m × 150 m along the X and Y
axes and it has 26 layers in the Z direction. All points on the XY-plane have
the same number of layers in the Z direction, at points on the grid where there
is no ice the Z-coordinates for all layers coincide. The structured format of the
data is a good thing, it makes it easy to find neighboring cells by simple index
manipulation and the structure information of the data set is implicit; there is
no need for special connectivity data structures. For multi-timestep results each
timestep is stored in its own file.

I decided to store the data in an intermediate data format to make it easier
to adapt to changes in the output data from the model and to make the data
less unwieldy. Since the nature of the ice flow data is very similar to that of
a laminar fluid flow, it made sense to try to use an established Computational
Fluid Dynamics, or CFD, data format as the intermediate format. CFD is a
very active research area and there are a number of popular applications and

12

data formats in use. Since there are readers for the most popular data formats
already implemented in COVISE, VTK and other visualization systems, using
such a format would make it easier to both use the finished application with
other data sets and to import the glacier data in other visualization applications.
A couple of CFD formats were briefly investigated and one, CGNS, was studied
more seriously.

CFD General Notation System (CGNS) is a data format developed by the
Boeing Commercial Airplane Group under a NASA contract. CGNS was devised
to facilitate the exchange of CFD data between applications and is portable and
extensible. An API for storing and accessing CGNS data has been developed but
I was unfortunately not able to obtain it at the time. CGNS is very complex
because of its generality. It can handle structured, unstructured and mixed
topology grids, multi-block data and among other things allow archiving of the
equations used to generate the data. [Poirier et al., 1998]

In the end I did not see much point in spending lots of time trying to im-
plement a complex format converter since the data lended itself to a simple
structured layout. A straight-forward proprietary data format would be quick
to implement and could easily be changed later if necessary. Indeed it later
proved to be simple to import the ASCII data to AVS, a commercial visualiza-
tion application, for verification.

The data format, called Foo data format, or FDF, is described in detail in
appendix A. The important features are summarized here. The data is split
into three files: a metadata file that describes the contents and dimensions of
the data, one or more coordinate files containing the grid for each timestep,
and one or more data files containing the data. The metadata file is a human
readable ASCII file. The coordinate and data files are binary files. This saves
space compared to the original ASCII format and allows much higher I/O rates.
The data in the binary files are sequentially ordered to enable the application to
read the data using a big stride, thus improving I/O performance when reading
large datasets from disk. The binary format is essentially data from memory
written as is to disk, this makes reading and writing easy. Unfortunately it also
makes the format non-portable because of byte order and word size issues.

A program was written to convert the model output data to FDF. During the
development the ordering of the coordinates in the model output data changed.
The conversion program thus handles two different orderings: ZYX and ZXY. It
cannot figure out the ordering by itself. The conversion program can also change
the origo of the dataset. The coordinates in the model output data are given in
RR92, “Rikets nät”, the national coordinate system for Sweden. In this system
the origo is more than 7 million meters south of the grid while the altitude
never exceeds 3000 meters. Since the size of the Y (and to a lesser extent the
X) coordinate is so large it is prone to round-off errors in the application and a
local coordinate system makes it easier to think about where things should be
placed.

5.1.1 Data reading

The data read module code is similar between the COVISE and the VTK imple-
mentations. The metadata file is read, and a data information structure is set
up with the name of the dataset, the dimensions and the number of timesteps.
The grid coordinates and data are read into arrays, one for each scalar value

13

(i.e. three arrays for the coordinates, three for the velocity vector and six for
the stress tensor). COVISE stores data in this way internally so the COVISE
FDF reader module became very simple – it reads the data sequentially from
disk, a single read per array, creates a COVISE data object and copies the data
into it with a single memcpy() call per array. The tensors were not used by the
COVISE implementation, nor does it support multiple timesteps.

The VTK reader (vtkFDFReader) is a little more elaborate. This is partly
because the data points had to be added one by one and partly because it had
to read multiple timesteps as well as the tensor data. Because the grid of one
dataset contained dummy altitude values where the input grid of the model
was less dense than the computational grid, the VTK reader also does some
interpolation. The VTK reader reads the data in the same way as COVISE and
then builds up 4D-indices for each array so that the data can be accessed by
timestep and XYZ coordinates in the grid. The dummy altitude values were
set to 9999, the vtkFDFReader therefore contains a maximum altitude value,
anything higher than that is considered a dummy value. When a dummy value
is found all surrounding cells in the XY-plane are queried of their altitude, valid
altitudes are used to linearily interpolate the altitude of the current cell. If no
valid altitudes are found (and this could only happen at the edges with the
data set in question) the altitude is set to zero. VTK data objects are then
created for the grid coordinates, the velocity vectors, velocity magnitudes and
stress tensors, one object for each timestep. The vtkFDFReader module contain
methods for stepping backwards and forwards in multiple timestep data. These
methods change the output of the module to a new object that contains the
data for the timestep requested.

5.2 Creating the visualization

In the VTK implementation each visualization function can be described as the
modules between the data reader and the renderer. The set of VTK modules
that make up a visualization function, or method consists of a probe that de-
termines on what part of the data the function should be applied, one or more
modules that manipulate that data, a mapper and an actor that encapsulate the
resulting geometry. In most cases the only part of this set of modules one would
want to manipulate is the probe module; the probe may be moved or resized. A
visualization entity is a visualization method instance; the set of VTK modules
and the geometry that they generate. A visualization method might be the set
of VTK modules that generate a streamline and a visualization entity could then
be one actual streamline in the scene together with the modules that generated
it. Conceptually it might seem excessive to duplicate modules like this but in
practice a module is just the data defining the particular instance. In the code
an entity is made up of the probe module and the geode that it generates. The
rest of the modules making up the visualization method are kept internal to
VTK, they can only be accessed indirectly through the probe module. In this
way, given an entity, the program can add or remove the geometry to the scene
(through the geode) or manipulate the probe module. All created entities are
kept on a linked list until they are deleted.

The visualization methods are implemented as a library of function calls that
return entities. The method creation functions are passed parameters defining

14

the properties of the probe (position in the dataset in world coordinates, normal
direction and so on), a pointer to the dataset, a color lookup table mapping
scalar values to color, the Performer shared memory arena in which the geode
is allocated to support multiprocess rendering, and feature parameters for the
visualization function.

Figure 5.1: A Cutting plane (a) and a warp plane (b).

Scalar data in the datasets is visualized in the same way in the COVISE and
VTK implementations, using a plane to cut the data and map the scalar values
on the cut to color (figure 5.1a). This technique was chosen because it is easy
to implement and the resulting graphic is straighforward to interpret. This was
the first try at visualizing data in COVISE and it was immediately apparent
that interaction was a problem. There was no way to move the position of
the plane and reevaluate the visualization pipeline with the plane at the new
position. Geometry could be moved around inside the renderer but there was
no mechanism for feeding the positional changes back into the probe module at
the start of the network. The way the position of a probe is changed in COVISE
is by entering the new coordinates in the parameter window, or the probe can
be animated by setting the maximum and minimum coordinates for some axis
and let COVISE step through the positions between them sequentially. The
COVER renderer does support limited feedback to the network but not for
structured grid type datasets. Structured grids can in theory be converted to
unstructured grids in COVISE but that did not work well nor did it seem like
a good solution to the problem. An even bigger problem was the fact that the
feedback mechanism was closed. As I wanted to write my own COVISE modules
for the tensor visualization I had to write my own renderer to get interactive
control of the new modules and that defeated the biggest benefit of COVISE
over VTK — the existing user interface. In VTK, using the entity mechanism
detailed above, a change applied to the position of a probe can trigger an update
of the part of the visualization network making up the entity.

Vector data can be visualized in a number of ways and five of them were
implemented. The simplest vector visualization technique is the hedgehog. A
hedgehog is when the vector data, either on a probe of some kind or in all of
the dataset, is simply plotted as lines or arrows, possibly with their magnitudes
scaled by some amount. A hedgehog is easy to generate and has a one-to-one
correspondence with the actual data. The disadvantage of a hedgehog is that it

15

may be difficult to draw useful conclusions about the data from it. The sheer
mass of vector-lines in a volume clutter the display and obscure each other,
although this is somewhat alleviated by using a probe.

Figure 5.2: Streamlines (a) and streamtubes (b).

Streamlines is another way to capture the properties of vector fields. Con-
ceptually a streamline is the path traced by a massless particle that is released
by the probe as it is carried along by the flow defined by the vector field (figure
5.2a). A streamline is generated by moving a predetermined distance, the inte-
gration step, from a point in the direction of the vector in that point. The vector
at the resulting point is either retrieved directly from the data or interpolated
from neighboring points and the process is repeated until either the magnitude
of the vectors drop below a threshold or the streamline leaves the dataset.

A form of streamline is the streamtube. A streamtube is, as its name implies,
a streamline that is represented by a tube (figure 5.2b). The benefit of the
streamtube is that the tube can be twisted to represent vorticity. Finally a
variant of the cutting plane for scalar data can be used. A plane (or other
geometry) is placed in the data and is deformed, or warped, according to the
vector field at the intersection (figure 5.1b). This method is called a warp plane
(no other warping geometry was used here).

Of these methods the only one in addition to the cutting plane tried in
COVISE was the streamlines.

Visualizing tensors is much more difficult than visualizing scalar or vector
data. The stress tensor is a second order symmetric tensor, the 3 × 3 matrix

σx τxy τxz

τxy σy τyz

τxz τyz σz

 .

The assumption that ice is incompressible causes the stress tensor to be
symmetric. Because of the symmetry the tensor is orthogonally diagonalizable,
i.e. it has a set of three linearly independent eigenvectors and can be resolved
into three orthogonal vectors. These three vectors are the basis of tensor visu-
alization. The three orthogonal eigenvectors are called the major, medium and
minor eigenvectors depending on the size of of the corresponding eigenvalue.
The dimension of the tensor makes it hard do visualize effectively. The naive

16

approach, to generate a hedgehog from the eigenvectors, suffers badly from clut-
ter. Color coding the hedgehog with the eigenvalues may help. Another variant
of the hedgehog is to use tensor glyphs, a geometric object that can adequately
represent the information contained in the tensor. A simple tensor glyph is an
ellipsoid with the major, medium and minor axes corresponding to the major,
medium and minor eigenvectors respectively. The ellipsoid tensor glyphs are
used in conjunction with a cutting plane in the implementation (figure 5.3a).

Figure 5.3: Tensor glyphs (a) and hyperstreamlines (b).

A hyperstreamline is a generalized streamline for tensor visualization. One
of the major, medium or minor eigenvectors of the tensors are treated as a
vector field. This field is used to generate a streamline in the same fashion as
for a normal vector field. An ellipse perpendicular to the streamline and with
its major and minor axes corresponding to the remaining two eigenvectors of
the tensor is then traced along the streamline forming a deformed stream tube,
a hyperstreamline (figure 5.3b). If for instance the major eigenvector is used
for the streamline the trajectory of the streamline indicates the direction of the
largest stress component.

5.3 Application framework

The inital experiments with VTK were performed using the standard VTK ren-
derer which is based on Inventor, a SGI scene graph API preceeding Performer.
It is very easy to put together visualizations using VTK and the standard ren-
derer, but as in the COVISE case interaction was a problem. Geometric objects
(actors) rendered by the VTK renderer can be moved around and the renderer
can register a user-defined function to be called on some event. What I tried to
do was to move for instance a cutting plane in the renderer and then call the
user-defined function to retrieve the new position of the plane actor in order to
reevaluate the cutting plane there. This manifested a bug somewhere in VTK
that caused the plane actor to move twice, once by the user and again when
the plane was reevaluated. The result was that the cutting plane ended up in a
place where the data that it visualized was not. At this point I decided to move
to Performer and vtkActorToPF.

17

Transforms geometry according

(geodes/geosets).
to Performer geometry
Translates VTK geometry

the data.
Geometry generated from

to the camera position.
Renders the final geometry.

tracker.
position according to head
viewing and updates camera
Adds transforms for stereo

Performs culling.

OpenGLPerformer pfCAVEVTK vtkActorToPF

Figure 5.4: Application dataflow.

The structure of the application is shown in figure 5.4. The application
framework grew out of the testing code and was restructured several times in
order to make it as simple and understandable as possible. The application
framework needs to provide a way to navigate through the dataset, to move
probes and to access functionality in the application. The structure of the ap-
plication scene graph is showed in figure 5.5. A DCS is a Performer node that
encapsulates a transformation matrix. A SCS is essentially the same thing as
a DCS with the difference that the matrix of a SCS cannot be changed. This
allows the Performer implementation to optimize the scene graph by applying
the SCS transformation to the underlying nodes only once. The scaleSCS ap-
plies a constant scaling transformation to all nodes in the scene. The navDCS
transforms the scene as the user moves around in it. The cameraDCS is used
to scale the transformations that move the world and the cursor. This may be
necessary since the user may want to move for instance the cursor very fast
while it’s very confusing if the viewpoint is radically changed when the users
head is moved slightly. The cursorDCS controls the position of the cursor and
the worldDCS is used to move through the scene.

cursorDCS worldDCS

Geometry

scaleSCS

navDCS

cameraDCS

Figure 5.5: Scene graph structure.

The navigation model employed is one where the “world”, in this case the
glacier, is attached to the wand. When in world-move mode the world geom-
etry is moved in the same direction as the wand, possibly with some scaling
applied. Other navigation models, such as flying or walking through the world,
are possible and would be easy to add to the application.

18

Probes are manipulated by means of a cursor. The cursor consists of six lines
making up three axes. One of the lines is colored red to signify direction, a plane
generated at the cursor position has its normal in the direction of the cursor.
The movement model for the cursor is the same as for the world. The cursor is
independent of the world, i.e. if the world is moved the cursor remains in the
same position relative to the user. Another cursor type that could be employed
is that of a “light sabre” where a line or tube is drawn from the wand to the
cursor focal point. This kind of cursor works well in an immersive environment
but can be ambigous when used with a 2D display. While the ambiguity may
still be present with the axis type of cursor described above it can be alleviated
by extending the axis lines beyond the bounds of the data. The points where
the lines intersect geometry then give a useful depth cue. A method that could
conceivably be used to further help resolve ambiguity in the cursor orientation
would be to place cones on the axes, oriented so that they all point to the cursor
focal point. The occlusion of the cones would give an indication of the cursor
orientation, although this type of cursor might clutter the display.

The user interface has caused the most difficulties in this work. The Pyra-
mid wand has three buttons and a joystick. The joystick is hard to use since
it is very sensitive and located where it is difficult not to accidentally move it
when pressing buttons. The user interface implemented is admittedly not a very
good one, it was put together quickly since developing a graphical user inter-
face (a GUI) for immersive environments was not a part of the specification.
The left button, when depressed, enables “world move” mode, the middle but-
ton enables “cursor move” mode and the right button is the “action” button.
Visualization functions are selected by pressing the middle and right buttons
simultaneously. As more functions were implemented it became necessary to
give a cue to the user as to what function was selected. Finding a workable way
to render text took some experimenting, particularly since moving to a multi-
processor machine meant that Performer forked the rendering process from the
main application causing some shared-memory headaches.

It turns out that the poor user interface significantly limits the potential of
the application. Adding functionality such as for instance isosurface generation
to the application is architecturally very simple but the lack of a GUI makes
it difficult to control effectively. It would be awkward to change the isovalue
interactively without some sort of slider or equivalent GUI component. Selecting
visualization methods is also a bit awkward. The user potentially has to cycle
through all but one of the implemented functions to get to the desired one and it
is all to easy to accidentally execute the current function when trying to change
modes.

There is an obvious need for an immersive environment GUI API. The
pfuGUI API developed for the perfly Performer showcase application shows
some promise in this respect. Although it is a pure 2D GUI it sits well in
a Performer application and is flexible enough that it could be controlled by
something other than a mouse, for instance a wand.

5.4 Performance issues

The performance, speed in this case, of the code is an important issue. In order
for the application to be really useful, interactivity must be preserved even on

19

large datasets. Implementing a particular visualization function in VTK has to
be done with care. The large number of available classes often means that there
are many ways to achieve the desired functionality but the performance of the
result may vary greatly depending on the classes used.

Slicing the data with a plane that is non-orthogonal to the grid is an ex-
pensive operation since the data at most or all points on the plane must be
interpolated. Doing orthogonal slicing is much faster but turns out to be prob-
lematic with the datasets used here. Since the dimensions of the cells in the
dataset are at best 150 m×150 m×10 m the cells are very thin. The limited res-
olution in the XY-plane makes pure orthogonal slicing less useful. This problem
can be alleviated somewhat by precomputing an increased-resolution dataset by
interpolation, or if a more regular grid is used.

The flatness of the cells also causes difficulties for streamlines. The inte-
gration step has to be chosen carefully. The step is given as a fraction of the
cell size measured as the cell diagonal. Unless the step is very small, or if
the velocity vectors are very nearly parallell to the XY-plane, it will cause the
VTK integrator to step through several cells in the Z-direction in a single step
causing instability in the integration. The small integration step necessary is
unfortunate because it increases the time spent calculating a streamline.

An area where much performance could be gained is in multiprocessing.
Performer will fork off separate processes to do culling, intersection testing and
rendering if it will benefit performance (i.e. if the machine has more than one
available processor). CAVElib will also fork off processes when doing multi-
wall rendering such as in a CAVE. However, the visualizations presented here
are in most cases CPU-bound and will not in general benefit significantly from
these parallelizations (since they only speed up the rendering process). The
visualization network would have to be explicity parallelized in order to improve
performance by multiprocessing. The VTK visualization pipeline lends itself
well to shared-memory multiprocessing and with some care the visualization
pipeline should parallelize quite nicely (see [Rajlich, 1998a] for an example).

5.4.1 Performance experiments

Three special test versions of the application were written in order to study
the performance of the code. The three test programs are called streamTest,
cutTest and timestepTest. StreamTest creates 20 velocity streamlines. CutTest
creates 10 cutting planes transversal to the main flow direction mapping speed
to color. TimestepTest creates 10 streamlines and 10 cutting planes and then
steps through 5 timesteps. An empty test was also run where the application
loads a dataset, opens a window, renders the grid and then terminates. This was
done to get a feeling for the magnitude of the startup time. The 1961 data set
was used for streamTest and cutTest and the 1961-1965 datasets were used for
timestepTest. The performance experiments were conducted with SpeedShop, a
collection of tools that can be used to analyse the behavior and performance of
programs on SGI systems. The SpeedShop components used were ssusage(1),
pixie(1), ssrun(1) and prof(1). The ssusage(1) program collects execution
time and resource usage statistics for an application. The pixie(1) program
measures code execution frequency on the instruction level by code instrumenta-
tion. The ssrun(1) program runs performance experiments on an application
and collects the resulting data. The raw data collected by ssrun(1) is con-

20

densed into a readable report by prof(1). All experiments were run in the
CAVE simulator on an SGI Octane with 2 250Mhz R10000 CPU’s and 1GB of
memory.

Execution times and resource usage were measured with the ssusage(1)
tool. All ssusage tests were run five times and the results were averaged. The
test programs were compiled with VTK 2.2, VTK 2.4, VTK 2.4 with IPA op-
timizations, and VTK 2.4 with profiling feedback. The VTK 2.2 and VTK 2.4
experiments were compiled without debug information and with level 3 opti-
mizations. Inter-Procedural Analysis, or IPA, is a collection of algorithms that
are used for global code optimizations. The program code is analyzed across
procedure calls, something that is not done by normal optimization techniques.
The IPA implemented by the SGI compilers do procedure inlining, constant
propagation, dead function- and variable elimination and global name opti-
mizations. In the profiling feedback experiment execution data was collected
by instrumenting the code with pixie(1) and tracing (or profiling) an ideal
run of the program with ssrun(1). The compiler can then use the data col-
lected to generate a version of the program that is optimized specifically for the
traced run. Profiling feedback data mostly help the compiler to rearrange code
to improve the hit ratio of the processor branch prediction logic.

Elapsed time (s)
Experiment VTK 2.2 VTK 2.4 VTK 2.4 + IPA VTK 2.4 + feedback
cutTest 4.35 1.45 1.43 -
streamTest 2.72 1.10 - -
emptyTest 0.45 0.28 - -
timestepTest 26.68 8.91 8.93 8.79

Switching from VTK 2.2 to 2.4 caused a speedup of 3.0 for the cutTest.
StreamTest got a speedup of approximately 2.5 and the timestepTest got a
speedup of approximately 3. The IPA optimizations slightly improved perfor-
mance on cutTest but actually decreased it on timestepTest. Profiling feedback
only improved performance marginally which indicates that the code either has
a limited number of branches (which is unlikely), spend many iterations in most
loops (thus amortizing the cost of a mispredicted branch) or that the CPU is
mostly successful at predicting branches.

Procedure call statistics were collected by ssrun and prof for the VTK 2.2
and VTK 2.4 timestepTests. These statistics were collected for an ideal run of
timestepTest. The caliper point feature of the SpeedShop tools were used to
exclude the startup time of the application from these tests. Caliper points are
markers that can be placed in the code. Caliper points allow the profiling tools
to gather data only for the parts of the code between specified points. The VTK
2.2 test spent 75% of the time cutting the data while only 6% was spent creating
the streamlines. The rest of the time (12%) was mostly spent generating surface
normals. The VTK 2.4 test spent 67% of the execution time cutting the data,
6% creating streamlines and 12% generating surface normals.

Major improvements have been made to vtkCutter in VTK 2.4. In the VTK
2.2 test 23% of the execution time was spent in the vtkScalars class, mainly
called from vtkCutter. These calls have been almost completely eliminated
and account for only 2% of the execution time in the VTK 2.4 test. The vtk-
FloatArray class have also been improved. The number of calls to methods in

21

vtkFloatArray have been almost halved and the time spent there have been
quartered.

It seems probable that the loop length is fairly short but easily predictable
by heuristic methods for this type of code. This would explain why the pro-
filing feedback optimizations did little to improve performance. Data at the
low level of the application is based on the vtkFloatArray class. All filters and
mappers access the data through this class. This means that the performance of
vtkFloatArray affects the performance of every part of the application (except
for the pure geometry transformation and rendering operations). Most of the
speedup gained by the switch from VTK 2.2 to VTK 2.4 is probably due to
the improvements in vtkFloatArray. This theory is born out by the fact that
the relative execution times of the major parts of the test applications (cutting,
streamline integration and normal calculations) remain more or less constant
between the different VTK versions.

5.5 Qualitative analysis

The model does not take basal sliding into account, this means that the velocity
at the bed is zero. When a streamline is traced backwards in time and passes
very close to the bed the zero velocity cells will cause it to stop. This may give
the false impression that the traced particle originated at the bed. Since all
ice is generated at the surface of the accumulation area all streamlines that are
integrated backwards in time should originate there.

The tracker system is not very stable, the tracker position changes noticeably
which in some situations can make it difficult to position a probe with precision.
This is probably due to a bug in the probe positioning code, or (less likely) a
problem with the hardware.

A strange clipping bug has also manifested itself in the application; a cutting
plane will sometimes be partly occluded at the bed by parts of the polygons that
make up the bed geometry. This effect disappears when the viewpoint is moved
close to the anomaly which makes it likely that the problem is due to the limited
resolution of the Z-buffer (so called Z-fighting).

22

Chapter 6

Future Work

The most useful addition to the application would be a graphical user interface
as this would enable a host of new functionality to be implemented. Being able
to move for instance a cutting plane through the data, having the cutting plane
automatically reevaluated at each point, would be a good way to increase the
interactivity of the application. This would have to be coupled with performance
enhancements since the current implementation of cutting planes is rather slow.
Among the performance increasing measures that could be implemented are:
to modify any abstract data classes used to concrete classes to avoid function
calls through virtual function pointers, to inline frequently used methods in
those classes, and to parallelize the VTK visualization pipeline. Other useful
features would be the ability to “play” through a sequence of timesteps and
to be able to create a movie of the visualization. The ability to save the state
of the application in order to be able to restart it with relevant visualizations
already in place would also be useful.

23

Chapter 7

Conclusions

The three-dimensional nature and spatial distribution of the glacier ice flow data
makes it suitable for immersive visualization even though the datasets are small.
VTK has proved to be a flexible and powerful tool although it has to be used with
some care to achieve good performance. As the performance of VTK improves
rapidly it is becoming viable as a tool for interactively visualizing medium sized
datasets (tens to perhaps a few hundreds of MB). The application framework
developed could be used to implement a variety of immersive visualizations
based on VTK, given some improvements, the most obvious being that of a
better user interface. The ice flow visualization is effective and could well be
used to study features of the flow, particularly for educational purposes. It is,
however, of limited availability since the equipment required for the immersive
part is expensive and relatively immature. Using the immersive technologies to
bring out the interesting features of the flow data and then create pictures or
movies of the visualization that could be shown in for instance a classroom is
perhaps a workable compromise.

24

Chapter 8

Acknowledgements

I would first and foremost like to thank Peter Jansson for his help and for
initiating this work; it has been a most interesting project. Thanks to Johan
Ihrén for getting PDC to sponsor this work and for agreeing to be my supervisor
and to Olaf Albrecht for answering my many questions concerning the numerical
model. I also extend my gratitude to Johan Danielsson, Mattias Claesson,
Gunnar Ledfelt and Erik Engquist for helping me getting my frequently derailed
train of thoughts back on track. Finally, thanks to Johan Norin, with whom I
had an interesting discussion during a day of ablation stake measurements on
Storglaciären in the summer of 1997 that got me thinking I wanted my master’s
project to be related to the Tarfala Research Station.

25

Bibliography

[Albrecht, 1999] Albrecht, O. (1999). Dynamics of Glaciers and Ice Sheets: A
Numerical Model Study. PhD thesis, Eidgenössische Technische Hochschule,
Zürich.

[Albrecht et al., 1999] Albrecht, O., Jansson, P., and Blatter, H. (1999). Mod-
elling glacier response to measured mass balance forcing. Paper to be pub-
lished in Annals of Glaciology.

[Blatter, 1995] Blatter, H. (1995). Velocity and stress fields in grounded glaciers:
A simple algorithm for including deviatoric stress gradients. Journal of
Glaciology, 41(138).

[Blatter and Colinge, 1998] Blatter, H. and Colinge, J. (1998). Stress and veloc-
ity fields in glaciers. part I. Finite difference schemes for higher order glacier
models. Journal of Glaciology, 44(148).

[Brandsdòttir, 1996] Brandsdòttir, B. (1996). Subglacial volcanic eruption in
Gjàlp, Vatnajökull, 1996. http://www.hi.is/~mmh/gos/. Valid October 4,
2000.

[Cruz-Neira et al., 1993] Cruz-Neira, C., Sandin, D. L., and DeFanti, T. A.
(1993). Surround-screen projection-based virtual Reality: The design and im-
plementation of the CAVE. Proceedings of SIGGRAPH ’93 Computer Graph-
ics Conference, pages 135–142. http://www.evl.uic.edu/EVL/RESEARCH/
PAPERS/CRUZ/sig93.paper.html. Valid October 4, 2000.

[Jansson and Holmlund, 1998] Jansson, P. and Holmlund, P. (1998). Tarfala
research station. http://www.geo.su.se/naturgeo/glaciologi/Tarfala/
Tarfala.htm. Valid October 4, 2000.

[Lang et al., 1997] Lang, R., Lang, U., Nebel, H., Rainer, D., Rantzau, D.,
Wierse, A., and Wössner, U. (1997). COVISE User’s Manual. University of
Stuttgart Computer Centre.

[LeB Hooke, 1998] LeB Hooke, R. (1998). Principles of Glacier Mechanics.
Prentice Hall, New Jersey.

[Näslund, 1998] Näslund, J.-O. (1998). Ice Sheet, Climate, and Landscape In-
teractions in Dronning Maud Land, Antarctica. PhD thesis, Stockholm Uni-
versity, Stockholm.

26

[Pape, 1997] Pape, D. (1997). pfCAVE CAVE/Performer library. http:
//evlweb.eecs.uic.edu/pape/CAVE/prog/pfCAVE.manual.html. Valid Oc-
tober 4, 2000.

[Poirier et al., 1998] Poirier, D., Allmaras, S. R., McCarthy, D. R., Smith,
M. F., and Enomoto, F. Y. (1998). The CGNS System. The American
Institute of Aeronautics and Astronautics.

[Rajlich, 1998a] Rajlich, P. (1998a). http://hoback.ncsa.uiuc.edu/
~prajlich/vtkActorToPF/future.html. Valid October 4, 2000.

[Rajlich, 1998b] Rajlich, P. (1998b). An object oriented approach to developing
visualization tools portable across desktop and virtual environments. Master’s
thesis, University of Illinois. http://monet.astro.uiuc.edu/~prajlich/T/
bigT.html. Valid October 4, 2000.

[Rajlich et al., 1998] Rajlich, P., Stein, R., and Heiland, R. (1998). http://
hoback.ncsa.uiuc.edu/~prajlich/vtkActorToPF. Valid October 4, 2000.

[Schroeder and Martin, 1999] Schroeder, W. and Martin, K. (1999). The vtk
User’s Guide. Kitware.

[Schroeder et al., 1998] Schroeder, W., Martin, K., and Lorensen, B. (1998).
The Visualization Toolkit : An Object-Oriented Approach to 3D Graphics.
Prentice Hall, New Jersey, second edition.

[Schroeder et al., 1996] Schroeder, W. J., Martin, K. M., and Lorensen, W. E.
(1996). The design and implementation of an object-oriented toolkit for 3D
graphics and visualization. Proceedings of Visualization ’96.

27

Appendix A

Foo Data Format
specification

A dataset has a name, all files belonging to the dataset share this name but
with different extensions. The files that make up a dataset are the metadata
file, one or more coordinate files and one or more data files. All binary data are
stored in big-endian byte order.

The organization of the data files is specified in the metadata file. The
metadata file is an ASCII file with the .meta extension. Each line in the file is
terminated by a newline. The items in the metadata file are:

Name: <255 character string>
X_count: <32 bit integer> # This is the number of nodes in the X

direction
Y_count: <32 bit integer>
Z_count: <32 bit integer>
Timesteps: <32 bit integer> # Number of timesteps in the data.

This number must match the number of data and
coordinate files.

Scalar: <name (64 characters)> <type: int | long | float | double>
Scalar: ...
...
Vector: <name (64 characters)> <size in elements> <type: int | long |
float | double>
Vector: ...
...
Tensor: <name (64 characters)> <rank> <size of vectors in elements>
<type: int | long | float | double>
Tensor: ...
...

These items must appear in this order and the first five are mandatory.
The coordinates are stored in files with the extension .crd.step where step is

the timestep number of the coordinate set. There is one coordinate file for each

28

timestep. Each coordinate is stored in its binary representation. The coordi-
nates are organized in three blocks, one for each dimension. The x-coordinates
come first, followed the y and z coordinates.

The data are stored in files with the extension .dat.step. All data values are
stored in the binary representation of the data type specified in the metadata
file. Scalar data are stored first in the file in the order specified in the meta
data file. Vector data follows the scalar data. The components of a vector are
stored together in sequence. Tensor data follows the vector data. The tensors
are stored similarily to the vectors.

29

