
Monte Carlo Option Pricing with Graphics
Processing Units

Optionsprissättning med Monte Carlo på grafikkort

FREDRIK NORD
FNORDH@KTH.SE

Master’s Thesis in Computer Science at NADA
Comissioned by Handelsbanken Capital Markets

Supervisors: Dilian Gurov, Erwin Laure
Examiner: Stefan Arnborg

2010-10-25

TRITA xxx yyyy-nn

Abstract
Monte Carlo methods are common practice in financial engineering for
a wide variety of problems, one being option pricing. Large clusters
of computers are used to run these calculations. Growing volumes and
complexity of work that needs to be performed as well as strict require-
ments for fast responses makes for a pressing demand for high perfor-
mance computing.

We present a prototype implementation of an option pricer running
on graphics cards. The prototype supports various exotic option types,
quasi Monte Carlo and support for custom models for the evolution of
stock prices. We conclude that graphics cards can outperform CPUs
given certain conditions and for reasonable problem sizes we find a 12x
improvement over sequential code when pricing options in a production
system.

Referat
Optionsprissättning med Monte Carlo på grafikkort

Monte Carlo är en vanlig metod inom finansbranschen och används till
många olika problem, ett av dem är optionsprissättning. Stora beräkn-
ingskluster används för att köra dessa beräkningar. Allt större mängder
och mer komplexa beräkningar som måste utföras samt strikta krav på
snabba svar borgar för ett stort behov av snabba beräkningstekniker.

Vi presenterar en prototyp för optionsprissättning på grafikkort.
Prototypen stöder olika exotiska optionstyper, quasi Monte Carlo och
stöd för användardefinierade modeller för aktiers prisutveckling. Vår
slutsats är att grafikkort kan överträffa vanliga processorer givet att
vissa krav är uppfyllda och vi finner att för rimliga problemstorlekar
är prototypen 12 gånger snabbare än sekventiell kod vid optionsprissät-
tning i ett produktionssystem.

Acknowledgements

I owe my deepest gratitude to Mattias Karlsson and Tor Nordqvist at Han-
delsbanken Capital Markets for making this project possible and for taking
the time to provide support, guidance and enthusiasm throughout the whole
project.

I would also like to thank Michael Schliephake at PDC for our discussions
on CUDA programming and optimization and for his work on making a Linux
version possible.

I am grateful to Erik Örnberg at HP for lending us the Quadro card for an
extended period of time.

Lastly I would like to thank Alberz Akrawi, Sten Bergqvist, Erik Edin,
Dilian Gurov, Leif Jansson, Erwin Laure, Per Lindstrand, Erik Skogby and
Daniel Walz for their valuable contributions during the whole process.

Contents

1 Introduction 1

I Background and Theory 3

2 Background and Problem 5
2.1 Problem Statement . 5
2.2 Related Work . 5

2.2.1 Goals . 6

3 Monte Carlo Methods 7
3.1 Monte Carlo . 7
3.2 Approximating Integrals with Monte Carlo 7
3.3 Option Pricing with Monte Carlo . 8
3.4 Quasi Monte Carlo . 9

3.4.1 Low Discrepancy Sequences 10
3.4.2 Construction of Sobol Sequences 10
3.4.3 Option Pricing with Quasi Monte Carlo 11

4 GPU Computing 13
4.1 Introduction . 13

4.1.1 Hardware overview . 13
4.1.2 Parallel Processing . 16
4.1.3 Strengths of Graphics Processors 17
4.1.4 Weaknesses of Graphics Processors 17

4.2 The Fermi Architecture . 18
4.2.1 Background . 18
4.2.2 Main Innovations . 18
4.2.3 Architectural Overview . 19

4.3 CUDA . 20
4.3.1 Thread Model . 20
4.3.2 Memory Model . 22
4.3.3 Programming Model . 24
4.3.4 Optimization and Performance Considerations 24

4.3.5 Numerical Accuracy . 26

5 Method 29
5.1 Measurements - How and Why . 29

5.1.1 Total Time . 29
5.1.2 Computation Time . 30
5.1.3 Time as Seen by a User . 30
5.1.4 Selection Criteria . 30
5.1.5 Threads . 30

5.2 General . 31
5.2.1 Program Layout . 31
5.2.2 Program Features . 31
5.2.3 Compilation . 32
5.2.4 Environments . 32
5.2.5 Accuracy . 32

II Results 35

6 GPU Implementation 37

7 Results 41
7.1 Pricing a Digital Basket Option . 41

7.1.1 Digital Basket Options . 41
7.1.2 Results in a Test Environment 41

7.2 Pricing a Capped Basket Option . 44
7.2.1 Capped Basket Options . 44
7.2.2 Results in a Test Environment 45

7.3 Comparison of CPUs and GPUs in a Production System 45
7.3.1 The System . 45
7.3.2 Results . 47
7.3.3 Accuracy . 47

8 Discussion and Conclusions 51
8.1 Limitations . 51

8.1.1 Floating Point Types and Precision 51
8.1.2 Multi-Core Processing and Optimizations 51
8.1.3 Problem Size . 52
8.1.4 Optimality of the Program 52

8.2 Other Approaches . 53
8.2.1 Field-Programmable Gate Array 53
8.2.2 More Computers . 53
8.2.3 The Cell Broadband Engine Architecture 53

8.3 Discussion . 53

8.4 Conclusions . 54
8.5 Further Work . 55

Bibliography 57

Appendices 58

A Accuracy 60

Chapter 1

Introduction

Options in their simplest form are financial contracts in which the issuer agrees to
buy or sell an underlying instrument (a stock for example) at a certain date (called
the exercise date) at a specified price (called the strike price.) The buyer of the
contract then chooses whether or not to exercise the contract at expiration. The
problem for the issuer is to set a fair price at which to sell this contract. The option
described is a variant of what is commonly called a “vanilla” option but there are
many variations on the same theme, for example there may be many underlying
instruments (basket option) or the payoff may be dependent on the mean of the
prices at certain intervals (asian option.)

Pricing options involves solving large integrals, sometimes ranging into thou-
sands of dimensions. For small dimensional problems and certain types of options
there are exact analytical solutions but at higher dimensions this approach becomes
intractable.

One common approach is to do Monte Carlo simulations, essentially simulating
the evolution of the underlying stock prices for discrete time steps (for example
daily) and seeing what the option would be worth, doing this sufficiently many
times yields a fair value of the option given the model that was used.

Monte Carlo is efficient for these large problems but several improvements in the
theory has further improved the efficiency, for example variance reduction techniques
and the use of low discrepancy sequences can speed up convergence.

Even with these improvements Monte Carlo remains computationally expensive,
running tens of thousands simulations of problem dimensions ranging into the thou-
sands require much from computer systems. The stringent demands of the financial
world further compounds this problem, real time pricing and risk analysis requires
results to be made available as quickly as possible.

Computer graphics cards, widely used to power modern computer games, has
recently seen an expansion of use to the scientific arena as cheap high performance
parallel computing devices. Providing a theoretical speed several times that of
modern CPUs the GPUs has found usages in scientific computing, image analysis,
cryptography and more.

1

CHAPTER 1. INTRODUCTION

This project focuses on exploring the use of graphics processors as a comple-
ment to using traditional hardware when pricing options using Monte Carlo. To
achieve this goal we implement a prototype for option pricing on a graphics cards
and measure the speedup obtained compared to central processing units, we also
incorporate the prototype into a real option pricing system to see if speedups are
sustainable and which conditions are necessary for graphics cards to excel. We will
also explore different system configurations and highlight the differences between
newer and older architectures.

2

Part I

Background and Theory

3

Chapter 2

Background and Problem

This chapter describes the problem and related work that has been done.

2.1 Problem Statement

The quantitative analysts at Handelsbanken Capital Markets have a custom C++
framework for pricing exotic derivatives, the calculations are made on a grid of
computers where the portfolio to be valued is split into smaller units and each part
is valued on a single node. Performance and speed is of crucial importance, which
is why new methods and technology is always of interest.

The nodes in the grid spend a large part of their time doing Monte Carlo sim-
ulations. This has been identified as one of the main hot spots for computational
activity and any improvement would be of great benefit.

The aim of the project is to evaluate the use of graphics cards for pricing op-
tions with Monte Carlo, and to determine if they are a viable complement to existing
infrastructure, especially in terms of whether graphics cards can speed up compu-
tations and thus reduce the overhead in pricing and risk analysis.

To achieve this goal we have implemented a prototype option pricer for graphics
cards and compared it to an equivalent version not using graphics cards. The
prototype supports most of what one would expect from an option pricer and has
sufficient features to be directly compared to system in use at Handelsbanken.

2.2 Related Work

Lee Howes and David Thomas [6] used graphics cards to achieve a 59x speedup
when pricing a simple asian option with two underlying instruments. They also
priced a variant of a lookback option in which they obtained a speedup of 23x. All
these results were relative to using all four cores of a Quad Opteron running at
2.2 GHz. They used a hybrid Tausworthe generator combined with the Wallace
Gaussian generator to produce random numbers.

5

CHAPTER 2. BACKGROUND AND PROBLEM

Podlozhnyuk and Harris [17] implemented a Monte Carlo option pricer for simple
European call and put options. Since there are analytical solutions to these options
they were able to evaluate the accuracy of the results compared to the theoretically
correct results.

Bennemann et al. [14] used graphics cards to price a more sophisticated basket
option with local volatility models. They managed to achieve a speedup of 25-50x.
Details are somewhat sparse but the results are against a “high-end CPU” and they
used the Intel Math Kernel Library (a maths library that is optimized for Intel
processors.)

Lee et al. [15] implemented a Monte Carlo option pricer using optimized code
on a modern Core i7 CPU and a GeForce GTX280. They achieved a speedup of
1.75x. This paper is especially interesting since it uses highly optimized CPU code
on a very modern processor. The work was based on the implementation from [17].

Mike Giles and Su Xiaoke[16] assessed the performance of NVIDIA GPUs in a
LIBOR market model using Monte Carlo. They achieved a speedup of over 100x.

There are plenty more examples of graphics cards being used in a wide variety
of application see for example the NVIDIA GPU Computing SDK code samples1.

2.2.1 Goals
Besides what is addressed in these works we want to explore

• What conditions are necessary for exploiting the performance possibilities of
GPUs.

• Whether the theoretical advantages can be translated into actual advantages
when using graphics cards in real systems.

• Whether the program can be kept sufficiently general and still maintain an
edge over traditional solutions.

• If it is possible to, with a reasonable amount of work, match current systems
in terms of features and accuracy.

1http://developer.nvidia.com/object/cuda_3_1_downloads.html

6

Chapter 3

Monte Carlo Methods

This chapter provides a brief overview of Monte Carlo methods and their application
to financial engineering. This chapter is not strictly necessary for the understanding
of the rest of the thesis but provides the theoretical foundation of what is imple-
mented in later chapters.

3.1 Monte Carlo

Monte Carlo methods are algorithms that produce results based on random sam-
pling. An example of a Monte Carlo method is an algorithm for approximating π;
we know that the ratio between the area of a circle inscribed in a square and the
square is π

4 so to find the value of π we randomly place m points inside the square
and count the number, n, that were placed inside the circle. If the points are chosen
from a uniform distribution we know that π

4 will fall inside the circle and hence
π = 4 n

m .
In the example we see that the probability of an event (in this case hitting

the circle) is approximated by taking the fraction of successful outcomes and total
attempts, the law of large numbers ensures that this approximation is asymptotically
correct and the central limit theorem shows us that the convergence is of the order
1/
√
m.

3.2 Approximating Integrals with Monte Carlo

Consider the integral

α =
∫ b

a
f(x) dx (3.1)

If we were to use Monte Carlo to approximate the value of α we would draw
Ui i = 1, . . . , n samples from the uniform distribution in the (continuous) range
a, . . . , b and then compute

7

CHAPTER 3. MONTE CARLO METHODS

α̂ = 1
n

n∑
1
f(Ui) (3.2)

as n goes to infinity we have α̂ = α.
As stated before the error in Monte Carlo is bound by O(1/

√
n), so in the one di-

mensional case presented above we would clearly benefit from using the trapezoidal
rule which converges quicker, on the order of n−2.

Now consider the case of a multi-dimensional integral:

α =
∫
D
f(~x) d~x (3.3)

We can solve this by replacing the Ui generated above by draws from the d-
dimensional space defined by D, the same computation still holds and we still get
O(1/

√
n) convergence. If we instead were to use the trapezoidal rule the convergence

would be O(n−2/d) clearly Monte Carlo is preferable in large dimensional problems.
It is the relationship between integrals and expected values that make Monte

Carlo useful in pricing options, for example in the case of a European call option
with strike price K the expected present value of the payoff would be defined by

p = E[e−rTmax(0, S(T)−K)] (3.4)

3.3 Option Pricing with Monte Carlo
Let’s say we want to set a fair price for an option with NU underlying assets with
initial prices Si,0 for i = 1, . . . NU and an expiration date T divided into NT time
steps of uniform length ∆T = T/Nt.

We use a geometric Brownian motion model to describe the evolution of the
price of the underlying assets

dSi(t)
Si(t)

= rdt+ σdW (t) (3.5)

where r is the interest rate and σ is the volatility, both assumed to be constant
for simplicity, and W is a standard Brownian motion. The solution of (3.5) is given
by

Si(T) = Si,0e
[r− 1

2σ
2]T+σW (T) (3.6)

Since W (T) ∼ N(0, T) we may write (3.6) as

Si(T) = Si,0e
[r− 1

2σ
2]T+σ

√
TZ (3.7)

Where Z ∼ N(0, 1).
The basic idea of pricing options with Monte Carlo is to generate several paths

following a discretized version of the log-normal process given in (3.7) and evaluate

8

3.4. QUASI MONTE CARLO

Table 3.1. Total time and standard deviation for different number of Monte Carlo
simulations for option pricing implemented in MATLAB.

NMC Time (seconds) Standard deviation
500 0.22 0.12647
5000 2.2 0.044881
50000 22.2 0.011681
500000 221 0.0045949
5000000 2214 0.0012964

the payoff for each path. These payoffs are averaged and discounted to get a fair
price of the option.

The following algorithm shows one possible strategy to compute the price.
for i = 1 to NMC do
Generate N = NU ×NT matrix of Gaussian random numbers
Take N = N times the Cholesky decomposition of C to correlate the numbers
for j = 1 to NU do

for k = 1 to NT do
Set Sj,k = Sj,k−1e

(r− 1
2σ

2)∗∆T+σ
√

∆TNj,k

end for
end for
Let vi =payoff(S, strike)

end for
Then price = e−rT

∑NMC
i=0 vi

NMC

Where the payoff depends on the option we want to use.
From this very general example we can see that we have an approximate com-

plexity of O(NMCNTNU), of course this can be optimized depending on the option
we want to price, for example in the case of a European call option we may use
NT = 1.

The code above was implemented in MATLAB to price a simple option, all cases
NU = 10 and NT = 20 was used.

Table 3.1 clearly shows the 1√
N

convergence of Monte Carlo and if we were to
need four decimal places of precision the computation would, by extrapolating from
the table, take on the order of 26 days, to be useful in a financial setting it would
have to run on the order of 1 millisecond. Obviously the need for computational
power is great.

3.4 Quasi Monte Carlo

Quasi Monte Carlo methods parallel regular Monte Carlo methods with the dif-
ference that the “random” numbers are produced by a Quasi Random Number

9

CHAPTER 3. MONTE CARLO METHODS

Generator (QRNG), also called low discrepancy sequences. The difference between
pseudo-random and low discrepancy sequences is illustrated in figure 3.1.

Figure 3.1. Uniform and LDS random numbers

3.4.1 Low Discrepancy Sequences
Low discrepancy sequences are sequences of numbers that together uniformly fills
space. Discrepancy is the formal notion of deviation from uniformity and is de-
scribed by equation (3.8) where A is a collection of subsets of the space, and vol(a)
denotes the volume of a.

D(x1, . . . , xn;A) = supa∈A|
#{xi ∈ a}

n
− vol(a)| (3.8)

When the discrepancy is low (see [2] for a precise definition of low) the sequence
of numbers is called a low discrepancy sequence. There are several low discrepancy
sequences available, for example Halton, Hammersley, Faure and Sobol sequences.
Sobol sequences are usually used in finance since they provide more accurate results
and can be generated very quickly.

3.4.2 Construction of Sobol Sequences
Generating Sobol sequences is quite straightforward and can be efficiently done on a
computer. We will describe the Gray code construction due to Antanov and Saleev
[1].

The construction begins with a primitive polynomial in GF (2), the Galois field
of two elements.

xq + a1x
q−1 + . . .+ aq−1x+ 1 (3.9)

Where (3.9) has to be irreducible.

10

3.4. QUASI MONTE CARLO

We then define the direction numbers vj

vj = mj/2j (3.10)

where mj j > q is defined by the recurrence

mj = 2a1mj−1 ⊕ 22a2mj−2 ⊕ . . .⊕ 2q−1aq−1mj−q+1 ⊕ 2qmj−q ⊕mj−q (3.11)

and mj j ≤ q are given as initialization numbers.
The sequence is then defined by

xk = g0(k)v1 ⊕ g1(k)v2 ⊕ . . .⊕ gr−1(k)vr (3.12)

where gr−1(k) . . . g1(k)g0(k) is the binary representation of the Gray code of k.
More efficiently (3.12) can be stated as in (3.13)

xk+1 = xk ⊕ vl (3.13)

This describes the one-dimensional case, for more dimensions we simply choose
a different primitive polynomial and do the above calculations for each dimension.

3.4.3 Option Pricing with Quasi Monte Carlo
Pricing an option with quasi Monte Carlo exactly parallels using regular Monte
Carlo with the exception that the random numbers are taken from a low discrep-
ancy sequence. These numbers are treated as being uniformly distributed and are
converted to the Normal distribution by using standard methods.

Quasi Monte Carlo methods offer faster convergence than traditional Monte
Carlo methods and are therefore often a preferred method in financial engineering.

Since higher dimensional numbers in the sequence are usually of lower quality
(i.e. not as uniform) one can use a Brownian Bridge, essentially this approach
uses the first number to determine the overall motion and successive numbers to
determine smaller and smaller parts. See [2] for more details on this.

11

Chapter 4

GPU Computing

This chapter provides a brief overview of graphics processing units and how they are
programmed using CUDA. For a deeper understanding see the references, especially
[4], [5] and [7].

4.1 Introduction

4.1.1 Hardware overview
History of GPGPU

The application of Graphics Processing Units in fields not primarily concerned with
graphics is commonly called general-purpose computing on graphics processing units
(often abbreviated GPGPU.) The origins of GPGPU is in programmable shaders,
most often used in graphics applications to give the programmer additional control
of the rendering process. In the early stages of GPGPU the programmer, regardless
of the field she was working in, had to painstakingly map the code she wanted to run
to the domain of computer graphics. For example data would be input as textures
which could be transformed by the programmable shaders.

NVIDIA realized that there was potential for these techniques and released
CUDA in 2006. CUDA aimed to make programming the GPU for general applica-
tions easier and more similar to programming that would be common in scientific
circles. Due to the relative simplicity of CUDA there has been a drastic rise in
interest and applications of GPGPU.

NVIDIAs largest (and arguably only) competitor AMD also supports GPGPU
via the Stream SDK (successor of the now defunct Close to Metal, CTM.) Although
much less popular, the Stream SDK provides support for AMD graphics cards.

Both Microsoft and the Khronos group 1 have released standards in an attempt
to provide a standardized interface to computational resources (graphics cards from
any producer as well as CPUs.) The attempt by the Khronos group, called OpenCL,
was released in late 2008 and is gaining popularity but is still in early development.

1Amongst other things the maintainers of the OpenGL standard.

13

CHAPTER 4. GPU COMPUTING

The main advantage of OpenCL is that both AMD and NVIDIA provide drivers for
their cards which means that the same code will run independently of the hardware,
something neither CUDA nor Stream does.

Some Notation

We will often refer to device code, device memory, host code and host memory. With
device we basically mean a graphics card that is attached to the host by which we
mean a computer, see 4.1. Since device and host have separate memory this is an
important distinction, we can’t reference device memory from the host or vice versa
but have to copy between the two.

Figure 4.1. Overview of a computer system with an attached graphics card. DDR
and GDDR refers to the RAM memory types.

We will also use the term device capabilities, which divide graphics cards into
classes based on what they can do. Currently the device capabilites are 1.0,1.1,
1.2, 1.3 and 2.0. Typically lower capabilities means older cards and less functions
available, for example devices of capability less than 1.3 do not support double
precision arithmetic.

GPUs Compared to CPUs

One of the reasons that GPUs provide superior performance in pure computational
power can be seen in figure 4.2. The percentage of the die size occupied by ALUs
is much greater, which means that more of the chip is used for mathematical com-
putations.

Figure 4.3 show the theoretical peak performance of CPUs and GPUs, we clearly
see the fast development of graphics cards.

14

4.1. INTRODUCTION

Figure 4.2. Layout of CPU and GPU architecture. Graph from [4].

Figure 4.3. Theoretical FLoating point Operations Per Second, CPU and GPU.
Graph from [4]. Note that this figure is slightly misleading, the GeForce GTX 480
and Tesla C2050 were delayed and release in March 2010.

Graphics cards

Currently there are three product lines from NVIDIA that are interesting from a
GPGPU perspective: GeForce, Quadro and Tesla. The GeForce graphics cards
are primarily aimed at accelerating computer games and as such are a consumer
commodity. Graphics cards in the Quadro product line are mainly aimed at business
users and provide additional performance for Computer Aided Design and Digital
Content Creation.

The Tesla product line is exclusively aimed at High Performance Computing

15

CHAPTER 4. GPU COMPUTING

and as such provide no way of displaying images on computer screens. The Tesla
line generally provides the highest performance and the largest amount of available
memory but is also the most expensive of the three.

4.1.2 Parallel Processing
Moore’s law predicts that the number of transistors in commonly available inte-
grated circuits will double every two years. Until recently this has meant drastic
improvements in clock speed and subsequently performance of single core processors
[10]. More transistors means that more power is consumed and more heat is gener-
ated, to overcome this the current trend is to have multi-core processors. Multi-core
processors are increasingly common in CPUs but is also the main feature of GPUs,
current CPUs can run four to eight threads at the same time while GPUs commonly
run thousands of threads in parallel.

Amdahl’s Law

Amdahl’s law states the possible speedup given how much of a program can be
parallelized and the number of processing elements that are available. Amdahl’s
law applies to strong scaling, which means that the problem size is fixed as the
number of processors are varied.

Amdahl’s law [11] is stated in (4.1) where P is the proportion of the computation
that is parallelized, N is the number of processors and Sp is the overall speedup.

Sp = 1
(1− P) + P

N

(4.1)

For example, if 50% of the program has to be sequential we could get a speedup
of 1.6 using four processors. Even if we had infinitely many processors we could
only get twice the performance (since P

N disappears as N tends to infinity we are
left with 1

1−P which is two.)
Intuitively this example says that if the sequential part of the program takes

100ms to execute and the parallel part runs in 100ms (since they were assumed
equal) then even if we could run the parallel part in 0ms we still would have a total
runtime of 100ms which is only half of what we started with.

Amdahl’s law resulted in skepticism [12] on the applicability of parallel process-
ing, since it states that the potential speedup is diminishing even as more processors
are made available.

Gustafson’s Law

Amdahl’s law implicitly assumes that the parallel proportion of the program is fixed
regardless of the problem size. In some cases this may be a sound assumption but
for scientific computing problem size often scale up and as a result the parallel
proportion increases when compared to sequential code. This is known as weak
scaling.

16

4.1. INTRODUCTION

Assume that the sequential portion of a program run on a parallel computer
with N processors is s′ and p′ is the parallel portion. Then, obviously s′ + p′ = 1.
On a sequential computer the same program would take s′+p′N the speedup would
then be Sp = s′+p′N

s′+p′ = N + (1−N)s′ this is Gustafson’s law [12]. If the sequential
proportion (s′) is diminishing with problem size then, for sufficiently large problem
sizes, Sp would tend to infinity as N does.

We will see that many of the results we obtain are directly predicted by Amdahl
and Gustafson’s law.

4.1.3 Strengths of Graphics Processors
The main advantages of graphics cards are:

• High throughput. When counting mathematical operations per second (often
FLOPS - FLoating point Operations Per Second) graphics cards are at the
top of most charts, especially when compared to CPUs.

• Cheapest computational resource available (GFLOPS/$.) Since graphics cards
are a consumer commodity the economy of scale has made prices accessible
compared to special solutions.

• Low energy consumption per GFLOPS compared to other solutions. (See for
example the Green500 list 2)

4.1.4 Weaknesses of Graphics Processors
Although graphics cards offer many benefits there are of course drawbacks, the main
of which are:

• They require a different skill-set to program. Code has to be designed to
run on a GPU and it will be slightly different from it’s CPU counterpart
which means that time must be spent on redesigning algorithms and additional
maintenance.

• They offer slow sequential execution (that is, they are inefficient for non-
parallelizable problems.)

• They are inefficient for memory intensive programs (transferring data to and
from the card can significantly reduce performance.)

Although, for example, OpenCL can run the same code on graphics cards as
well as processors it must still be written for the least common denominator so
writing a program that takes full advantage of both requires some expertise in GPU
programming.

2http://www.green500.org/, a list of the most energy efficient supercomputers where the Tesla
based Nebulae and Mole 8.5 currently place well.

17

CHAPTER 4. GPU COMPUTING

4.2 The Fermi Architecture

4.2.1 Background

The Fermi architecture is the latest architecture developed by NVIDIA, it offers
several new innovations that makes it especially appealing to the HPC crowd. The
GeForce 400-series as well as the Tesla 2000-series are based on Fermi, however
the GeForce series is artificially limited (especially with respect to double precision
performance) so as to not compete with the higher-end cards.

Fermi was preceded by the GT200 (the GeForce 200 series) architecture which
in turn was preceded by the G80 (GeForce 8 series) architecture.

4.2.2 Main Innovations

The main advantages of Fermi over previous architectures are:

• Native support for ECC for register files, shared memories, the L1 and L2
cache and the DRAM memory. Fermi supports Single-Error Correct Double-
Error Detect (SECDED) ECC codes which means that single bit errors are
corrected and errors in more than one bit can be detected. This feature is only
available on Tesla cards and can be activated/deactivated as needed. Having
it activated means a 5-20% performance penalty depending on application.

• More and faster atomic memory operations.

• Better support for C++. Fermi adds support for virtual functions, function
pointers, new and delete operators and try-catch exception handling.

• A 40-bit unified address space. Fermi merges local, shared and global memory
into a unified address space. With 40-bits there is support for one terabyte of
memory, up from four gigabytes previously. There is also support for 64-bit
addressing in the Instruction Set Architecture.

• Concurrent kernel execution. Kernels are the functions that are run in each
thread that is spawned. On earlier architectures separate kernels had to be
run sequentially but Fermi supports kernels to be run in parallel. This can be
beneficial if a kernel does not fully utilize the resources available.

• Support for the IEEE 754-2008 standard. Earlier generations flushed subnor-
mal 3 numbers to zero but in Fermi they are supported in hardware. Fermi
also supports Fused Multiply Adds (FMA) which means that higher preci-
sion is kept in the intermediate steps when evaluating expressions of the form
A ∗B + C.

3Numbers that are between zero and the smallest representable number

18

4.2. THE FERMI ARCHITECTURE

Figure 4.4. High level view of the Fermi architecture. From [8]

• Faster double precision mathematics. Fermi can execute 8 times as many
double precision operations per clock as compared to previous generations
and the gap between single and double precision throughput is only 1

2 from
previously 1

8 .

• Fast hardware caches. Fermi introduces an L1 and an L2 cache. The L1
cache and the shared memory share 64KB that is split into 16 and 48 KB this
splitting allows programs to use more shared memory if needed and otherwise
get the benefit of having more cache space. The L2 cache is a 768KB memory
area that is in common for the entire device.

4.2.3 Architectural Overview

Figure 4.4 show a high level view of the Fermi architecture. There are 16 Streaming
Multiprocessors (show in fig 4.5) each containing 32 CUDA cores.

19

CHAPTER 4. GPU COMPUTING

The GigaThread engine is the top-level scheduler distributes threads, regardless
of which kernel they are from, to SMs for execution. At the next level the warp
scheduler decides which threads to run in each SM.

When a CUDA kernel is executed the GigaThread engine distributes blocks of
threads to each SM, the SM in turn splits the threads into groups of 32 called
warps. Each SM can handle 48 warps for a total of 24576 active threads. The warp
schedulers in each SM chooses one warp each to execute, one instruction is then
dispatched to an execution block containing 16 cores, 16 load/store units or four
Special Function Units (used for transcendental operations.) Since there are two
schedulers two half-warps are executed each clock-cycle. This translates to 32 single
precision floating operations, 32 integer operations, 16 double precision operations,
16 load/store operations or 4 transcendental operations per clock per SM.

For double precision operations both execution blocks of 16 cores are seen as
one 16 core double precision execution block this in effect makes it impossible to
double-issue such instructions with the other types.

The same instruction is executed for each thread in a warp, this is commonly
denoted by NVIDIA as SIMT (Single Instruction Multiple Thread) and is a gener-
alization of SIMD (Single Instruction Multiple Data). The drawback of this system
is that if a thread in a warp diverges (for example if a branching instruction evalu-
ates to true for one thread and to false for the rest) the entire warp, except for the
non-divergent threads, is stalled until the threads converge again.

4.3 CUDA

The Compute Unified Device Architecture or CUDA is the underlying architecture
of NVIDIA GPUs. In this section we will describe the different models that are
important to understand GPU programming, we will also describe the various types
of memory available, what kind of optimizations can be done as well as a brief
discussion about accuracy in a CUDA environment.

4.3.1 Thread Model

The Kernel

The basic atom of the CUDA world is the kernel. A kernel is simply a function, with
a void return value, in CUDA C prefixed with the keyword __global__. When a
kernel is called from host code N threads are spawned that execute the kernel code
in parallel. Each thread has access to a unique identification number which enables
us to do different work in different threads.

Grids and Blocks

Threads are organized in a hierarchy (illustrated in figure 4.6,) the top level is
called the grid which contains two dimensions of several blocks. Each block in turn

20

4.3. CUDA

Figure 4.5. Closer view of the Streaming Mutiprocessor (SM). From [8]

21

CHAPTER 4. GPU COMPUTING

consists of a three dimensional structure of threads. The size of the grid and the
blocks are specified by the user when invoking a kernel, and the maximum numbers
depend on the compute capability of the device.

Figure 4.6. A Grid of Blocks. From [4]

Selecting the dimensions of the grid and of the blocks is largely problem depen-
dent, in an image analysis application selecting two dimensional structures might
make the problem easier to map to an algorithm than using only one dimension,
which might be more beneficial in a program that accesses data in a linear fashion.

4.3.2 Memory Model
There are several types of memory available to a CUDA application programmer
each provides different possibilities and constraints. The memory types are:

• Global memory

• Per thread memory

• Shared memory

• Registers

22

4.3. CUDA

• Constant memory

• Texture memory

• Page-locked host memory

• Surface memory

The relevant memory types are described in short in the following sections a full
description of all memory types can be found in [4] and [7].

Global Memory

Global memory is the main storage of the card consisting of 768 MB to 4GB (de-
pending on model) of GDDR RAM. Accesses from global memory are in general
slow and should be avoided when possible.

Global memory is controlled by the programmer by similar methods as the heap
in C and is accessible by all threads. If two threads write to the same location the
results are undefined. One uses cudaMalloc to allocate and cudaFree to deallocate
memory. Data is then accessed through pointers in device code.

Global memory can not be allocated from device code and can not be accessed
by host code, except by using special memory copying functions.

Per Thread Memory

Each thread has access to 16 or 512 KB (depending on compute capability) of local
memory. Local memory is used to store large arrays, structures and for register
spilling.

Local memory is stored in global memory so it shares the same drawbacks but
it is easier to keep memory accesses coalesced when reading local memory.

Shared memory

Each thread block has access to a shared memory area that is 16KB or 48KB
depending on device capability. All threads in the block can read and write memory
in this area but if two threads write to the same memory location the results are
undefined.

Shared memory is divided into banks, which can be accessed simultaneously as
long as each memory location is in separate banks. If two memory accesses are in
the same bank they have to be serialized and performance is reduced. A memory
request where at most n requests are in the same bank is said to be a n-way bank
conflict.

Shared memory can be very powerful in optimizing performance since it is on-
chip and therefore vastly faster than global memory as long as bank conflicts are
kept to a minimum.

23

CHAPTER 4. GPU COMPUTING

Registers

Each multiprocessor has access to 8K,16K or 32K registers (depending on device
capability,) registers store local variables in the same fashion as on a CPU. Register
usage can influence occupancy (by reducing the number of threads that can be run
on each multiprocessor) if too many are used in a device function.

Constant Memory

Constant memory is a part of global memory, however there is an 8KB cache that
can speed up reads.

Constant memory can only be written to from host code, device code can not
modify the contents of the memory but can read from it.

Constant memory can be a good alternative to using global memory as long as
the amount of data is limited to 64KB.

4.3.3 Programming Model
There are two common ways to use CUDA in a program, either through CUDA C
or through the CUDA driver API.

CUDA C is a set of extensions to the C language that support native keywords
for data structures and kernel handling. CUDA C files have to be compiled with
the nvcc compiler.

The nvcc compiler translates CUDA C specific extensions into calls to the CUDA
C runtime functions and device code into PTX (a form of assembly for graphics
cards) and/or cubin objects (binary objects) that it stores in a global initialized
array. The code can then be compiled using a regular compiler (such as g++.)
When the application is run the contained device code is loaded by the device
driver and compiled to binary code (just-in-time compilation.)

The CUDA driver API offers a stand-alone API for compilation using any com-
piler. The resulting code is significantly more verbose but gives the programmer
more control of the work flow and is language independent.

4.3.4 Optimization and Performance Considerations
Several guidelines for optimizing CUDA program performance are described in [5]
this section describes the ones that proved the most useful in the context of this
work.

Parallelize Sequential Code

Code running on a GPU should be parallel to the highest extent possible. Only
running a single thread is very inefficient and similarly special casing code for certain
threads leads to warp divergence and significantly reduced performance. This means
that when writing an if-statement or a loop that considers the thread identification
number we run the risk of causing warp divergence.

24

4.3. CUDA

Additionally a running a larger part of the necessary computations on the device
can reduce the need to transfer data to and from the device, for example generating
random numbers on the device instead of on the host.

Minimize Data Transfer Between Device and Host

Transferring data to and from the device can be very costly in terms of performance
since the PCIe bus is slow compared to native memory operations (177 GBps for a
GeForce GTX 480 compared to 8 GBps on a PCIe x16 Gen2 bus.)

Data transfer can be an easy way to reuse code but one should keep in mind
that large transfers can slow down the program and rewriting code in CUDA might
be worthwhile.

Ensure Global Memory Accesses are Coalesced

According to [5] the single most important optimization is ensuring that memory
operations are coalesced.

One way to make memory coalescing demands easier to meet is to use local
memory (such as using int a[2000] instead of int* a.) This memory, however, is
limited and cannot be used outside of the kernel.

Maintain 25% Occupancy

Occupancy is the number of threads running on a SM relative to the maximum
number allowed. Maintaining a ratio over 25% allows the processor to exchange
idle threads (due to, for example, waiting for arithmetic results to become available
in a register or waiting for a memory transfer) for active threads.

Certain parameters, such as number of registers used and amount of shared
memory used, can affect the maximum occupancy that can be achieved.

The Number of Threads per Block Should Be a Multiple of 32

Since warps currently are defined to be 32 threads, not running multiples of 32
threads results in inefficient use of resources.

[5] recommends using 128 to 256 threads per block as a starting point for eval-
uating performance.

Use the Fast Math Library

Using for example __sinf() instead of sin() usually performs better but provides
less accurate results. See section 4.3.5 or [4] for a full exposition of the various
functions that can be used and their precision.

25

CHAPTER 4. GPU COMPUTING

Minimize the Use of Global Memory

Accessing global memory is slow compared to the arithmetic throughput of graphics
cards. Avoiding unnecessary memory accesses and storing frequently accessed data
in registers or shared memory can give a boost in performance.

4.3.5 Numerical Accuracy
Floating Point Representation

Since computer memories are inherently discrete we can never have an exact rep-
resentation of a real number (such as 1

3 = 0.3333) Instead we have to resort to
a representation that is as good as possible given a set number of bits. The most
commonly used standard for floating point arithmetic is the IEEE 754.

The IEEE 754 standard describes the single (or binary32) and double (or bi-
nary64) precision floating-point formats. Single precision numbers reserve 8 bits for
the exponent and 23 bits for the significand while doubles have 11 bit exponents
and 52 bits significands and both have 1 bit representing sign. For a more thorough
review of how floating-point numbers are stored and used see for example [7].

CUDA is mostly IEEE 754 (2008) compliant, the differences are described in [4]
pp 149-150.

Error bounds and ULP

ULP (commonly Unit in the Last Place) was defined by Kahan [13] as

Ulp(x) is the gap between the two floating-point numbers nearest x ,
even if x is one of them.

ULP as defined by Kahan or with slight modifications are usually used to quan-
tify errors of mathematical functions implemented in computer hardware. For ex-
ample, the IEEE 754 requires all arithmetic operations to be within 0.5 ULP of the
exact result.

Table 4.1 gives an excerpt of relevant CUDA mathematical functions and their
error bounds. Especially note the error bounds of the intrinsic functions (starting
with a __.) The table is an excerpt from [4]

ECC

Background radiation can in some cases cause bits to flip in DRAM chips. Single
bit flips (“soft errors”) can be corrected through the use of an Error Correcting
Code.

Devices of compute capability 1.3 or less do not support ECC natively. In
computer games this does not matter much, it is probably not even noticable if for
example a single pixel is off color in one frame. For scientific computations this can
however have an impact, even producing wrong results.

26

4.3. CUDA

Table 4.1. The error bounds for various mathematical functions in CUDA.

Function (Precision) Error Bound
expf (single) 2 ULP
exp (double) 1 ULP
__expf (single) 2+floor(abs(1.16*x)) ULP
logf (single) 1 ULP
log (double) 1 ULP
__logf(single) For 0.5 ≤ x ≤ 2 the maximum absolute

error is 2−21.41 otherwise it is 3 ULP.
sinf (single) 2 ULP
sin (double) 2 ULP
__sinf(single) For −π ≤ x ≤ π the maximum absolute

error is 2−21.41 and larger otherwise.
cosf (single) 2 ULP
cos (double) 2 ULP
__cosf(single) For −π ≤ x ≤ π the maximum absolute

error is 2−21.19 and larger otherwise.
erfinvf (single) 3 ULP
erfinv (double) 8 ULP

A software solution for ECC is described in [9], it does however have a signifi-
cant impact on performance especially for memory intensive programs. The latest
architecture from NVIDIA, Fermi, supports hardware ECC so in those cases this is
a non-issue. Another approach is to run the calculations twice, if the results do not
agree we can discard both results and start over.

Even though the main development has been on a platform that does not support
ECC, no care has been taken to counteract soft errors. The averaging effect of Monte
Carlo methods will cause single errors to have a very slight impact on the final result.
But if, for example, an unfortunate error causes a high-order bit in one of results
to flip this could significantly impact the final price.

These errors, however, seem rare, when run for repeatedly for 62 hours none of
the almost 500000 samples differed.

27

Chapter 5

Method

This chapter describes the various measurements, design considerations and com-
puter systems that were used in the evaluation of the prototype.

5.1 Measurements - How and Why

We used two main measures of the performance of host vs device code. Both
measurements were made on the code as run on a CPU as well as on a GPU.

5.1.1 Total Time

The first measurement that was made was the total time, that is, the time it takes
from wanting to get a result until the result is at hand. This measure includes
memory allocation and copying both for host and device code.

The total time is of interest since it shows how much the overhead of using
graphics cards (that of allocating the extra memory, copying parameters to and
from the card and time spent setting up the device) can impact the speedup that is
achievable. As we demonstrated in the section about Amdahl’s law such an overhead
can severely limit the speedup but as we showed in the section about Gustafson’s
law we will see that as the problem size increases this overhead diminishes and we
can achieve significant speedups.

The total time can be improved upon in real-life applications, the measurement
includes time spent setting up the card, which is only necessary to do once. Also
memory allocations can be reduced if memory is kept between runs, this also avoids
the time necessary to deallocate memory.

This measurement is close to how long a user will have to wait for a result and
is in that sense superior as a measure for users as compared to computation time.

If Tc denotes the total time on a CPU and Tg the total time on a GPU we will
denote S = Tc

Tg
as the speedup factor obtained with GPU.

29

CHAPTER 5. METHOD

5.1.2 Computation Time

The second measurement was computation time, which includes the time spent
actually calculating results. This time does not include any overhead incurred by
either using a CPU or a GPU. This measurement is subsumed by the total time
measurement.

This measure is of a more theoretical interest since, when comparing host and
device code, it shows the difference in power between a CPU and a GPU when doing
the same amount of work.

If Cc denotes the total time on a CPU and Cg the total time on a GPU we will
denote Sc = Cc

Cg
as the speedup factor obtained with GPU.

5.1.3 Time as Seen by a User

This measurement is only used when we introduce device code into a real system
for pricing options. This is the true time as seen by a user since it is measured from
a function call to when a result is obtained.

Note that this includes the improvements mentioned earlier, that is avoiding
startup cost and memory allocations, so total time and time as seen by a user are
not necessarily the same.

5.1.4 Selection Criteria

The timing measurements of ten consecutive runs were obtained, from this we cal-
culated the minimum, maximum and median runs which formed the basis of the
figures on the following pages.

Standard deviation was observed to be low in all cases except for total GPU
time.

Several different problem sizes were tried, to keep the results concise we present
two. The problem size representing small problems was chosen to be 10000 itera-
tions, this number was selected because it is equivalent to the size that was run in
the system in use at Handelsbanken. In practice we round the number of iterations
to the nearest multiple of 256 to be able to easier map it to thread blocks so 10000
iterations were 10240 in the system. We chose 870400 iterations to represent large
problems, the number might seem odd at first glance but comes from earlier versions
where the number of iterations was limited by the available memory of the graphics
card, this number was kept since it is large enough to represent large problems (that
many iterations would rarely if ever be used in practice) and small enough not to
cause memory issues.

5.1.5 Threads

All CPU results presented in the following sections are based on single-threaded
code. The main reason for this is that the option pricing code in the production sys-
tem was single-threaded, so single-threading was chosen to keep results consistent.

30

5.2. GENERAL

Since all processors used in the experiments had four cores, running single-threaded
code does not utilize their full capacity.

Theoretically using all four cores would effect a four time speedup, hence dividing
the resulting GPU speedups by four. However, initial experimentation using a naive
OpenMP implementation showed a mere 20-30% speedup when using four threads,
even when computing large problems. Such effects can be caused by programs being
limited by the memory bandwidth but is in this case probably a result of inefficient
programming.

Producing a fully optimized parallel CPU version (perhaps using SSE1 as well)
was deemed to be outside the scope of this project.

5.2 General

5.2.1 Program Layout

A single program (executable) contained both CPU and GPU code. Parameters
were hard-coded in the case of the digital basket2 and read from a file in the case of
the capped basket. The program was written from scratch both for CPU and GPU
except for the Sobol generators.

The same methods were applied to CPU and GPU code to the largest extent
possible, the only exception being the Sobol sequence generator which was slightly
different between the two.

The code written from scratch was used as a benchmark in time measurements
made on CPU code in the test environment. When using the production system
CPU time measurements were made on code that already existed in the code-base,
developed by Handelsbanken.

5.2.2 Program Features

The main requirement of the program was that it should be general in the sense that
valuing different option types and varying the number of time steps and underlying
instruments should be easy. This was achieved by producing the trajectories, storing
them and then supplying a payoff function with them. To implement a different
option type one would simply swap the payoff function to the new one.

The program was written to support all features supported by a real system,
including Sobol sequences, the Brownian bridge construction and the geometric
Brownian motion as well as support for custom models for the evolution of stock
prices.

1Streaming SIMD Extensions, certain instructions that utilize the Single Instruction Multiple
Data capabilities of certain processors to achieve higher performance

2Also known as binary options.

31

CHAPTER 5. METHOD

Table 5.1. A description of the components in the computers that were used in the
tests.

Property HP xw4600 HP z400 Dell R5400
CPU Type Core 2 Quad Xeon Xeon
CPU Model Q9450 W3565 E5430
CPU Clock 2.67 GHz 3.20 GHz 2.66 GHz
Disk Type HDD SSD HDD
Available RAM 3.23 GB 12 GB 3.00 GB
Compute Graphics Card Quadro FX 4800 None GTX 470
Display Graphics Card Quadro NVS 290 Quadro NVS 295 Quadro NVS 295
OS Windows XP Windows 7 Windows XP
OS Type 32 bit 64 bit 32 bit
Graphics Slot PCIe Gen2 x16 PCIe Gen2 x16 PCIe Gen2 x16
PSU 475W 475W 750W

5.2.3 Compilation
All CPU code was written and compiled in Visual Studio 2008 Professional Edition.
Code was compiled using the options: /Ox, /Ob2, /Oi, /Ot, /Oy, /GT, /GL. GPU
code was compiled using the nvcc compiler (toolkit version 3.1) configured for GPU
architecture 1.3 and 2.0.

5.2.4 Environments
Code was compiled and ran with the latest3 toolkit version (CUDA toolkit 3.1) and
the latest drivers (Developer Drivers for WinXP 257.21.)

There were two cards used, the Quadro FX 4800 with 1.5GB of RAM and the
GeForce GTX470 with 1280MB MB of GDDR5 RAM. The Quadro card was placed
in a HP xw4600 Workstation and the GeForce card in a Dell R5400. The HP z400
system was used to provide a CPU benchmark for the production system.

See table 5.1 for a detailed description of the systems that were used.
The HP workstations were used for normal desktop activities at the time of

measurements. The Dell machine was dedicated to running the code (except for a
tightVNC server and connection.)

5.2.5 Accuracy
For the digital basket option results from the CPU and from the GPU were checked
against each other to ascertain that they were in reasonable agreement, results were
allowed to vary a bit (depending on the number of Monte Carlo simulations that
were run) since slightly different Sobol generators were used for CPU and GPU.

3At the time of writing.

32

5.2. GENERAL

For the capped basket the results were also compared against the valuation
produced by the production code.

33

Part II

Results

35

Chapter 6

GPU Implementation

The overall program flow is shown in figure 6.1. The host code runs a single thread,
when the device is called multiple threads are spawned, indicated by arrows.

The GPU option pricing routine is described in more detail below:
1: Let NMC be the number of Monte Carlo iterations the user wishes to perform.
2: Set nThreads = 256.
3: Set nBlocks = N MC /nThreads, the number of blocks as defined in the section

on Grids and Blocks.
4: Set grid = (nBlocks,1,1).
5: Set threads = (nThreads,1,1).
6: Copy distribution functions to constant memory if they fit otherwise copy to

global memory.
7: Allocate global memory to res, directions and sobol using cudaMalloc.
8: Init Sobol sequences.
9: Init Brownian bridge.

10: Load initial values, Cholesky matrix, Brownian bridge parameters and caps into
constant memory.

11: Start computation timer.
12: Call sobolGPU to generate NMC quasi-random numbers.
13: This is done on the GPU, each thread computes a separate dimension.
14: Store in sobol in global memory on the device.
15: Call cuMCStepSobolFunc<<<grid, threads>>>().
16: Each thread computes a single Monte Carlo iteration in parallel and computes

the payoff.
17: This is stored in res based on thread id.
18: Call cudaSynchronize to synchronize state.
19: Copy res back to host memory and perform summation and averaging there.
20: End computation timer.
21: Deallocate global memory.

The layout of the thread code is similar to the algorithm described in chapter 3.
The variable nThreads was hard-coded into the program, and was chosen in

37

CHAPTER 6. GPU IMPLEMENTATION

Figure 6.1. The overall architectural layout of the main program, shows the timer
steps and the calculation steps.

38

part based on the CUDA Occupancy Calculator 1 and in part by experimentation
of values using the CUDA Profiler. Choosing this value is a trade-off between the
used resources (registers and shared memory) and the occupancy that is achieved.

The distribution functions mentioned on line 5 are the functions that define the
evolution of the stock prices, each underlying stock has a separate function that is
defined by x,y-coordinate pairs. A value from the Sobol sequence is looked up in
this table or interpolated between the closest points if necessary.

In line 14 we use the CUDA specific syntax to call a kernel, this is basically a
normal function call with the appended brackets to indicate the dimensions of the
blocks and the grid.

Since we wanted to keep the routines general we computed each trajectory,
stored it and supplied it to a payoff function. The payoff function is easily replaced
if another option type is to be priced. This generality, however, comes at a cost:
several option-type specific optimizations cannot be done.

1developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

39

Chapter 7

Results

This chapter describes the results of the prototype in several test cases. Pricing of
a digital basket option and a capped basket option is described and the resulting
speedups compared to CPU-code is illustrated.

7.1 Pricing a Digital Basket Option

7.1.1 Digital Basket Options

A digital basket option is an option in which we obtain a payoff of 0 or 1 based on
certain criteria on the underlying instruments. In the test case we used a payoff
of 1 if all underlying instruments had appreciated in value by at least 10% and a
payoff of 0 otherwise.

This example is somewhat artificial but similar digital options are available. It
was chosen since it illustrated the concepts well.

In contrast to other tests this one used the standard geometric Brownian motion
model. This results in more arithmetic operations and fewer memory accesses which
is beneficial to device performance.

This test used eight underlying instruments and twenty time steps.

7.1.2 Results in a Test Environment

10000 Simulations

Figure 7.1 illustrates the speedup obtained with 10000 Monte Carlo simulations.
Especially note the large discrepancy between the speedup in total time and the
speedup in computation time. Also note that the GTX470 is almost three times
faster than the FX4800 with regard to computation time but actually slower with
regard to total time. Just viewing the GFLOPS for the two cards this speedup is
not quite expected (FX4800 does about 693 GFLOPS and the GTX470 about 1088
GFLOPS) but it shows that the Fermi architecture is better suited for these kinds
of problems, even the GeForce cards.

41

CHAPTER 7. RESULTS

Figure 7.1. Speedup of digital basket in total time, S (left), and in computation time,
Sc (right), versus Q9450. For 10000 Monte Carlo simulations. The bars represent the
min, max and median of ten runs.

870400 Simulations

Figure 7.2 shows the speedup when using 870400 Monte Carlo simulations. We
see that the speedups are much larger with respect to total time, this is reasonable
since the overhead consumes less of the total time spent producing results.

Figure 7.2. Speedup of digital basket in total time, S (left), and in computation
time, Sc (right), versus Q9450. For 870400 Monte Carlo simulations. The bars
represent the min, max and median of ten runs.

Varying the Number of Monte Carlo Simulations

Figure 7.3 shows the total and computation times of different hardware. In the
total time graph we can clearly see the variance of the GPU total time measurement,

42

7.1. PRICING A DIGITAL BASKET OPTION

producing occasional spikes, especially for the GTX470.
In figure 7.4 we see the speedup of the graphics cards as compared to the Q9450

processor as the number of Monte Carlo simulations varies. It is interesting to note
that the two factors seem to converge (for the Quadro FX4800 card) which is not
surprising as we have discussed.

Figure 7.3. Total execution time (top) and computation time (bottom) as the
number of Monte Carlo simulations was varied. Note that the time axis is in log-
scale.

43

CHAPTER 7. RESULTS

Figure 7.4. Speedup in total time, S, and computation time, Sc when varying the
number of Monte Carlo simulations.

Double Precision Performance

Figure 7.5 shows the corresponding speedups when using double precision. Note
that there is only data for the FX4800.

The achieved speedups are significantly higher than expected, double precision
performance should be about 1/8 of single precision performance on this card. These
results are probably due to single precision not being completely optimal.

7.2 Pricing a Capped Basket Option

7.2.1 Capped Basket Options

To price a capped basket option we evaluate the value for each underlying instrument
at times t1, . . . , tn, call these values si,1, . . . , si,n. For each underlying instrument
we have a cap c1, . . . , cu. We then take the mean of s for each instrument s̄j =
1
n

∑n
i=0 sj,i for 0 ≤ j ≤ u. Then the final price of the option is 1

u

∑u
i=0 min(s̄i, ci).

Capped basket options are used in a real setting and the examples are picked
from Handelsbankens portfolio of options.

The capped basket code also used custom functions for the evolution of each
individual stock price, these were stored in global memory thus causing more mem-
ory accesses and decreased performance. In this particular case we were able to fit
these functions into constant memory so the cache helped improve performance a
bit. A better solution would be to store them in texture memory, in addition to a

44

7.3. COMPARISON OF CPUS AND GPUS IN A PRODUCTION SYSTEM

Figure 7.5. Double precision performance on the FX4800 vs the Q9450. Speedup in
total time, S, and computation time, Sc. Shown are 10000 Monte Carlo simulations
on the left and 870400 on the right.

fast cache texture memory offers hardware interpolation of the data. In this case
we used linear interpolation so the texture memory would be sufficient, however, in
future version other interpolation types will have to be supported.

7.2.2 Results in a Test Environment

The resulting speedups are shown in 7.6 and 7.7. In the first case we can see that
the GPU code is actually slower than the CPU code, this is due to this particular
capped basket option being slightly smaller than the digital basket (seven underlying
instruments and five time steps) thus producing quicker code which causes the
overhead to be even more overpowering. In the second case it is also interesting to
note that, even though it is almost twice as quick in computation time, the GTX470
shows almost the same speedup as the FX4800 in total computation time.

7.3 Comparison of CPUs and GPUs in a Production
System

7.3.1 The System

The valuation system used at Handelsbanken is a custom C++ framework that
among other things prices a wide variety of exotic options. The system commu-
nicates with the trading platform Prime through a COM interface. Prime is very
versatile and one can extend and implement modules using Python.

The calls to pricing capped basket options were redirected to the corresponding
GPU function. The drawback with this approach was that everything was tailored
to the existing system, for example vectors and matrices were wrapped in vector

45

CHAPTER 7. RESULTS

Figure 7.6. Speedup of capped basket in total time, S (left), and in computa-
tion time, Sc (right), versus Q9450. For 10000 Monte Carlo simulations. The bars
represent the min, max and median of ten runs.

Figure 7.7. Speedup of digital basket in total time, S (left), and in computation
time, Sc (right), versus Q9450. For 870400 Monte Carlo simulations. The bars
represent the min, max and median of ten runs.

46

7.3. COMPARISON OF CPUS AND GPUS IN A PRODUCTION SYSTEM

Figure 7.8. Speedup in time as seen by a user in a production system. Shown are
10000, 100000 and 870400 Monte Carlo simulations respectively.

and matrix classes which had first to be constructed in the Python code and then
had to be deconstructed and moved into new array based structures in the C++
code. All data was passed as doubles which had to be converted into single precision
floats which further added to the overhead.

It was noted that the capped basket pricing was slightly faster than the code
used in the test environment but they were in the same order of magnitude.

7.3.2 Results

Figure 7.8 shows the speedup in time as seen by the user. We now compare to the
Xeon W3565 (the business equivalent of the Core i7 960.)

Note that this comparison is not entirely fair since the CPU uses double pre-
cision and the GPU single precision, using single precision on the CPU would not
significantly impact the results but using double precision on the GPU would.

7.3.3 Accuracy

To measure the accuracy and numerical stability of the GPU code we computed the
delta. The delta is the derivative of the option price with respect to a underlying

47

CHAPTER 7. RESULTS

instrument’s spot price, as such it measures the rate of change of the option price
when the underlying instrument changes value.

There were seven instruments in the basket, amongst which were ABB and SKF
B. When changing the spot price (figure 7.9) of the underlying ABB the GPU
closely followed the CPU both in the valuation and in the delta. There are no
major spikes or discontinuities in the delta graph of neither the CPU nor the GPU.

When perturbing the spot price of SKF B (figure 7.10) we see clear spikes of
both the GPU and the CPU with the valuation produced by the GPU experiencing
significantly more ringing in the delta.

More instruments and the relative difference in their valuations can be found in
appendix A.

48

7.3. COMPARISON OF CPUS AND GPUS IN A PRODUCTION SYSTEM

Figure 7.9. Option value (top) and delta function (bottom) as ABB changes value.

49

CHAPTER 7. RESULTS

Figure 7.10. Option value (top) and delta function (bottom) as SKF B changes
value.

50

Chapter 8

Discussion and Conclusions

In this chapter we discuss the results and draw some general conclusions about the
use of graphics cards.

8.1 Limitations

8.1.1 Floating Point Types and Precision

As noted all results were obtained by using single precision floating-point types.
Certain problems in for example linear algebra and quantum chemistry must use
double precision or the results would be too inaccurate to be useful.

Earlier architectures had little or no focus on double precision since it is of little
use in computer games but this has changed with the Fermi architecture. Double
precision performance is no longer lagging behind as severely and graphics cards can
provide a significant boost in performance. Unfortunately this feature is disabled
in the cheaper GeForce cards and only enabled in the more expensive Tesla cards.

In the context of this problem (i.e. pricing options) single precision was assessed
to be sufficient, however when computing the Greeks (basically numbers that convey
how sensitive the option price is to different parameters, for example the volatility)
by finite difference perturbation higher precision is desired.

8.1.2 Multi-Core Processing and Optimizations

Most modern CPUs are based on multi-core architectures, exploiting this in the
program would have lead to lesser run-times for the CPU based programs and
smaller factors of speedups as compared to the GPU implementations.

Producing a fully optimized parallel version would have been very interesting
since it would harness the full power of the CPU, but since the final comparison
systems was not parallel such a program was not implemented.

Such an implementation was made in [15] and it significantly impacted the
speedup that was attained. However, the implementation was based on double
precision which would affect the result.

51

CHAPTER 8. DISCUSSION AND CONCLUSIONS

In [15] Lee et al. argued that (they use the lattice Boltzmann method as a specific
example, which claims as high as 114x speedup on a GPU) “with careful multi-
threading, reorganization of memory access patterns, and SIMD optimizations, the
performance on both CPUs and GPUs is limited by memory bandwidth and the gap
is reduced to only 5X.” Very similar considerations have to be made to produce an
optimal GPU program and a 5x improvement still means that for every graphics card
we need 1 5 processors to match it, at a cost of 3-10 times that of a modern GeForce
graphics card (not including additional required hardware such as motherboard,
RAM etc.)

A drawback of using all cores is of course that it would impact the user using
the system at the same time. While not relevant for a normal cluster, this could
be a design consideration when using a grid of other’s idle computers. Adding a
graphics card to a user’s computer would not impact her in any significant way and
then running the program would not even be noticeable for a business system user.

8.1.3 Problem Size

As we have shown GPU programs scale extremely well with larger problem sizes.
However, using larger problems might not be desired or necessary. The production
system that was tested against previously used 10000 Monte Carlo iterations this
provided a good balance between run-time and numerical accuracy. Our testing
showed that while increasing the number of iterations was beneficial to accuracy
there was not a major difference.

8.1.4 Optimality of the Program

There are several common measures of optimality for CUDA programs two of them
are, achieved bandwidth and instruction throughput. Achieved bandwidth is mea-
sured in GB/second, this is computed as the total number of bytes read or written
from global memory divided by the total runtime of the kernel. This can then be
compared to the maximum obtainable of the device.

A cursory examination showed an approximate bandwidth of 20-25 GB/s when
run on the GTX470 and 5-10GB/s when run on the FX48002 in the capped basket
case. This can be compared to the maximum of 133.9 GB/s for the GTX470 and
76.8 GB/s for the FX4800. Obviously the achieved throughput is not optimal, this
could be due to a couple of reasons. One reason could be that the program is not
that memory intensive. Another could be that memory access patterns still are
suboptimal.

Instruction throughput is the number of instructions performed divided by the
number of single point arithmetic instructions that could have been executed in

1At the very least. Depending on the problem message passing between the additional com-
puters that will be needed can probably lessen the speedup

2These numbers are highly approximate, in part based on examination of the program and in
part with help from the CUDA profiler.

52

8.2. OTHER APPROACHES

the same time. This number is usually between zero and one, higher being better.
The program achieved an instruction throughput of 0.48 according to the CUDA
profiler. This number is also suboptimal but is less telling than achieved bandwidth.

If it’s possible to reach the highest figures while maintaining the generality of the
program remains unknown, but more work can definitively be done in optimizing
the performance.

8.2 Other Approaches

8.2.1 Field-Programmable Gate Array

FPGAs are integrated circuits that can be re-configured after they have been man-
ufactured.

FPGAs have been used successfully in similar applications [18] to the ones de-
scribed here with great success (over 50x the performance of a CPU in double
precision.) [19] describes a FPGA base Monte Carlo option pricer that is 340x
faster than the corresponding CPU implementation.

8.2.2 More Computers

Another approach would be to add additional computers to the grid, if we need
a 5x speedup we could use 5x the number of computers. This would theoretically
be a good solution but in practice it might not work out as well. For one we
would have to introduce communication between the computers to transfer partial
results which will be compiled, this might add significant overhead depending on
the problem. There is also the issue of cost and space, computers have to be bought
and maintained and space might be constrained as it is.

8.2.3 The Cell Broadband Engine Architecture

The Cell Broadband Engine is a multiprocessor architecture quite different from the
standard x86 architecture. It is primarily aimed at gaming consoles (the Playstation
3 features one for example) and high-performance computing. One of the fastest
supercomputers, the IBM Roadrunner, features a hybrid design of Cell and x86
based processors.

There is some evidence that the Cell processor could be useful for financial
computations [20], [21].

8.3 Discussion
Although graphics cards can provide a major boost in performance we have seen
that much of this performance is dependent on how measurements are made. If one
uses small problems and include all overhead the results are disappointing. If on the
other hand one uses large problems the results are impressive to say the least. But

53

CHAPTER 8. DISCUSSION AND CONCLUSIONS

this performance also comes at a cost, some applications are too sensitive to use
single precision arithmetic and the faster but less accurate mathematical functions.

Another interesting issue is optimized CPU code. [15] showed that, with prop-
erly optimized CPU code, the performance gap between graphics cards and CPUs
can be minimized. This has several advantages over adding a graphics card for
example one could maintain high precision and it would work equally well for small
problems since there is significantly less overhead.

If we were to be able to achieve a four time speedup using all cores of the Xeon
W3565 the resulting speedup compared to the GTX470 would be about 3-4, while
not quite as impressive it is still a major improvement.

There are a couple of factors that are not taken into account in [15], for one
the Monte Carlo code is using double precision floating-point math, which is not
optimal on the GTX280 they used. Another factor is that they compared a graphics
card and a processor that are more than a year apart when considering release date.
Current generation graphics cards (or even the most powerful of that generation,
the GTX295 or the Tesla C1060) would probably have performed better.

Optimizing code for the CPU entails more than activating a compiler flag or
adding an OpenMP pragma to the code, a careful analysis of thread behavior and
memory accesses must be made as well as an analysis of the problem and choosing
algorithms and data structures that fit into this paradigm. Also one must take full
advantage of the rich set of Streaming SIMD Extensions.

Even when considering these things GPU computing can be worth while, one
can, with a small additional cost, improve the total computational capacity of a
single PC by a significant factor. This is probably where solutions such as OpenCL
will shine, if they can truly harness the power of both the CPU and of the GPU.

Incorporating GPU code into an existing code base was surprisingly easy, the
code was more or less copy-pasted into a new file in the existing project, the call to
the GPU code could then be wrapped in a new class which one could instantiate
and the new file was set to be compiled with nvcc.

The largest issue at the moment is the significant ringing in the delta func-
tion that was observed in figure 7.10 this behavior was also observed for other
underlyings and is most likely due to precision problems. This problem has to be
investigated further.

8.4 Conclusions
We conclude that GPU computing is well worth the hassle if

• The problem is parallelizable.

• The problem is sufficiently large.

• The problem can use single precision floating-point arithmetic.

• The problem is specific enough.

54

8.5. FURTHER WORK

• Most of the problem can be computed on a GPU.

• The problem is not that memory intensive.

• The cost of development is less than the cost of extending existing infrastruc-
ture.

Before investing in GPU computing one should make sure that the existing
systems are used to their full capacity, or that doing so would be more expensive
than utilizing GPUs.

8.5 Further Work
The most pressing extension of this work would be to implement parallel, optimized
code for option pricing on a CPU. This would give a better and fairer comparison.

Other than that, porting more code, for example finite difference methods, to
GPUs would be a natural extension.

55

Bibliography

[1] Antonov, I. A. and Saleev, V.M. (1979.) An economic method of computing
LPt-sequences. USSR Comput. Math. Math. Phys. 19, pp. 252-256.

[2] P. Glasserman, Monte Carlo Methods in Financial Engineering (Stochastic Mod-
elling and Applied Probability) (Springer, 2003). ISBN 0387004513.

[3] P. Jaeckel, Monte Carlo Methods in Finance (Wiley, 2002). ISBN 047149741X.

[4] NVIDIA, NVIDIA CUDA Programming Guide 3.0 (2010). From
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUDA_C_Programming_Guide.pdf Last retreived 2010-11-18.

[5] NVIDIA, NVIDIA CUDA Best Practices Guide 3.0 (2010). From
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUDA_C_Best_Practices_Guide.pdf Last retreived 2010-11-18.

[6] H. Nguyen, GPU Gems 3 (Addison-Wesley Professional, 2007). ISBN
0321515269.

[7] Kirk, David and Hwu, Wen-mei. Programming Massively Parallel Processors:
A Hands-on Approach (Morgan Kaufmann, 2010), first edn. ISBN 0123814723.

[8] NVIDIA, NVIDIA Fermi Compute Architecture Whitepaper.
From http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf Last retreived
2010-11-18.

[9] Maruyama, Naoya and Nukada, Akira and Matsuoka, Satoshi. (Jul 2009.)
"Software-Based ECC for GPUs," Symposium on Application Accelerators in
High Performance Computing (SAAHPC’09).

[10] Sutter, Herb. (March 2005.) The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal, 30(3),

[11] Amdahl, Gene. (1967) "Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities." AFIPS Conference Proceedings (30). pp.
483-485.

57

BIBLIOGRAPHY

[12] Gustafson, John L. Reevaluating Amdahl’s Law. (1988.) Communications of
the ACM 31(5). pp. 532-533

[13] W. Kahan (2004). A logarithm too clever by half. From
http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT Last retreived
2010-11-18.

[14] Bennemann, Christoph and Beinker, Mark W. and Egloff, Daniel, and
Gauckler, Michael. Teraflops for games and derivatives pricing. From
http://quantcatalyst.com/download.php? file=DerivativesPricing.pdf
Last retreived 2010-11-18.

[15] Lee, Victor W. and Kim, Changkyu and Chhugani, Jatin and Deisher, Michael
and Kim, Daehyun and Nguyen, Anthony D. and Satish, Nadathur and Smelyan-
skiy, Mikhail and Chennupaty, Srinivas and Hammarlund, Per and Singhal,
Ronak and Dubey, Pradeep (2010). Debunking the 100X GPU vs. CPU myth:
an evaluation of throughput computing on CPU and GPU. ISCA ’10: Proceed-
ings of the 37th annual international symposium on Computer architecture. pp.
451–460.

[16] Giles, Mike and Xiaoke, Su. Notes on using the nVidia 8800 GTX graphics card.
From http://people.maths.ox.ac.uk/gilesm/codes/libor/report.pdf
Last retreived 2010-11-18.

[17] Podlozhnyuk, Victor and Harris, Mark. Monte Carlo Option Pricing. From
http://developer.download.nvidia.com/compute/cuda/sdk/website/C/
src/MonteCarlo/doc/MonteCarlo.pdf Last retreived 2010-11-18.

[18] Woods, Nathan A. and VanCourt, Tom (2008). FPGA acceleration of quasi-
Monte Carlo in finance. International Conference on Field Programmable Logic
and Applications. FPL 2008: 335-340. ISBN 978-1-4244-1960-9.

[19] Tian, Xiang and Benkrid, Khaled and Gu, Xiaochen. High
Performance Monte-Carlo Based Option Pricing on FPGAs
http://www.engineeringletters.com/issues_v16/issue_3/EL_16_3_24.pdf
Last retreived 2010-11-18.

[20] Agarwal, Virat and Liu, Lurng-Kuo and Bader, David A. (April 2008.) Finan-
cial Modeling on the Cell Broadband Engine. 22nd IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Miami, FL.

[21] Rotaru, T. and Dalheimer, M. and Pfreundt, F.-J. (2010.) Service-oriented
middleware for financial Monte Carlo simulations on the cell broadband engine.
Concurr. Comput. : Pract. Exper. pp 643-657.

58

59

APPENDIX A. ACCURACY

Appendix A

Accuracy

Instrument GPU CPU Diff Diff%
AA 24,78 24,93 -0,15 -0,605326877
AB 53,73 54,2 -0,47 -0,874744091
AC 54,1 54,57 -0,47 -0,868761553
AD 9,54 9,74 -0,2 -2,096436059
AE 29,02 29,24 -0,22 -0,758097864
AF 116,2 117,88 -1,68 -1,445783133
AG 20,85 21,03 -0,18 -0,863309353
AH 21,38 21,56 -0,18 -0,841908326
AI 16,46 16,61 -0,15 -0,911300122
AJ 27,24 27,43 -0,19 -0,697503671
AK 10,09 10,29 -0,2 -1,982160555
AL 192,54 193,34 -0,8 -0,415498078
AM 14,86 14,99 -0,13 -0,874831763
AO 27,79 27,99 -0,2 -0,719683339
AP 36,26 36,19 0,07 0,193050193
AQ -0,35 -0,37 0,02 -5,714285714
AR 16,61 16,73 -0,12 -0,722456352
AS 23,3 23,48 -0,18 -0,772532189
AT 21,82 22 -0,18 -0,824931256
AU 29,86 29,95 -0,09 -0,301406564
AV 27,79 27,99 -0,2 -0,719683339
AW 24,75 24,86 -0,11 -0,444444444
AX 22,29 22,48 -0,19 -0,852400179
AY 27,24 27,43 -0,19 -0,697503671
AZ 99,18 99,18 0 0
BA 12,89 12,84 0,05 0,387897595
BB 77,42 79,16 -1,74 -2,247481271
BC 9,76 9,91 -0,15 -1,536885246
BD 25,25 25,37 -0,12 -0,475247525
BE 29,02 29,24 -0,22 -0,758097864

60

Instrument GPU CPU Diff Diff%
BF 99,7 99,7 0 0
BG 125,69 126,15 -0,46 -0,365979792
BH 115,12 115,4 -0,28 -0,243224461
BI 99,9 99,9 0 0
BJ 14,05 13,95 0,1 0,711743772
BK 18,57 18,43 0,14 0,753904146
BL 98,84 98,81 0,03 0,030352084
BM 1,47 1,45 0,02 1,360544218
BN 142,16 142,23 -0,07 -0,049240293
BO 106,72 107,01 -0,29 -0,27173913
BP 16,52 16,81 -0,29 -1,755447942
BQ 97,54 97,55 -0,01 -0,010252204
BR 99,39 99,39 0 0
BS 106,51 106,39 0,12 0,112665477
BT 99,02 99,02 0 0
BU 96,77 96,84 -0,07 -0,072336468
BV 97,55 97,56 -0,01 -0,010251153
BW 28,08 28,2 -0,12 -0,427350427
BX 98,94 98,94 0 0
BY 100,75 97,78 2,97 2,947890819
BZ 99,95 99,93 0,02 0,020010005
CA 97,78 97,78 0 0
CB 114,84 114,92 -0,08 -0,069662139
CC 18,93 19,22 -0,29 -1,531959852
CD 99,93 99,93 0 0
CE 102,74 97,78 4,96 4,827720459
CF 9,64 9,89 -0,25 -2,593360996
CG 286,6 287,36 -0,76 -0,265177948
CH 112,09 112,15 -0,06 -0,053528415
CI 231,74 232,41 -0,67 -0,289117114
CJ 99,37 99,37 0 0
CK 139,87 139,99 -0,12 -0,085793952
CL 98,02 98,02 0 0
CM 21,05 21,15 -0,1 -0,475059382
CN 99,02 99,02 0 0
CO 33,23 33,28 -0,05 -0,150466446
CP 2,56 2,57 -0,01 -0,390625
CQ 99,39 99,39 0 0
CR 97,78 97,78 0 0
CS 105,68 105,79 -0,11 -0,104087812
CT 147,36 148,8 -1,44 -0,977198697
CU 117,22 117,43 -0,21 -0,179150316

61

APPENDIX A. ACCURACY

Instrument GPU CPU Diff Diff%
CV 119,34 119,35 -0,01 -0,00837942
CW 98,95 98,95 0 0
CX 99,9 99,9 0 0
CY 98,58 98,64 -0,06 -0,060864273
CZ 124,26 124,42 -0,16 -0,128762273
DA 98,5 98,47 0,03 0,030456853
DB 108 108,17 -0,17 -0,157407407
DC 140,96 140,99 -0,03 -0,021282633
DD 16,64 16,64 0 0
DE 102,38 102,46 -0,08 -0,078140262
DF 19,74 20,18 -0,44 -2,228976697
DG 8,9 8,99 -0,09 -1,011235955
DI 114,32 114,33 -0,01 -0,008747376
DJ 97,22 97,22 0 0
DK 29,83 30 -0,17 -0,569896078
DM 32,24 32,19 0,05 0,155086849
DO 100,45 100,7 -0,25 -0,24888004
DP 98,98 99,08 -0,1 -0,101030511
DQ 101,93 102,08 -0,15 -0,147159816

62

