
Impacts of data structures and algorithms on
multi-core efficiency

MARWA ABDUL-MONEM AL-SHANDAWELY

Master’s Thesis at NADA
Supervisor: Erwin Laure

Examiner: Michael Hanke

TRITA xxx yyyy-nn

Abstract
The advent of multi-core processors provides a massively
huge computation power for scientific and business appli-
cations. Therefor the need for writing efficient optimized
codes and data structures became more essential in order
to achieve the expected performance and utilization of the
computing resources. The problem with optimization lies
not only with the extra effort to improve the coding but also
with the dependence on the underlying architecture includ-
ing memory bandwidth, cache organization and processors
topology as well.

The purpose of this work is to study the impact of opti-
mizing data structures and algorithms not only to increase
the degree of parallelism but in order to achieve the ex-
pected performance and efficiency of the available multi-
core system.

Finding potential performance bottlenecks is the first
and most important step in the optimization process. The
use of cache and memory profiling tools during the code
analysis is practical and crucial specially when dealing with
complex structures, separated code files and multi-threaded
applications. The tool used in this study was Acumem
ThreadSpotter.

We studied two different codes as our case studies. The
first was the famous simple Gaussian Elimination (GE)
with partial pivoting and we were able to increase the speed
up from at most two into more than twenty by introducing
new loop nesting even for large input sizes. The second case
study was optimization for a numerical algorithm based on
boundary integral formulation and we were able to increase
performance by at least factor of four compared to the orig-
inal code.

Referat
Påverkan av datastrukturer och algoritmer
på effektiviteten hos system med flera

kärnor

Processorer med flera kärnor tillhandahåller stor ber-
äkningskraft både för vetenskapliga och företags tillämpn-
ingar. Därför finns ett behov av att skriva effektiva och
optimerade koder och datastrukturer för att uppnå den
förväntade prestandan och utnyttjandet av beräkningsresu-
rserna. Svårigheten med optimeringen ligger inte bara i
ansträngningen med att förbättra koden, utan också i be-
roendet på den använda datorarkitekturen så som minnes-
bandbredd, cache organisation och processor topologi.

Syftet med det här arbetet är att studera effekten av
optimerade datastrukturer och algoritmer, inte bara för att
öka graden av parallellism, utan också för att uppnå den
förväntade prestandan och effektivitetet hos det tillgängliga
multikärnesystemet.

Att hitta möjliga prestandaflaskhalsar är det första, och
viktigaste, steget i optimeringsprocessen. Hjälp från verk-
tyg för cache profilering är avgörande, speciellt när man har
att göra med komplexa strukturer, uppdelade kodfiler och
mångtrådade program. Profileringsverktyget som använts i
det här arbetet är Acumem ThreadSpotter.

Vi använde två olika program för våra fallstudier. Det
första var Gausselimination (GE) med partiell pivotering
och vi kunde snabba upp taktökningen (speed-up) från som
mest två till mer än 20 genom att införa nya nästlade sling-
or (loopar) även för stora indata storlekar. Det andra test-
fallet var optimering av en numerisk algoritm som bygger
på gränsvärdesintegralformuleringen och vi lyckades öka
prestandan mer än fyrfaldigt.

To my dear family

Acknowledgements
I would like to express my gratitude to my teacher and supervisor, Dr. Erwin Laure,
for his continuous guidance, patience, and encouragement that have been invalu-
able on both academic and personal levels. His insightful advice and unsurpassed
knowledge kept me focused on my goals.

I acknowledge the help and support given to me by Dr. Katarina Gustavsson
at NADA/KTH and deeply thank Oana Wiklund, the PhD. student at NADA
and the provider of the second case study code, for her support, background and
contributions.

I would like to take this opportunity to thank DD3003 teachers at ITC/Uppsala
university, Prof. Erik Hagersten, Dr. Jarmo Rantakokko and Dr. David Black-
Shaffer. Their insightful experience and deep knowledge of multi-cores provided me
with enthusiasm and comprehension.

I want to take the opportunity to thank system support members at PDC/KTH
especially to Elisabet Molin and Izhar Ul-Hassan for the help and time they gave
to me to facilitate the use of the resources at PDC during the experiments.

I am indebted to all my teachers at NADA, specially to Prof. Jesper Oppelstrup,
Dr. Lennart Edsberg, Dr. Michael Hanke, Prof. Axel Ruhe and Ms. Carina Edlund
for their deep knowldge and friendliness that made the environment at the class
room both constructive and fun. Their fruitful discussions, and energy have been a
tremendous source of inspiration.

Finally, I owe my deepest gratitude to my husband Ahmad and to my daughters
Yara and Awan for their love and support at all times. I am most grateful to my
parents and brothers for helping me to be where I am now.

Contents

1 Introduction 1

I Literature Review 3

2 Multi Core Architecture 5
2.1 Multi-Core systems . 6

2.1.1 Processors . 6
2.1.2 Memory Hierarchy . 7

2.2 Technology . 13
2.2.1 Ferlin: our multicore system 14

2.3 Programming for Multi-cores . 14
2.4 Performance measurement . 15

2.4.1 Speedup . 15
2.4.2 Efficiency . 16

3 Optimization Techniques 17
3.1 Automatic Optimizing . 18
3.2 Arithmetic Expressions . 20
3.3 Cache Optimization . 22

3.3.1 Data Structures and Object-oriented programming 26

4 Optimization Tool: Acumem ThreadSpotterT M 29
4.1 Analysis Commands . 29

4.1.1 Sampling an Application . 29
4.1.2 Report Generation . 30

4.2 Main Report Issues . 31
4.2.1 Utilization issues . 31
4.2.2 Loops issues . 31
4.2.3 Hot-Spots . 32

4.3 Snap shots from the report . 32

II Case Studies 35

5 Case study: Gaussian Elimination GE 37
5.1 Introduction . 37

5.1.1 Matrix Generation . 38
5.1.2 Correctness . 39

5.2 Experiments . 39
5.2.1 Forward Elimination: Experiment 1 39
5.2.2 Forward Elimination: Experiment 2 41
5.2.3 Blocking failure: Experiment 3 45
5.2.4 Double Elimination: Experiment 4 46
5.2.5 Chunk distribution with double elimination : Experiment 5 . 47

5.3 Comparison to LAPACK . 48

6 Case study: Periodic Stokeslet PS 53
6.1 Code Analysis . 54
6.2 Optimization . 56

6.2.1 Ordered Mask . 56
6.2.2 Performance Gain . 57
6.2.3 Overall performance gain . 57

7 Conclusions 61

Bibliography 63

Chapter 1

Introduction

Over the past 30 years the speed of processors –in terms of its clock frequency– has
tremendously increased. While the original IBM PC processor (that appeared on
the market in 1981) had a clock rate of 4.77 MHz, the Intel Pentium 4 model (2002)
was introduced as the first CPU with a clock rate of over 3.06 GHz. It was thus
in many cases sufficient and indeed cost-effective to upgrade to the latest processor
generation in order to increase the speed of applications. However, these days the
clock rate of processors is no longer increasing and instead even decreasing to avoid
excessive power consumption and associated cooling needs. Thus, buying a new
computer does not necessarily speed up programs and give the possibility to gain
better performance any longer.

Another issue impacting the performance of applications are limitations in the
speed of moving data from main memory to computational units. The Front Side
Bus (FSB) is the most important bus to consider when talking about the perfor-
mance of a computer. The FSB connects the processor (CPU) in the computer to
the system memory. The faster the FSB is, the less time needed to get data to the
processor. For instance, the Pentium 4 with 3.06 GHz processor has a FSB of 533
MHz.

Due to this huge gap between processor and memory speed, data access latencies,
and memory bandwidth issues the number of arithmetic operations alone is no longer
an adequate mean of describing the computational complexity of an algorithm. For
applications that use large datasets, the memory wall becomes unavoidable and a
main performance concern if we can not overlap memory access with computational
work.

To improve memory access times modern computers now have small very fast
repositories – called caches– that hold copies of data and instructions that will be
needed in advance to avoid fetching them from slow main memory. While the aver-
age latency to fetch data from local main memory can be 50-70 ns (nano seconds),
the average latency of cache is 0.5-2.5 ns. So if the processor uses data that is
available in the cache it will take less time to access that data than in the case
the data needs to be fetched from the slower main memory. However the size of

1

CHAPTER 1. INTRODUCTION

caches is practically limited to 8-16 MB so it cannot hold all data we need and the
responsibility to fill the cache with useful data and make best use of it lies on the
hand of the programmer.

Multi-core systems came to offer a solution between the increasing demands for
computational powers and the limitations that prevent the single processor capa-
bilities to be enhanced. Multi-core concept is by multiplying the processors (cores)
–that may have less frequency– one will hopefully multiply the processing power
with the advance of consuming less power. Applications will then have to exploit
the parallelism available in multi-core processors.

Writing cache-aware applications is not an auxiliary choice but a necessity when
we start using a multi-core system. With several processors sharing computer re-
sources, it is easy to lose rather than gain performance if caches are not wisely used.
Cache coherence, threads interactions, and synchronizations are among many of the
performance bottlenecks that programmers of multi-core applications face.

Cache optimization includes finding critical parts of the code that is responsible
for most of cache misses and try to enhance it to run more efficiently. It is not
always an obvious or intuitive process and in most cases includes trade-off between
other resources. Although optimizing compilers can do a good job of arranging
instructions and generating high quality code, unfortunately, current compilers can
not perform highly sophisticated cache-based transformations.

The aim of this study is to show how applications can benefit from cache op-
timization and impacts of data layout and access mechanism on the efficiency of
multi-core system.

The rest of this document is divided into two parts. The first part contains three
chapters. Chapter 2 will show brief background discussions about the multi-core
architecture, the motivation for it, elements and programming concepts, the key is-
sues involving migration from a single processor- to a multi-core system and explain
the performance factors including speed-up and efficiency. It will also mention the
hardware specifications, compiler version and library modules of the system that
we used in the experiments. In Chapter 3 we will discuss the major optimization
techniques with a focus on techniques to enhance data access and layout for effi-
cient cache usage. Chapter 4 will discuss the need for optimization tools and give a
brief description about Acumem ThreadSpotter(T M), the tool that we used in
this study. The second part of this document will contain two case studies we used
to show the effect of applying cache optimization techniques. The first case study
is the famous Gaussian Elimination Algorithm for factorizing a dense matrix into
lower and upper triangular matrices, know as LU factorization, which is discussed
in Chapter 5. The second case study as described in Chapter 6 is a numerical al-
gorithm that applies the boundary integral method to solve Stokelet flow and uses
the iterative method GMRES to find solution of the inverse problem. Finally we
will end up with the general conclusions and suggested future work in Chapter 7.

2

Part I

Literature Review

3

Chapter 2

Multi Core Architecture

During the last decades, computer systems gained more performance due to the
steady increase of the processor clock rates and/or due to memory size, bandwidth
and speed. So in that time only by upgrading the hardware to more powerful
system, the performance gain in terms of speedup was increased without any pro-
gramming effort. Frequency scaling was the dominant reason for improvements in
computer performance from the mid-1980s until 2004. The runtime of a program
is equal to the number of instructions multiplied by the average time per instruc-
tion. Maintaining everything else constant, increasing the clock frequency decreases
the average time it takes to execute an instruction. An increase in frequency thus
decreases runtime for all computation-bounded programs. The gain was not only
to increase performance of existing software but also to expand the expectations,
resolutions and complexity of the problems needed to be solved.

However due to physical limitations of semiconductor-based microelectronics
and power dissipation, it became more difficult to increase processors speed. The
power consumption by a chip is given by the equation [1]:

P = C × V 2 × f

where P is power, C is the capacitance being switched per clock cycle (pro-
portional to the number of transistors whose inputs change), V is voltage which is
proportional to the processor frequency, and f is the processor frequency (cycles
per second). So we can conclude that:

P ∝ f3

Increasing processor power consumption led ultimately to Intel’s May 2004 can-
cellation of its Tejas and Jayhawk processors [2], which is generally cited as the end
of frequency scaling as the dominant computer architecture paradigm.

Yet the demand for faster applications is continuously increasing. The solution
for that is going parallel. The principle concept was that large problems can often
be divided into smaller independent ones, which are then solved concurrently or in
parallel. Then we need multiple workers or processing elements to execute those

5

CHAPTER 2. MULTI CORE ARCHITECTURE

independent jobs. Multi-core architecture is what we mean by multiple process-
ing elements - processors - within a single machine. These processors differ from
super-scalar processors, which can issue multiple instructions per cycle from one
instruction stream (thread); by contrast, a multi-core processor can issue multi-
ple instructions per cycle from multiple instruction streams. The difference be-
tween current implementations of multi-core systems can be illustrated in means of
complexity of the cores, their communication and coupling, the design of memory
hierarchy and capacity, and the associated processing model.

The rest of this chapter will talk about the elements of a multi-core system,
give overview about its recent technology and programming paradigms. It will also
mention the hardware specifications we used in the experiments and ends up with
metrics of measuring multi-core performance.

2.1 Multi-Core systems

2.1.1 Processors
Always referred to as Central Processing unit (CPU) and it is the part of the
computer system that executes tasks. The functionality of the processor is to fetch
instructions and data, decode the instruction, execute it and then writeback result.
These steps are called the instruction pipeline. The performance of the processor
is determined by the clock rate and the so called MIPS rate. The clock rate referring
to the frequency of the processor or the number of cycles generated by the clock
per second. Clock rate - measured in mega hertz (MHz= 106cycles/second) or giga
hertz (GHz = 109cycles/second)- gained enormous rates during the last 40 years.
From approximately 1 MHz in the late 70s to up 6 GHz nowadays in the IBM
POWER processors.

Another term to measure the processor performance is the MIPS rate or Million
Instructions Per Second. This term is dependent on the clock rate, the instruction
set given by the processor, CPU implementation and control , and cache and mem-
ory hierarchy [3, 4].

MIPS = Ic

T × 106 = f

CPI × 106 = f × Ic

C × 106

Where Ic is the instruction count, T is the execution time, f is the clock rate, CPI
is the cycles per instructions, and C is the total number of cycles needed to execute
the program.

Some instructions can require several cycles to be executed and/or some instruc-
tions can be independent and thus can be executed in parallel. Often, it is possible
to overlap different instructions’ execution stages if they do not conflict with the
requested unit of execution or operands in a pipelined fashion on the instruction
pipeline. For example a processor with two adders can execute two independent
addition operations and load/store operation in same time. Time needed to execute
a whole instruction can be different for the same instruction depending on where

6

2.1. MULTI-CORE SYSTEMS

the manipulated data are. Fetching operands from caches is much faster compared
to fetching data faraway in the memory or even further away, e.g. in the disk. We
will come to that in more details in the discussion on caches and memory.

A multi-core processor is a processing system composed of two or more inde-
pendent cores. The cores are typically integrated onto a single integrated circuit
die (known as a chip multiprocessor or CMP), or they may be integrated onto
multiple dies in a single chip package. Replication of the cores can be done by
two mechanisms, either by using few complex cores or less complex several ones.
Homogeneous multi-core systems include only identical cores, unlike heterogeneous
multi-core systems.

The processors are interconnected using common network topologies like bus,
ring, 2-dimensional mesh, or crossbar. Just as with single-processor systems, cores
in a multi-core systems may implement architectures like super-scalar, vector pro-
cessing, SIMD, or multi-threading. Furthermore, the cores (or groups of them) share
some circuitry, like the L2 cache and the interface to the front side bus (FSB). More
details about the those components will be presented later in the discussion about
memory and cache hierarchy.

2.1.2 Memory Hierarchy

In a shared-memory multi-processor system the way the memory is organized -
and so accessed by the processors- can be either uniform memory access (UMA) ,
non-uniform memory access (NUMA) or hyprid between the two models [3, 4, 5].
UMA gets its name from the fact that each processor must use the same shared
bus to access memory, resulting in a memory access time that is uniform across
all processors. Note that access time is also independent of data location within
memory. That is, access time remains the same regardless of which shared memory
module contains the data to be retrieved. Diagram of UMA architecture can be
seen in Figure 2.1.

The problem with the UMA model that it is not scalable. As the number of
processors increase, the interconnection bus becomes a hot spot and with several
requests to the memory the network traffic becomes congested.

Instead, in NUMA each processor has its own local memory module that it can
access directly and with a distinctive performance advantage. At the same time, it
can also access any memory module belonging to another processor using a shared
bus (or some other type of interconnect). A diagram of NUMA architecture can be
seen in Figure 2.2.

If data resides in local memory, access is fast. If data resides in remote mem-
ory, access is slower. So the advantage of the NUMA architecture as a hierarchical
shared memory scheme is its potential to improve average case access time through
the introduction of fast, local memory. By providing each node with its own local
memory, memory accesses can take place in parallel and avoid throughput limita-
tions and contention issues associated with a shared memory bus that happened in
the UMA.

7

CHAPTER 2. MULTI CORE ARCHITECTURE

Figure 2.1. UMA memory model

Figure 2.2. NUMA memory model

The downside of the NUMA architecture, however, is the cost associated when
data is not local to the processor. In the NUMA model, the time required to
retrieve data from an adjacent node within the NUMA model will be significantly
higher than that required to access local memory. Furthermore, the time required to
retrieve data from a non-adjacent node may be even higher, complicating memory
performance and generating a hierarchy of access time possibilities. In general, as
the distance from a processor increases, the cost of accessing memory increases.

Modern multiprocessor systems mix these basic architectures as seen in Figure
2.3. In this complex hierarchical scheme, processors are grouped by their physical
location on one or the other multi-core CPU package or "node". Processors within a
node share access to memory modules as per the UMA shared memory architecture.
At the same time, they may also access memory from the remote node using a
shared interconnect, but with slower performance as per the NUMA shared memory

8

2.1. MULTI-CORE SYSTEMS

Figure 2.3. Multicore diagram with 8-cores divided into two modules

architecture.

Memory speed

The Front Side Bus (FSB) is the most important bus to consider when you are
talking about the performance of a computer. The FSB connects the processor
(CPU) in your computer to the system memory. The faster the FSB is, the faster
you can get data to your processor. The speed of the front side bus depends on
the processor and motherboard chipset you are using as well as the system clock.
The Pentium4 with 3.06 GHz processor has a FSB of 533 MHz. Due to technology
limitation memory speed can not get to same speed as processors. From 1986 to
2000, CPU speed improved at an annual rate of 55% while memory speed only
improved at 10%. Given these trends, it was expected that memory latency would
become an overwhelming bottleneck in computer performance [6]. While a processor
is able to execute several instructions per ns, an access to RAM memory may take
50-70 ns.

Fetching data is even slower when the requested memory belongs to another
processor that lies on another module. The term "memory wall" is introduced to
describe the growing disparity of speed between CPU and memory outside the CPU
chip. To solve the problem computer designers have introduced cache memories.

Caches

Caches are small, extremely fast memories between the processor and the quite
slow main memory. The aim of the caches is to hide memory latency and increase
availability of data and instructions. Most computer systems nowadays have three
independent caches: data cache, instruction cache, and TLB (translation lookaside
buffer). The average latency of cache is 0.5-2.5 ns. So the more data available in the
cache, the less time needed for memory access. In order to increase availability and
avoid overwriting data that will be needed in future; more than one level cache can
be used. Hardware prefetching of data is another concept by which instead of just
fetch the needed data, data that are close is also fetched as it is more likely be needed
later on to increase availability of data and overlap data loading with processing.

9

CHAPTER 2. MULTI CORE ARCHITECTURE

Often not just a single cache is used, but a hierarchy of caches of increasing size
and decreasing speed. The top level which is smallest, fastest and most expensive
is called L1. Usually it is 64 KB with latency of 3 cycles. The next level -called L2
- may have a 1 MB cache with a latency of 15 cycles. Some computers have also
third level, L3 cache.

When introducing multi-core, it was convenient to dedicate first level cache
(L1) locally to each core and then second level cache (L2) shared between two
cores. Further discussion on the impact of caches on performance will be presented
in Chapter 3.

Taking into account that caches works as small expensive repository, we can
not expect all the data we need to be in cache all the time. The size of the cache
-measured in MB- is divided into what so called cache lines. Common sizes for
cache lines are 32,64, and 128 bytes.

There are three types of caches when we consider the way of mapping a memory
address space into cache entry [3]:

• Direct mapped caches: Using the least significant bits in the address as in-
dex, each address is placed in specific one location in the cache. Each memory
address that share the same index will be mapped to the same location in the
cache.

• Fully associative caches: Any memory address can be mapped to any entry
in the cache. It require mechanism to search the whole cache entries to de-
termine if the requested address exists in cache or not. This mapping is only
suitable for small caches.

• N-way set associative caches: It is a compromise between the direct mapped
and fully associative designs. Cache entries are divided into sets with size N,
typically N is either 2,4,8, etc. Using tags in the address, each memory address
is assigned a set. Within each set the cache is associative.

Conceptually, we can say that the direct mapped and fully associative caches
are just "special cases" of the N-way set associative cache. Direct mapped cache
is a "1-way" set associative cache. On the other hand, suppose we make "N" to be
equal to the number of lines in the cache, then we only have one set, containing all
of the cache lines, and every memory location points to that huge set. This means
that any memory address can be in any line, and we are back to a fully associative
cache.

In order to determine which is best performing we need to define two factors:

• Hit time: Time needed to determine if a memory address exists in a cache
entry or not.

• Hit ratio: The likelihood of the cache containing the memory addresses that
the processor wants.

10

2.1. MULTI-CORE SYSTEMS

When we consider the direct mapped caches, Hit time is best since no search is
needed. Each address is found in exactly one location in the cache. Hit ratio will
be zero, because with every access we need to replace that entry. Although we have
empty entries but they will not be used.

On the other hand, fully associative caches need specialized hardware to do the
searching and a performance penalty is incurred. And this penalty occurs must
be added to determine which of the various lines to use when a new entry must
be added (usually some form of a least recently used LRU algorithm is employed
to decide which cache line to use next). All this overhead adds cost, complexity
and execution time. But this type of caches has the best hit ratio because any
entry in the cache can hold any address that needs to be cached. This means the
problem seen in the direct mapped cache disappears, because there is no dedicated
single entry that an address must use. Until the cache is full we can use the entries
without replacement.

The set associative cache is a good compromise between the direct mapped and
set associative caches. Let’s consider the 8-way set associative cache. Here, each
address can be cached in any of 8 places. This can raise the hit ratio from 0% to
near 100%! As for searching, since the set only has 4 lines to examine this is not
very complicated to deal with, although it does have to do this small search, Again,
some form of LRU (least recently used) algorithm is typically used.

When a cache line (entry) requested by the processor is found in the cache, we
say that is cache hit, otherwise it is a cache miss when we need to go next cache
level or worst further in the memory hierarchy to fetch the request address. Cache
misses can be classified into three categories (known as the Three Cs):

• Compulsory misses - also Cold misses- : are those misses caused by the
first reference to a datum. Cache size and associativity make no difference to
the number of compulsory misses. Prefetching can help here, as can larger
cache block sizes (which are a form of prefetching).

• Capacity misses: are those misses that occur regardless of associativity
or block size, solely due to the finite size of the cache. Note that there is
no useful notion of a cache being "full" or "empty" or "near capacity": CPU
caches almost always have nearly every line filled with a copy of some line in
main memory, and nearly every allocation of a new line requires the eviction
of an old line.

• Conflict misses: are those misses that could have been avoided, had the
cache not evicted an entry earlier. Conflict misses can be due to the particular
amount of cache associativity, and/or due to the particular victim choice of
the replacement policy.

In a multi-threaded application, new type of misses can arise due to the sharing
between different threads. When multiple processors with separate caches share a

11

CHAPTER 2. MULTI CORE ARCHITECTURE

common data, it is necessary to keep the caches in a state of coherence by ensuring
that any shared operand that is changed in any cache is changed throughout the
entire system. This situation causes what is known as Communication misses.

Cache coherence is done in either of two protocols: through a directory-based or
a snooping protocol.

In the directory-based protocol, the data being shared is placed in a common
directory that maintains the coherence between caches . The directory acts as a
filter through which the processor must ask permission to load an entry from the
primary memory to its cache. When an entry is changed the directory either updates
or invalidates the other caches with that entry.

In the snooping protocol, all caches on the bus monitor (or snoop) the bus to
determine if they have a copy of the block of data that is requested on the bus.
Every cache has a copy of the sharing status of every block of physical memory it
has.

Cache misses and memory traffic due to shared data blocks limit the performance
of parallel computing in multi-cores. Since a single cache line can contain several
data, if two processors operate on independent data in the same memory address
region they might end up in a single line, the cache coherency mechanisms in the
system may force the whole line across the bus or interconnect with every data
write, forcing memory stalls in addition to wasting system bandwidth, causing what
is known as false sharing. False sharing is difficult to detect and can dangerously
cause a performance degradation.

To increase availability and try to lower themiss ratio, instead of fetching specific
data in a certain address, a chunk of data (cache lines) near that address is loaded
into the cache as it is more probable to be needed in the near future. In addition, for
the types of applications where constant-stride accesses are dominant, the compiler
is quite successful at understanding the access patterns and hence able to predict
what data will be needed and prefetch it in advance. Meanwhile, in order to avoid
eviction of data in use, LRU is the common cache lines replacements policy. This
kind of behavior is known as data locality. The term refers to two kinds of locality:

• Temporal locality: the program uses the same data (cache lines) that are
recently used and most likely still in the cache.

• Spatial locality: the program uses data close to recently accessed locations
that are most likely fetched to the cache within the chunk of cache lines loaded.

So a program that exhibits data locality will then have a low miss rate and then
better performance. The aim of cache optimization is to help increase performance
by avoiding the unnecessary misses, increase data reusability and/or avoid pulling
into cache data that will not be used or removing data that is needed later on.

12

2.2. TECHNOLOGY

2.2 Technology

Although there are many different products or chips containing multi-processors
including Cell processors, massively parallel GPUs, user configurable Field Pro-
grammable Gate Arrays (FPGAs), and other systems with hundreds and may be
thousands of processors; the aim of this study in the focus of the general purpose
multi-core chips.

The IBM POWER4 released in 2001 was the first non-embedded multicore mi-
croprocessor, with two cores on a single die. The original POWER4 had a clock
speed of 1.1 and 1.3 GHz, while an enhanced version, the POWER4+, reached a
clock speed of 1.9 GHz.

In June 2004, Intel announced its Celeron D (dual-core) processor which was
–as said– the first dual-core processor for the budget/entry-level market. The clock
speeds were of 2.13 GHz to 3.33 GHz. It had two level caches. L1 cache was 16 KB
and L2 cache was 256 KB.

In the same year 2004, IBM announced its dual-core POWER5 microprocessor
as upgrade to POWER4. POWER5 is dual-core with hyper-threading technology.
With each core supporting one physical thread and two logical threads, it gave a
total of two physical threads and four logical threads. The floating-point instruction
cache was increased in capacity to 24 entries from 20 in POWER4. The capacity
of the L2 unified cache was also increased to 1.875 MB and the set-associativity to
10-way. The unified L3 cache was brought on-package instead of located externally
in separate chips. Its capacity was increased to 36 MB.

In May 2005, AMD introduced its first dual-core Opterons. Each core running
on top speed 2.2 GHz with 64KB L1 data cache, 64KB Instruction cache and 512KB
L2 cache.

In order to win the multi-core race, starting in September 2007, AMD launched
its Quad-core Opetron chips that can be viewed as two dual-core chips glued to-
gether on one chip and used third level cache L3; AMD Barcelona with L3 2MB
followed by Shanghai with 6MB L3 in 2008.

On Sept. 15, 2008, Intel has announced it first hexa-core chip Dunnington that
use 96 KB L1 cache (Data) , with three unified 3 MB L2 caches and 16 MB of
L3 shared cache. Shortly afterwards in November 2008, Intel released it core i7
chip known also as Nehalem. Nehalem is Quad-core chip with hyper-threading
technology and uses two level private caches and 8MB shared L3 cache.

In June 2009, AMD launched its newest and fastest Opteron hexa-core chip with
shared 6MB L3 cache and support of HyperTransport.

On 8th of February 2010, IBM announced its powerful efficient POWER7 micro-
processor with 4, 6 or 8 cores per chip. Each core can run four threads giving ability
to run 32 different tasks simultaneously. It has top clock speed of 4.14 GHz with 12
execution units per core: 2 fixed-point units, 2 load/store units, 4 double-precision
floating-point units, 1 vector unit, 1 decimal floating-point unit, 1 branch unit and
1 condition register unit. It has 32 kB L1 instruction and data cache per core, 256
kB L2 Cache per core and 32 MB L3 cache. The cache is implemented in embedded

13

CHAPTER 2. MULTI CORE ARCHITECTURE

DRAM technology (eDRAM), which does not require as many transistors per cell
as a standard (SRAM) so it allows for a larger cache while using the same area as
SRAM.

With this POWER7 microprocessor, IBM is –at the time of writing– the top
winner in the multi-core manufacturing race.

2.2.1 Ferlin: our multicore system

This study and optimization was done w.r.t. one node of Ferlin [7, 8] as our multi-
core system. The CPU’s in Ferlin is Intel Xeon E5430 -known as Harpertown- with
clock frequency 2.66 GHz and a 1333 MHz front-side bus, and 8 GB memory. The
node consists of two quad-core CPU’s. It uses 64kB for L1 case divided as 32kB
8-way set associative L1 data cache and 32kB L1 instruction cache. the cache line
size is 64 bytes. for L2 cache it uses 2×6MB unified 24-way cache. This study is
done with respect to L1 cache. Ferlin node specifications are summerized in table
(2.1).

Processor model Intel Xeon E5430
clock frequency 2.66 GHz
FSB 1333 MHz
RAM 8 GB
no. cores 8 cores (2 quad-core CPU’s)
L1 cache 32kB data + 32kB instruction
L1 Associativity 8-way
L2 cache 2×6 MB
L2 Associativity 24-way
cache line size 64 byte

Table 2.1. Ferlin node specifications

For compilation we used the intel compilers module (i-compilers/11.1) that is
available on ferlin as the latest and default i-compilers module. For MKL (Intel
Math kernel library) functions we used version 9.1.023 which is available as the
default mkl module on Ferlin.

2.3 Programming for Multi-cores

Parallel computing has become the dominant paradigm in computer architecture,
mainly in the form of multi-core processors. Parallel computer programs are more
difficult to write than sequential ones, because concurrency introduces several new
classes of potential software bugs, of which race conditions are the most common.
Communication and synchronization between the different subtasks are typically
one of the greatest obstacles to getting good parallel program performance.

14

2.4. PERFORMANCE MEASUREMENT

Parallel programming techniques can benefit from multiple cores directly. Some
existing parallel programming models such as Cilk++, OpenMP, PThreads, and
MPI can be used on multi-core platforms. Intel introduced a new abstraction for
C++ parallelism called TBB. Other research efforts include the Codeplay Sieve
System, Cray’s Chapel, Sun’s Fortress, and IBM’s X10.

Amoung those OpenMP is attractive to be used to transfer sequential codes
–specially numerical algorithms– into parallel programs on shared memory systems,
because of its flexibility [9]. It consists of a set of compiler directives, library rou-
tines, and environment variables that supports multi-platform shared memory mul-
tiprocessing programming in C, C++ and Fortran on many architectures, including
Unix and Microsoft Windows platforms. It is a portable, scalable model that gives
programmers a simple and flexible interface for developing parallel applications for
platforms ranging from the desktop to the supercomputer. Data layout and decom-
position is handled automatically by directives. It can work on one portion of the
program at one time, no dramatic change to code is needed. OpenMP constructs
are treated as comments when sequential compilers are used. But on other hand
scalability when using OpnMP is limited by memory architecture.

Multi-core processing has also affected the ability of modern day computational
software development. Developers programming in newer languages might find that
their modern languages do not support multi-core functionality. This then requires
the use of numerical libraries to access code written in languages like C and Fortran,
which perform math computations faster than newer languages like C#. Intel’s
MKL - math kernel libraray - and AMD’s ACML - AMD Core Math Library - are
written in these native languages and take advantage of multi-core processing.

MKL is a library of highly optimized with respect to the IntelT M processors
and offers extensively threaded math routines for science, engineering, and finan-
cial applications that require maximum performance. Core math functions include
BLAS, LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier Transforms, Vector
Math, and more.

ACML consists of five main components: a full implementation of Level 1, 2
and 3 Basic Linear Algebra Subroutines (BLAS), with key routines optimized for
high performance on AMD OpteronT M processors. , a full suite of Linear Algebra
highly tuned LAPACK routines, a comprehensive suite of Fast Fourier Transforms
(FFTs) in both single-, double-, single-complex and double-complex data types, fast
scalar, vector, and array math transcendental library routines optimized for high
performance on AMD Opteron processors and finally random Number Generators
in both single- and double-precision.

2.4 Performance measurement

2.4.1 Speedup

The speedup factor indicate how much we gain after enhancement [3, 4, 10]. If we
define Told as the time needed to execute the original code and tnew the time needed

15

CHAPTER 2. MULTI CORE ARCHITECTURE

to execute the enhanced code; then the speedup Sp can be defined as:

Sp = Tnew

Told

Speed-up can also measure the gain we get in performance due to parallelization.
In that case Ts will be the sequential time and Tp will be the parallel time on p
processors. For a perfectly parallel code Sp ≈ p.

Sp = Ts

Tp

If we start parallelize poorly optimized sequential code, we will not only notice
poor speed up but also –in many cases– decreasing one as the number of cores
increase, a term so called - super slow down. If the program lacks locality then
a single processor will spend most of the execution time loading data that is not
efficiently used. That effect will be magnified on the parallel version where the
processor will spend most of the time fighting on the shared limited resources. So
before running into adding parallel directives into the sequential code, a deeper
optimization of that code will not only improve the sequential code but also -taking
into account the cache locality and optimization- will allow the parallel code to
speed up nicely and so increase performance. So what should be done in order to
optimize the code and get the speed we aim for is what we will be discussed in more
details in Chapter 3.

2.4.2 Efficiency
The efficiency is defined as the ratio between the speed up and number of processors
p:

ηp = Sp

p

Keeping ηP as close as possible to 100% is the most optimistic desire and that will
indicate that the parallelism is efficient.

16

Chapter 3

Optimization Techniques

The goal of optimization is to increase performance by either decreasing the exe-
cution time or increasing the number of completed tasks in a given time. Usually
it needs trade-off between several resources and can only be done w.r.t one or two
aspects of performance like execution time, memory usage, disk space, bandwidth,
power consumption or some other resource.

The difficulty of the optimization process lies on the fact that it is - in most
cases- machine dependent. If a code is optimized w.r.t. certain hardware sittings,
it may not perform well on another machine.

Figure 3.1. Optimization process

17

CHAPTER 3. OPTIMIZATION TECHNIQUES

Optimization can add extra code that is used only to improve the performance
and hence may reduce portability readability. This may complicate programs or
systems, making them harder to maintain and debug. That is why it is more
convenient to do the optimization as a fine-tuning step after the code is built and
tested.

Figure 3.1 shows the steps involved in the optimization step after a goal is set.
Our goal in this study is to reduce the execution time by introducing better utilized
usage of cache hierarchy. Fining hot spots in the code - or is also known as the
bottlenecks- is the most important step in the optimization process. The aid of
tools for cache profiling is crucial specially when dealing with complex structures,
separated code files and multi-threaded applications. The next step is to select the
slowest parts of the program that cause the most significant hot spot and try to
enhance it by the suitable technique. Finally the optimized version of the code is
tested to ensure it gives the same results as the original code. Note in some numerical
intensive algorithms, due to the change of instructions order and/or complexity of
the code, rounding off errors can be different. In some cases we have to further
apply the process over and over again to reach a satisfing performance.

3.1 Automatic Optimizing
First rule of optimization is to not re-invent the wheel; use optimized libraries and
compiler optimization flags.

Current compilers are good enough to do great job in optimizing the code [12].
The most common requirement taken into account by the compiler is to minimize the
time taken to execute a program. A less common one is to minimize the amount
of memory occupied by the program. Compilers generate codes that are much
better than what the human-programmers wrote and definitely can improve highly
hand-optimized code even further. Optimization by the compiler is made on the
compilation step. Thus, Without any change in the code itself.

The flags to enable optimization are -O[level]. The flag -O1 is used to produce
smallest memory space. The flag -O2 considers the best combination for compila-
tion speed and runtime performance. As stated in the IBM manual [11], this flag
will perform these actions:

• Value numbering - folding several instructions into a single instruction.

• Branch straightening - rearranging program code to minimize branch logic
and combining physically separate blocks of code.

• Common expression elimination - eliminating duplicate expressions.

• Code motion - performing calculations outside a loop (if the variables in the
loop are not altered within it) and using those results within the loop.

• Re-association and strength reduction - rearranging calculation sequences in
loops in order to replace less efficient instructions with more efficient ones.

18

3.1. AUTOMATIC OPTIMIZING

• Global constant propagation - combining constants used in an expression and
generating new ones.

• Store motion - moving store operations out of loops.

• Dead store elimination - eliminating stores when the value stored is never
referred to again.

• Dead code elimination - eliminating code for calculations that are not required
and portions of the code that can never be reached.

• Global register allocation - keeping variables and expressions in registers in-
stead of memory.

• Instruction scheduling - reordering instructions to minimize program execu-
tion time.

The flag -O3 is the compiler’s highest and most aggressive level of optimization.
It performs optimizations that have the potential to slightly alter the semantics of
the program. In addition to the work of -O2 it will allow as said in [11] several
action such as :

• Rewriting floating-point expressions - it may cost of potentially different nu-
meric results.

• Aggressive code motion and scheduling of computations that have the poten-
tial to raise a conditional exception during the program execution might be
definitely scheduled at this level if this might lead to improvements in the
performance. In other words, load and floating-point computations may be
placed onto execution paths where they will be executed even though, accord-
ing to the actual semantics of the program, they might not have been.

• Incorrect sign for zero - For example, the expression "x + 0.0" would not be
replaced with "x" at the -O2 level. A redundant add of 0.0 to x will be done
because x might be equal to -0.0 and, under IEEE rules, -0.0 + 0.0 = 0.0
which would be -x in this case. Since, in the overwhelming majority of cases,
this has no significant impact on a program’s results, -O3 will substitute "x"
for "x + 0.0".

But usually to get better performance relaying only on the compiler optimization
is not enough and the such the generated code needs more human enhancement
because of several issues:

• Compilers optimize the current code and will not change it with improved
algorithmic complexity. As example it will not replace sorting phase with a
better one.

19

CHAPTER 3. OPTIMIZATION TECHNIQUES

• Compilers usually have to support a variety of conflicting objectives so it is
not possible to satisfy them all.

• Compilers typically only deal with a part of a program at a time, often the
code contained within a single file or module so they do not support the global
view of the solution.

• Special knowledge about the data values and execution is not visible in the
compilation phase.

• Compilers can not perform complex cache optimization techniques.

So in most cases to allow the compiler do good optimization and until smarter
compilers appear, we have to enhance the code manually. Better-written code will
lead to better compiler optimization. Through the next sections; we will go quickly
on most helpful techniques for optimization.

3.2 Arithmetic Expressions
Most of arithmetic expressions can be enhanced with the compilers level -O2. Com-
pilers are good at cominbing, overlapping and splitting even computations in most
cases. But as we said helping the compilers will allow it to focus on different path
of the compilation and so more enhancements.

Remove loop-invariant calculation to avoid the re-computations and re-accessing
of the operands in each operation. See Figure 3.2.

Listing 3.1. Original code

1 f o r i=1 to n
2 A(i)=A(i)+A(j)∗A(j)
3 end f o r
4 . . .

Listing 3.2. Modified code

1 c=A(j)∗A(j)
2 f o r i=1 to n
3 A(i)=A(i)+c
4 end f o r

Figure 3.2. Example of avoiding loop invariant calculation

Division and power is very expensive operations. Avoid divisions in the loop
and transform it -if possible- into multiplication. That will make use of the build-in
multiplier and save many cycles needed to evaluate the division. See Figures 3.3
and 3.2.

Also Avoid jumps because if-statements in the loop prevent the compiler op-
timization. See Figure 3.5

Anther useful technique is what so called loop unrolling by which we mean is
to increase the work per iterations by explicitly add steps in the loop. In order to
enforce consistency the complier would make sure that each loop iteration will have

20

3.2. ARITHMETIC EXPRESSIONS

Listing 3.3. Original code

1 c=3.14
2 f o r i=1 to n
3 A(i)=A(i)/ c
4 end f o r

Listing 3.4. Modified code

1 c=1/3.14
2 f o r i=1 to n
3 A(i)=A(i)∗ c
4 end f o r

Figure 3.3. Example to void division in the loop

Figure 3.4. Effect of avoiding division. Time in seconds

Listing 3.5. Original code

1 f o r i=1 to 1000
2 i f (mod(i ,2)==0)
3 A(i)=x
4 e l s e
5 A(i)=y
6 end i f
7 end f o r

Listing 3.6. Modified code

1 f o r i=1 to 1000 , s tep 2
2 A(i)=y
3 A(i+1)=x
4 end f o r

Figure 3.5. Example to avoid branching

21

CHAPTER 3. OPTIMIZATION TECHNIQUES

dependency with the previous iterations. Of course although it depends on the work
done in the loop but this take advantage of data locality and decrease number of
comparisons and loop variable increments and increase degree of parallelism within
each loop iteration. A smart compiler will then allow overlap more operations in
each loop iteration. More tricks that work with loops will be discussed in the cache
optimization techniques. Figures 3.6 and 3.7 show examples of optimization by loop
unrolling and its effect on time decreasing.

Listing 3.7. Original code

1 f o r i=1 to n
2 A(i)= f (i)
3 end f o r
4 . . .

Listing 3.8. 1 unrolling

1 f o r i=1 to n , s tep 2
2 A(i)= f (i)
3 A(i+1)=f (i +1)
4 end f o r

Listing 3.9. 4 unrolling

1 f o r i=1 to n , s tep 4
2 A(i)= f (i)
3 A(i+1)=f (i +1)
4 A(i+2)=f (i +2)
5 A(i+7)=f (i +3)
6 end f o r

Listing 3.10. 8 unrolling

1 f o r i=1 to n , s tep 8
2 A(i)= f (i)
3 A(i+1)=f (i +1)
4 . . .
5 A(i+7)=f (i +7)
6 end f o r

Figure 3.6. Example of loop unrolling

Note that fortran 90 is provided with new selection notation for regularly spaced
array entries using (:). Loops that need to update array enteries can be replaced
with the efficient notation that allows the compiler to repace it with automatically
vectorized calculations.

3.3 Cache Optimization
As we said before, due to the hardware prefetching and fact that accessing data
from the main memory is way slower than accessing data from cache, we need to
make best usage of what already loaded to the cache or what can interpreted as
increasing data locality. Temporal locality is what we mean by making best use of
the data available in the cache.

All techniques that will be discussed in this section are aiming increase cache
performance by:

• Avoid irregular data access patterns.

• Avoid fetching data cache lines that are partially used.

22

3.3. CACHE OPTIMIZATION

Figure 3.7. Loop unrolling effect. Time in seconds

• Avoid writing back in memory cache lines that are partially modified.

• Avoid eviction of cache lines that will be accessed in future.

• Avoid different threads to update same cache lines.

The first recommendation is to avoid array sizes that are multiples of the
cache line size. Having a power of 2 array sizes may lead to poor replacement
scheme as different segments will be mapped to same cache entry if you use direct
or set-associative mapping causing conflict misses. That will lead to poor hit ratio
specially if data are reused [12]. Array padding is a technique to solve this problem
as in Figure 3.8.

Another useful technique is Array merging. As in Figure 3.9, merging two
arrays in one multidimensional array or structure array will decrease the number of
cross interference misses.

Depending on the memory layout; use adjacent contiguous memory locations or
what so called as stride-1 accesses and loop re-ordering. That will avoid pulling
into cache data that will be partially used, increase data locality ,and make good use
of hardware pre-fetching. Figure 3.3 shows how time is dramatically increase if we
use the bad loop nesting order. Two dimension arrays in C are stored row-wise. So
accessing elements in each row per main iteration is more efficient, See Figure 3.12.

23

CHAPTER 3. OPTIMIZATION TECHNIQUES

Listing 3.11. Original code

1 double ar r1 [1 0 2 4] ;
2 double ar r2 [1 0 2 4] ;
3 f o r i=1 to 1024
4 sum+= arr1 [i]+ arr2 [i]
5 end f o r

Listing 3.12. Modified code

1 double ar r1 [1 0 2 4] ;
2 double padarr [3] ;
3 double ar r2 [1 0 2 4] ;
4 f o r i=1 to 1024
5 sum+= arr1 [i]+ arr2 [i]
6 end f o r

Figure 3.8. Example of loop padding optimization

Listing 3.13. Modifiedcode1

1 double ar r1 [1 0 2 4] [2] ;
2 f o r i=1 to 1024
3 sum+= arr1 (i ,1)+ arr2 (i , 2)
4 end f o r

Listing 3.14. Modifiedcode2

1 s t r u c t { double a ;
2 double b ;
3 }ab [1 0 2 4] ;
4 f o r i=1 to 1024
5 sum+= ab [i] . a+ab [i] . b
6 end f o r

Figure 3.9. Example of using array merging to enhance original code in figure(3.8)

In fortran the arrays are stored column-wise, so the solution would be inverted. For
obvious cases, compiler optimization level -O2 can do loop interchanging

Listing 3.15. Original code

1 f o r j=1 to n
2 f o r i=1 to n
3 A(i , j)= f (A(i , j))
4 end f o r
5 end f o r

Listing 3.16. Modified code

1 f o r i=1 to n
2 f o r j=1 to n
3 A(i , j)= f (A(i , j))
4 end f o r
5 end f o r

Figure 3.10. Example of loop nesting optimization. Time in seconds

Loop fusion is technique by which we combine adjacent loops into one single
loop to increase the work per loop iteration and give better re-usability of data and
get rid of half the loop comparisons. Figure 3.13 shows example of merging two
independent computations loops into one loop.

Although that might sounds opposite to what we just said but it is not; loop
fission is also useful. It is meant to split a complex fat loop into two or more loops
when no common data between these parts. The aim to reduce register pressure

24

3.3. CACHE OPTIMIZATION

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12

14

16

18

Input size

T
im

e

Loop nesting

Inefficient nesting

Efficient nesting

Figure 3.11. Loop order effect. Time in seconds

Listing 3.17. Original code

1 f o r i=1 to n
2 A(i)= f (i)
3 end f o r
4 f o r i=1 to n
5 B(i)=A(i)+g (i)
6 end

Listing 3.18. Modified code

1 f o r i=1 to n
2 A(i)= f (i)
3 B(i)=A(i)+g (i)
4 end f o r

Figure 3.12. Example of loop fusion optimization

25

CHAPTER 3. OPTIMIZATION TECHNIQUES

Figure 3.13. Loop fusion effect. Time in seconds

and help compiler to optimize the loops.
The most effective technique that can be applied is what so called cache block-

ing [12, 13]. The aim of blocking is to transfer nested loops that works on large
datasets – that will not fit into the cache– to iterate on small blocks of dataset at
a time instead. The size of the block depends on the cache as well as the operation
to be performed. That technique helps when data alignment is not in the direction
of computation. Famous example in matrices multiplication and transpose.

In Figures 3.14 and 3.15 we gave a matrix multiplication computation as an
example and so we can see how the program behaves before and after optimization.
Note that pseudo-code in C-like access. If the same operation was to be implemented
in fortran; first and second loop should be exchanged.

3.3.1 Data Structures and Object-oriented programming
Object oriented concepts such as data encapsulation and dynamically expanding
data structure often will cause poor cache performance. If data fields within a
structure object are not used in the calculations, it will cause poor cache perfor-
mance since the cache line is partially used. The solution for that is to split the
structure so we only use needed data. Example case as in Figure 3.16.

Dynamically expanding arrays, linked lists, and other forms of data structures
that are not contiguous in memory locations and hence need jumping through mem-

26

3.3. CACHE OPTIMIZATION

Listing 3.19. Original code

1 f o r i=1 to n
2 f o r j=1 to n
3 c (i , j)=0
4 end f o r
5 end f o r
6 f o r i=1 to n
7 f o r j=1 to n
8 f o r k=1 to n
9 c (i , j)+=a (i , k)∗b(k , j)

10 end f o r k
11 end f o r j
12 end f o r i

Listing 3.20. Modified code

1 f o r i=1 to n
2 f o r j=1 to n
3 c (i , j)=0
4 end f o r j
5 end f o r i
6 f o r i i =1 to n , s tep=Bi
7 f o r kk=1 to n , s tep=Bk
8 f o r j j =1 to n , s tep=Bj
9 f o r i=i i to min (n , i i+Bi)

10 f o r k=kk to min (n , kk+Bk)
11 f o r j=j j to min (n , j j+Bj)
12 c (i , j)+=a (i , k)∗b(k , j)
13 end f o r j
14 end f o r k
15 end f o r i
16 end f o r j j
17 end f o r kk
18 end f o r i i

Figure 3.14. Example of matrix multiplication loop blocking optimization

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

No. cores

T
im

e
in

 s
ec

N=2000

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

No. cores

T
im

e
in

 s
ec

N=4000

Original
Blocking

Original
Blocking

Figure 3.15. Blocking the matrix multiplication

27

CHAPTER 3. OPTIMIZATION TECHNIQUES

Listing 3.21. Original code

1 s t r u c t {
2 i n t d ;
3 i n t a ;
4 i n t b ;
5 i n t c ;
6 } ar r [n] ;
7 f o r i=1 to n
8 sum=arr [i] . a+ar r [i] . c
9 end f o r

Listing 3.22. Modified code

1 s t r u c t {
2 i n t d ;
3 i n t b ; } arr_db [n] ;
4 s t r u c t {
5 i n t a ;
6 i n t c ; } arr_ac [n] ;
7 f o r i=1 to n
8 sum=arr_ac [i] . a+arr_ac [i] . c
9 end f o r

Figure 3.16. Example of data structure optimization

ory locations are definitely not supported to perform well on caches. The hardware
prefetcher will then do the worst job of pulling data to cache that are hardly useful.
It is expected in the nearest future to find solutions for this problem by hardware
and sofware means [14].

28

Chapter 4

Optimization Tool: Acumem
ThreadSpotterT M

The process of optimization starts with identifying the parts of the code that causing
problems then based on that analysis modifications are made where it is relevant.
This process can get really hard specially for large codes that are splitting into
many files and/or the cache and memory access patterns is clearly dependent on
the architecture in hand. Even if the aim to study the performance on different
architecture is hard if it considered to be done manually. The tool we used during
this study is called Acumem ThreadSpotterT M .

The code analysis –using Acumem ThreadSpotterT M– aims to find the per-
formance problems in the execution and map it to the source code. The typ-
ical issues that cause performance problems and can be spotted by Acumem
ThreadSpotterT M -as stated in the manual [15] - are:

• Inefficient data layout.

• Inefficient data access patterns.

• Unexploited data reuse opportunities.

• Prefetching problems.

• Thread interaction problems.

The analysis of the code is performed through two steps: Application Sampling
and Report Generation.

4.1 Analysis Commands

4.1.1 Sampling an Application
Sampling an application is made by collecting data about the application structure
and its memory access behavior ,and saving these data to a sample file. This can

29

CHAPTER 4. OPTIMIZATION TOOL: ACUMEM THREADSPOTTERT M

be done by either launch and sample an application or sampling a running one. by
default it uses the standard 64-byte cache line, however that can be modified to
include different cache line settings. A typical command used in this work can be
written as:

sample -l cachelines -s Interval -o samplefile -r application and
arguments

Description of those command options are discribed in the next table

Option Description Example Comment
-r run application and argu-

ments
sample -r ./myApp arg1 mandatory

and must
come last

-l specify cache line size(s) in
bytes

sample -l 64,128 -r
./myApp

optional,
default 64

-s specify sample interval.
Good to increase if sam-
pling terminates before
application does

sample -s 100000 -r
./myApp

optional

-o specify the sample file
name. It will override file
with same name.

optional,
default
sample.smp

For more information and other command options please check [15]. In order to
be able to locate the code files and be able to see it from the report; the compilation
of the program should made with switching the debug mode on.

4.1.2 Report Generation

Using the sample file (samplefile.smp), Acumem ThreadSpotterT M is used to
generate different reports in HTML format. The default processor model will be
the one where the package is installed on and L1 cache is the default cache level.
However; different settings can be used. A typical command used in this work can
be written as:

report -p percenage –cpu cpumodel –level cachelevel -i samplefile
-o reportfilename

The next table describes the options used in the reporting command.

30

4.2. MAIN REPORT ISSUES

Option Description Example Comment
-i generate report from the

specified .smp sample file
report -i sample.smp mandatory

-o specify the report HTML
file and folder with same
name containing additional
files

report -i s.smp -o Rep optional, de-
fault acumem-
report.html

–cpu specify cup model report –cpu
intel/tulsa_2_2_16
-i s.smp

optional

–level select cache level to analyze report –level 1 -i
s.smp

optional,
default highest

-p limit the report to issues
that contribute to at least
as much percentage of the
total cache line fetches as
specified.

report -p 5 -i s.smp optional,
default 1

If the source is moved from the location where the application is compiled at, the
option -s source directory can be used to specify the new location. More information
about the command options can be found in [15]. report –cpu help command is
used to show a list of available CPU models.

4.2 Main Report Issues

4.2.1 Utilization issues
• Fetch utilization: cache lines fetched from memory are partially used. This

is indication to poor spatial locality and can be as a result of structures with
unused fields, inefficient loop nesting, irregular access patterns and/or dynam-
ically allocated data.

• Write-back utilization: cache lines that are sent back to memory or par-
tially updated. This is indicator of a wasted bandwidth.

• Communication utilization: Communication between different threads are
mapped to different caches. Poor communication utilization that caused by
different data updating the same cache line. This will be as result of bad data
partitioning between diffreent threads. A godd partitioning will be in such
ways that threads do not update data in same cache lines.

4.2.2 Loops issues
• inefficient loop nesting: indicates that loops in multidimensional array is

accessed in inefficient way. Spatial blocking might be good solution for such

31

CHAPTER 4. OPTIMIZATION TOOL: ACUMEM THREADSPOTTERT M

issues.

• Random access pattern: indication of reduced hardware prefetching effi-
ciency and cache performance.

• Loop fusion: indicates that two loops are iterating over same datasets but –
due to capacity of the cache or being far from each other– the accessed data is
evicted from cache between the loops. The solution for that is merging loops
together in one loop.

• Blocking: indicating good chance to decrease cache misses or fetching by
applying blocking.

4.2.3 Hot-Spots
the issue is fired when certain part of the code causes large number of cache misses
or fetches but there is no clear way to improve it. In such cases software prefetching
mechanisms may be useful.

4.3 Snap shots from the report
The first page of the report contains useful links to the manual and web site. The
metrics in the left of the report give the user indicators of the behavior of the applica-
tion w.r.t. Memory bandwidth, latency, data locality and threads communication/
Interaction. See Figure 4.1.

By clicking on the (Open report) button, we can open the report. As in Figure
4.2, the page is split into three parts. On the top-left we find tabs with the issues
and information about the application. By selecting an issue, the right part of the
page will show the corresponding lines in the source code responsible for that issue.
One code line can have several issues depending on the variable causing them and
the way they are manipulated. On the bottom left we find information regarding
that issue.

By clicking on Statistics for that issue we can see on that part of the page more
information about the issue as in Figure 4.3. In the figure we can see from the plot
in the statistics that we are using 6MB cache and if that is increased to 96MB we
will not get that issue alarm.

32

4.3. SNAP SHOTS FROM THE REPORT

Figure 4.1. The first page in the report

33

CHAPTER 4. OPTIMIZATION TOOL: ACUMEM THREADSPOTTERT M

Figure 4.2. Report issues

Figure 4.3. Issue statistics

34

Part II

Case Studies

35

Chapter 5

Case study: Gaussian Elimination GE

5.1 Introduction
One of the most popular techniques for solving simultaneous linear equations is the
Gaussian Elimination method (GE). It is named after German mathematician and
scientist Carl Friedrich Gauss. The approach is designed to solve a general set of
n equations and n unknowns and can be also used to find the rank of a matrix,
generate the LU decomposition and calculate the inverse of an invertible square
matrix. In this work we aimed to solve the system:

Ax = b ≡ LUx = b

Ux = L−1b = y

⇒ x = U−1y = U−1L−1b = A−1b

Where AN×N is a full non-singular matrix, xN×1 the vector of the unknowns, bN×1
the right hand side, LN×N is a lower diagonal matrix and UN×N is an upper diag-
onal matrix. The process of GE has two steps. The first step; Forward Elimination
reduces a given system to either triangular or echelon form, or results in a degen-
erate equation with no solution, indicating the system has no solution. This is
accomplished through the use of elementary row operations. The second step uses
Backward Substitution to find the solution of the system above. It can be written
as finding the solution of Ux = y

xN = yN/uN,N

xi =
yi −

∑N
j=i+1 ui,j .xj

ui,i
i = N − 1, N − 2, . . . 1

This part is sequential in nature. This work is done to speed up the forward
elimination part as it is the dominant factor of the computation. The algorithm as
expressed earlier is numerically stable if the original matrix working on is diagonally
dominant or positive-definite. For general matrices, GE is usually considered to be

37

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

stable in practice if we use partial pivoting. It is meant to keep the diagonal element
(pivot=aii) to be larger in magnitude (absolute value) than all elements below it in
the ith iteration of the elimination step. This is done by row exchanges. Note also
in this implementation instead of having the elements under diagonal of A set to
zero, they are used to hold the multipliers of L. The right hand side b is augmented
to the end of the matrix A. So now A is n× (n+ 1) and in general the pseudo-code
of the algorithm for the full non-singular matrix should be as:

f o r i=1 to n−1
Find Pivot in column i
i f Pivot not at p o s i t i o n i then

Exchange Pivot row with Row i
end i f
f o r j=i+1 to n

A(i , j)=A(i , j)/A(i , i)
end f o r
f o r j=i+1 to n

f o r k=i+1 to n+1
A(j , k)=A(j , k)−A(i , j)∗A(i , k)

end f o r
end f o r

end f o r

Since the pivoting is done column-wise, Fortran will have advantage as the ma-
trix is stored column-wise. That operation will be much slower in C since the matrix
is stored row-wise, causing a cache miss at each step in the pivoting search. One
solution is to implement row pivoting instead. However, the experiments we did
was using Fortran implementation.

5.1.1 Matrix Generation
For simplicity, the matrix A was generated using the random number generator
rand in fortran 90. This function generates random numbers between 0 and 1.
The norm of the matrix –as tested in matlab– is ≈ 500. The right hand side is
augmented to the matrix taken to be the ones vector. The fortran code segment for
initialization looked as following:

USE IFPORT
integer : : i , j , seed=7654321 ,n
real , dimension (: , :) , ALLOCATABLE : : A
. . . .
read ∗ , n
ALLOCATE(A(n , n+1))
i=rand (seed)
!−− I n i t i a t e matrix
do j =1,n

38

5.2. EXPERIMENTS

do i =1,n
A(i , j)= rand (0)

end do
A(j , n+1)=1
. . .

end do

5.1.2 Correctness
While applying optimization it is easy to get bugs. In order to check correctness
of the results obtained, we implemented the backward substitution to obtain the
solution x∗ we used the residual function to calculate the error:

|e| = |Ax∗ − b|

The residual error –as for the case of our matrix and right hand side– should
be tending to zero, but may not be exactly zero due to rounding errors bu it was
sufficient to indicate correct result. Having a correct result meaning that |e| ≈
O(10−9) − O(10−12). Any larger |e| –as will get very big – indicates that there is
something wrong.

5.2 Experiments

5.2.1 Forward Elimination: Experiment 1
The first naive parallel treatment for the algorithm in the forward elimination step
is done by inserting OpenMP [9] directives into the independent task of updating
the sub-matrix at each iteration i once the pivot row is known.

for i=1 to n−1
{

GetPivot (i) ;
i f (pivotPos != i)

XchangeRows (A, i , p ivotPos) ;
for j=i+1 to n

A(j , i)=A(j , i)/A(i , i)
end for
! $omp p a r a l l e l for pr i va t e (i , j , k)

for j=i+1 to n+1
for k=i+1 to n

A(k , j)=A(k , j)−A(k , j)∗A(i , j) ;
end for

end for
! $omp end p a r a l l e l for

}

39

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
First apporach speed up

No of cores

S
pe

ed
 u

p

N=1000

N=2000

N=3000

N=4000

N=5000

Figure 5.1. Speed up for the unoptimized GE code: Experiment 1

However the speed up was very poor as shown in (5.1).
According the Acumem ThreadSpotter report; the program has so many issues:

• Memory Bandwidth: The memory bus transports data between the main
memory and the processor. The capacity of the memory bus is limited. Abuse
of this resource limits application scalability.

• Memory Latency: The regularity of the application’s memory accesses af-
fects the efficiency of the hardware prefetcher. Irregular accesses causes cache
misses, which forces the processor to wait a lot for data to arrive.

• Data Locality: Failure to pay attention to data locality has several negative
effects. Caches will be filled with unused data, and the memory bandwidth
will waste transporting unused data.

• Thread Communication / Interaction: Several threads contending over
ownership of data in their respective caches causes the different processor cores
to stall.

In other words we had many sources of latencies: overheads of creating and
destroying the threads with every iteration, the scope of each thread is different at
each iteration causing the threads to fight all time for data owned by other threads,

40

5.2. EXPERIMENTS

the delay of synchronization at each iteration step and the failure to keep temporal
and spatial locality. As from the Figure 5.1 we can see that these effects increase
dramatically as we increase the number of threads and the input size. According to
the report for N=4000 we need at least 48 MB private cache to overcome the locality
problems. For small input sizes as N=1000 we did not get any locality problems as
the matrix would fit in the cache. Note also that pivoting and column elimination
is done on the master process but parallelizing these parts will cause worse results
as it fires false sharing alerts.

Figure 5.2. Cyclic Column Distribution on 4 processes

5.2.2 Forward Elimination: Experiment 2
The second approach aims to generate the threads just once and allow each thread to
have access to the same data elements at each iteration in order to avoid overheads
and increase locality. The sub-matrix eliminations (the j-loop) will run from 1 to
n+ 1 so the matrix is divided by columns using cyclic distribution of size 1 and the
iteration will be done if j > i meaning j = i+ 1 to n. See Figure 5.2.

Pivoting and Row exchange

We introduced an array of size n that holds the default pivot positions which is
simply ptv(k) = k. Setting this array is done in the initialization. At iteration k,
only pivot holder of the next iteration search for that pivot location, update the
array at the corresponding position, divide the pivot coumn by the new pivot. At
the beginning of the elimination of each column then, the switch of two elements at

41

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

positions k and pvt(k) is done. So the exchange of rows is done implicitly after all
threads finish that specific iteration.

Synchronization

The synchronization between threads – so they wait until the column i is eliminated
before executing the iteration i – is done using locks[9]. We introduced a new array
for the locks. Size of the locks array is n. The locks are set during the initialization
of the matrix which is also done which the parallel section.

do i =1,n
ca l l omp_init_lock (l ck (i))

end do
C=1
. . .
!OMP PARALLEL PRIVATE(i , j , k , t h r id , i p v t)

id=omp_get_thread_num () ;
!$OMP DO SCHEDULE(STATIC,C)
do j =1,n

do i =1,n
A(i , j)= rand (0)
B(i , j)=A(i , j)

end do
pvt (j)= j
LHS(i)=0
A(j , n+1)=1
ca l l omp_set_lock (l ck (j))

end do
!$OMP END DO
! Matrix e l im ina t i on
. . .
!OMP END PARALLEL

At beginning of each iteration each thread has to test the lock. So it will not
succeed to enter the iteration unless that lock is unset by the pivot holder of that
iteration. The code should look like the next listing:

!$OMP PARALLEL . . .
id=omp_get_thread_num () ;
! I n i t i a l i z a t i o n s
i f (id . eq . 0)

PIVOTINGÂ and ELIMINATINGÂ Column 1
ca l l omp_unset_lock (l ck (1))

end i f

42

5.2. EXPERIMENTS

do k=1,n−1
ca l l omp_set_lock (l ck (k))
!$OMP FLUSH
ca l l omp_unset_lock (l ck (k))

!$OMP DO SCHEDULE(STATIC,1)
do j =1,n+1

i f (j>k) then
DOÂ ELIMINATIONS
i f (j . eq . k) ! Next p i v o t

PIVOTINGÂ and ELIMINATING column j
!$OMP FLUSH
omp_unset_lock (l ck (j))

end i f
end i f

end do
!$OMP END DO

!$OMP ENDÂ PARALLEL

Note that the threads can start iterations independently if their locks are free.
So they only have compulsory stall if the next iteration column is not set yet which
is the default natural constraint of the algorithm.

Listing 5.1. Original code

1 Do k=j +1, n
2 A(k , j)=A(k , j)/A(j , j)
3 end Do

Listing 5.2. Modified code

1 c=1/A(j , j)
2 A(j +1:n , j)=A(j +1:n , j)∗ c

Figure 5.3. Enhanced column elimination using fortran (:) notation

Enhancements

Note also that the code has four places that can be enhanced:

• Replace the division by pivot – which is constant at each iteration once it
is known – with a multiply by a constant equals to inverse of pivot. See
modification in Figure 5.3.

• Avoid loop invariant access in the k-loop.

• Eliminate the check for changing pivot position. If we allow the exchange to be
done by default even if the pivot did not change position, it will simply replace
the pivot row by itself. Although that might sound extra unnecessary work

43

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

2 3 4 5 6 7 8
0

2

4

6

8

10

12
Second apporach speed up

No of cores

S
pe

ed
 u

p

N=1000

N=2000

N=3000

N=4000

N=5000

Figure 5.4. Speed up for the modified GE code: Experiment 2

in the case that pivot did not change position but by avoiding this condition,
we allow the compiler to optimize the code better.

• Instead of using loops we replaced it by Fortran notation (:) for array updates.
It works better with the compiler as in Figure 5.3.

So After modifications, the new version will be as:

! $omp p a r a l l e l p r i va t e (i , j , k , tmp)
i f id==0 then

newPvtpos=GetPivot (1) ;
exchange (A(newPvtpos , 1) , A(1 , 1))
tmp=1/A(1 , 1)
! Note new notat ion
A(2 : n ,1)=A(2 : n , 1)∗ tmp
unlock column 1

end i f
for k=1 to n−1
{

lock column k
f l u s h cache
unlock column k

44

5.2. EXPERIMENTS

! $omp for schedu le (s t a t i c , 1)
for j=1 to n+1

i f (j>k) then
exchange (A(newPvtpos , j) , A(i , j))

tmp=A(k , j)
! Note new notat ion
A(k+1:n , j)=A(k+1:n , j)−A(k+1:n , k)∗tmp ;
i f mod(k , NThreads)==id i . e next p ivot ho lder

newPvtpos=GetPivot (j) ;
exchange (A(newPvtpos , j) , A(j , j))
tmp=1/A(j , j)
! Note new notat ion
A(j +1:n , j)=A((j +1:n , j)∗tmp
unlock column j

end i f
end i f

end for
! $omp end for
! $omp end p a r a l l e l

We can see that the speed up in Figure 5.4 is improved when the matrix size is
up till 2000. But as the matrix size gets larger than 2000, speed up is very low. We
are getting a cache problem and the reason – as known from the Acumem report – is
low temporal locality. Again the way that we handled the fixed partitioning of the
the matrix caused massively unnecessary loop counter checking and incrementings
to get the loop in the desired position.

5.2.3 Blocking failure: Experiment 3

Listing 5.3. Original code

1 ! $omp for schedu le (s t a t i c , 1)
2 for j=1 to n+1
3 i f (j>i) then
4
5 end i f
6 end for
7 ! $omp end for

Listing 5.4. Modified code

1 ! Remove the omp for
2 for j in my scope o f the matrix
3
4 end for

Figure 5.5. Remove OMP for and use fixed cyclic column distribution

In order to overcome the problems of the previous experiments. We build new
version in which manually divide the matrix into cyclic distribution of size 1. Such
division is virtual so just depending on the thread id, the scope of the matrix column

45

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

2 3 4 5 6 7 8
0

1

2

3

4

5
N=2000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2
N=3000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2
N=4000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2
N=5000

No of cores

S
pe

ed
 u

p

Using blocking No blocking

Figure 5.6. Speed up with blocking of GE code: Experiment 3

is known. Hence, we can remove OMP loop. This can be determined by different
ways. We just simply stored first and last indeces of the thread’s scope and jump
with number of threads. The scope is adjusted every time it –the thread– happened
to be the pivot holder. See the modification in the Figure 5.5

That gain something when the matrix was relatively small (till n=2000) then it
made no difference. So we implemented blocking for the scope of the matrix but as
in Figure 5.6 it was not improving in fact it caused many more problems including
false sharing, inefficient loop nesting and more problems with locality and stalling
threads waiting for pivot columns.

5.2.4 Double Elimination: Experiment 4

In this experiment we used the same way for partitioning the matrix manually by
columns as in experiment 3. Just with a small observation that the next pivot
column is done first thing in the main loop – or it has to be done at first in order
to minimize the waiting time for other threads – that make the next pivot in hand
for the pivot holder in the same iteration. So instead of waiting until next iteration
to do it, the pivot-holder firstly eliminates its column j > (i + 1) with the column

46

5.2. EXPERIMENTS

2 3 4 5 6 7 8
0

1

2

3

4

5

6
N=2000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
N=3000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
N=4000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
N=5000

No of cores

S
pe

ed
 u

p

Original Double elimination

Figure 5.7. Speed up using double elimination for pivot holders: Experiment 4

i then with the next-iteration pivot-column which is definitely (i+ 1) and skip the
next elimination. Now as in Figure 5.7 we can get speed up.

But we can see that if the threads are 2, it was perfect. More than two almost
was the same. That is the effect of that double elimination will only cause the
threads to skip one iteration every Nthreads iterations.

5.2.5 Chunk distribution with double elimination : Experiment 5

The inefficient temporal locality in the prevoius experiments came from the nature
of the algorithm to sequentially sweep the whole j > i columns of the matrix at
each iteration i. Using the inspiration of experiment 4, it would be great if there are
more than one pivot available in each iteration so we can skip iterations somehow.

In this experiment, we used cyclic distribution with size greater than 1 as in
Figure 5.8. Although that might give worse load balancing and increase the sequen-
tial part of the program – of eliminating first chunk – but it will enable the pivot
holder to produce as much pivots as the chunk size C, allowing others to do as much
as C eliminations and skip those C iterations –that were done in sequence before–
and further more the pivot-holder to do twice. Again we also used locks array for

47

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

Figure 5.8. Cyclic Chunk Distribution with C=3 on 4 processes

the synchronization but the size of the locks array is bn/Cc. Each lock is unlocked
by the pivot holder after the chuck of pivots is computed. In this technique we
are aiming to reduce number of times we sweep the whole matrix which caused the
eviction of matrix columns from the cache at each iteration.

Comparing the speedup with what we had before was great. In Figure 5.9 we
can see the perfect speedup we had. Figure 5.10 show how much gain we get by
increasing the chunk size C = 25 w.r.t the previous speedup we gained with double
elimination only (i.e. chunk size C = 1) and the speedup we gained earlier in
Experiment 2. Figure 5.11 shows how the efficiency in the three cases showing the
best with using chunks with double elimination.

However by increasing the block size more than 25, the performance started to
drop due to the fact that the chunk does not fit into the cache any more specially
as the input size increases.

5.3 Comparison to LAPACK

LAPACK and BLAS are the software libraries that are often used by numerical ap-
plications [12, 16, 17]. We used the intel MKL module that is available on Ferlin for
the LAPACK usage as mentioned before in Chapter 2. DGETRF is the LAPACK
routine that computes the LU factorization and for that it uses a block algorithm.
The non-singular matrix A is partitioned into four sub-matrices A1,1, A1,2, A2,1 and

48

5.3. COMPARISON TO LAPACK

2 3 4 5 6 7 8
2

4

6

8

10

12

14

16
N=2000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10
N=3000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
N=4000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
N=5000

No of cores

S
pe

ed
 u

p

C=1 C=2 C=3 C=4 C=5

Figure 5.9. Speed up for the chunk GE code: Experiment 5

A2,2 and the factorization is written as:[
A1,1 A1,2
A2,1 A2,2

]
=

[
L1,1 0
L2,1 L2,2

] [
U1,1 U1,2

0 U2,2

]

And from that the following equations can be obtained:

A1,1 = L1,1U1,1,

A1,2 = L1,1U1,2,

A2,1 = L2,1U1,1,

A2,2 = L2,1U1,2 + L2,2U2,2

So L1,1 and U1,1 are computed using the standard LU factorization routine.
Using the previous relations L2,1 and U1,2 are determined using Level 3 BLAS
solvers for triangular systems. Recursively applying the block algorithm to the last
relation, the matrices L2,2 and U2,2 are then calculated.

We compared the results and execution times that we got from DGETRF and
our improved code in Figure 5.12. The source of errors in both methods are due
to the rounding errors. In DGETRF the search for the pivots is done only in
the block A1,1 of each recursive step which may lead to different choice of pivots
and corresponding to different round-off error due to finite precision arithmetic.

49

CHAPTER 5. CASE STUDY: GAUSSIAN ELIMINATION GE

2 3 4 5 6 7 8
0

5

10

15

20

25

30
N=2000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

5

10

15

20

25
N=3000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

5

10

15

20

25
N=4000

No of cores

S
pe

ed
 u

p

2 3 4 5 6 7 8
0

5

10

15

20

25
N=5000

No of cores

S
pe

ed
 u

p

Original Speedup Double elimination only Double elimination, C=25

Figure 5.10. Comparison between Speedup before and after using chunks and
double elimination

Comparing the time used in both method one will conclude it is quite efficient to use
the optimized libraries whenever available. We were not interested to write a code
that is faster from the library but to show how a simple code can be improved by
giving a cache-aware solution and in meanwhile add new complex code statements.

50

5.3. COMPARISON TO LAPACK

2 3 4 5 6 7 8
0

1

2

3

4

5
N=2000

No of cores

E
ffi

ci
en

cy

2 3 4 5 6 7 8
0

1

2

3

4
N=3000

No of cores

E
ffi

ci
en

cy

2 3 4 5 6 7 8
0

1

2

3

4
N=4000

No of cores

E
ffi

ci
en

cy

2 3 4 5 6 7 8
0

1

2

3

4
N=5000

No of cores

E
ffi

ci
en

cy

Original Efficiency Double elimination only Double elimination, C=25

Figure 5.11. Comparison between efficiency before and after using chunks and
double elimination

2000 2500 3000 3500 4000 4500 5000

1

2

3

4

5

6

Time of DGETRF and modified code

N input size

T
im

e
in

 s
ec

.

DGETRF

modified code

2000 3000 4000 5000 2000 3000 4000

10
−10

10
−9

Error of DGETRF and modified code

N input size

E
rr

or

DGETRF

modified code

Figure 5.12. Comparison between DGETRF and the modified code using chunks
and double elimination

51

Chapter 6

Case study: Periodic Stokeslet PS

The second case study was optimization for a numerical algorithm based on bound-
ary integral formulation [18, 19]. If we consider a flat plate horizontally placed in
our computational domain, orthogonal to the z direction, and call it Γ. Given the
known free-space Green’s function for the Stokes flow (Stokeslet) we can rewrite
the flow equations as an inverse problem. This means that for a known velocity at
the wall we retrieve the forces acting on the wall and consequently will obtain the
velocity everywhere in the domain.

The integral form of the Stokes equations is given by:

U(x) =
∫

x∈Γ
S(x, y)f(y)dy

S(x, y) = S0(x, y) + Sp(x, y)
where S is the total fundamental solution for the Stokes flow, Sp is the periodic

remainder that comes from the periodic boundary conditions and S0 given by:

S0(x, y) = I

|R|
+ RR

|R|3

where R = x− y and RR is the dyadic product.
The discretization leads to a linear system of equation:

Af = u

The matrix A is block-Toeplitz-symmetric with circulant sub blocks, and the spe-
cific structure is preserved for A−1. Keeping in mind that actually the matrix A
corresponds to the discretization of two walls one must note that six columns (or
rows) are enough to generate this matrix.

Figure(6.1) shows the structure of A. Recall that at each direction of the matrix,
we have 6 parts that contain the same elements but in different order. The digit
6 came from the fact that we have 3D problem and two walls. Despite that the
matrix is (6N2)× (6N2) it is sufficient to store (6N)2 elements that we will refer to
as the mask of A which will be used to reconstruct the full matrix A.

53

CHAPTER 6. CASE STUDY: PERIODIC STOKESLET PS

Figure 6.1. Matrix A structure At each dimension 6 Blocks of size ((N2)2), each
of those blocks has (N2) sub-blocks that are circular toeplitz, further more each of
those sub-blocks has (N2) sub-sub-blocks that are also circular toeplitz. The figure
shows example if N=4, A has (6N2)2 = 9216 elements

As mentioned earlier that the inverse matrix A−1 shares the same structure as
A, A−1 can be constructed from a corresponding inverse mask.

Generalized minimal residual method ,GMRES [20, 21], is a good option for
this since does not require the storage of the matrix A but it suffices to be able to
compute the matrix vector product Ax:

Aci = ei, i = 1, N2 + 1, 2N2 + 1, .., 5N2 + 1

where ei is the (6N2)-unit vector with zeros everywhere except one at position
((i−1)N2 + 1) and that would return the generating columns ci of the inverse A−1.
Same ei was taken as initial guess c0

i for the GMRES.

6.1 Code Analysis
The code for this case was originally built at NADA/KTH –by Oana Wiklund.
She used the gmres code [22] with special adaptation to compute A−1 using the
mask matrix. She also used OpenMP directives to parallelize the matrix-vector
multiplication inside the gmres iteration. From the acumem analysis report of the
code, we received several issues at the call of the routine that computes the matrix
vector product y = Ax. The routine matvecprod as shown in figure(6.2) uses
the (6N)2 mask to generate the elements of the matrix A and perform the matrix
vector product. The inefficient order of executing the product was responsible for
87.6% of cache misses.

54

6.1. CODE ANALYSIS

subroutine matvecprod (x , y , mask)
! t h i s computes a matrix v e c t o r product Ax needed by GMRES
! x (input) v ec t o r
! mask (input) mask o f the i n va r i an t matrix e lements
! y (output) r e s u l t o f Ax

use parameters , only : Nx ,Ny, s y s s i z e
real : : x (s y s s i z e) , y (s y s s i z e)
integer : : i , j , i i , j j , k , kk , indr , indc , indx , indy ,kww,kw
real : : mask(6∗Nx,6∗Ny)
y=0.0d0

! $omp p a r a l l e l do p r i v a t e (kww , kw , kk , k , i , j , i i , j j , indr , indc , indx , indy)
do j j =1,Ny

do i i =1,Nx
do j =1,Ny

do i =1,Nx
do k=1,3

do kk=1,3
do kww=1,2

do kw=1,2
indr=(kww−1)∗Nx+(kk−1)∗Nx∗2+modulo ((Nx/2+i− i i) ,Nx)+1
indc=(kw−1) ∗Ny+(k−1)∗Ny∗2+modulo ((Ny/2+j− j j) ,Ny)+1
indy= Nx∗Ny∗(kk−1+(kww−1)∗3)+(j j −1)∗Nx+i i
indx= Nx∗Ny∗(k−1 +(kw−1)∗3)+(j −1)∗Nx+i
y (indy)=y(indy)+mask(indr , indc)∗x (indx) ;

end do
end do

end do
end do

end do
end do

end do
end do
! $omp end p a r a l l e l do
end subroutine matvecprod

Figure 6.2. Original code for Matrix-Vector multiplication

55

CHAPTER 6. CASE STUDY: PERIODIC STOKESLET PS

Figure 6.3. Building first row of the full matrix. At top 1-of-6 chunks in the mask.
The first row is built by accessing the blocks ABCDEF. Each block is accessed in
same way as the colored A to get the corresponding N2 elements of the row

The slow performance of the code arises from the fact that way we access the
vectors and mask is not structured and that what shown from the problems in the
report such as the inefficient loop- nesting, poor temporal and spacial locality and
low fetch utilization for each variable we access. The formula used to get the correct
indices causes jumps that are hard for the compiler to predict and lacks locality.
The aim to improve this routine will be to find means to access the data structures
in an ordered way.

6.2 Optimization

6.2.1 Ordered Mask

As we said before the matrix A can be generated from the mask, and so it was
interesting to see how to use the mask to build a row of A. If we divide the mask
into 6 rows-chunks, each one is N × 6N , we can use this mask to find the first row
of each block N2 × 6N2 of the matrix A in exactly the same fashion as in figure
(6.3). If we futher more divided that chunk into 6 blocks, each block will contain
the N-elements of the original desired row.

For first row at each row-chunk, this is not entirely inefficient since in order to
do this arrangement we access the mask column-wise but still we jump a lot. going
to next rows will lead to inefficient access mechanism. The way the mask is built
still convenient for visualization and numerical purpose. However by arranging the
mask this way into 6N2-vectors representing the major rows of A, we can perform

56

6.2. OPTIMIZATION

the matrix vector multiplication in better way. The idea is to use those vectors with
the correct permutation to perform the routine matvecprod2 as in (6.4).

6.2.2 Performance Gain
The comparison is made between three ways to perform y = Ax. The old method
was as described in matvecprod using the generated mask. The new one was using
the ordered mask rows as in matvecprod2.

It was also interesting to also include the traditional method to perform y = Ax
by using the mask and function matindex that returns the value of the matrix at
given position using the mask as if we have A stored in memory:
do i =1, s y s s i z e

do j =1, s y s s i z e
y (i)=y(i)+b(j)∗matindex (i , j , mask ,Nx,Ny)

end do
end do

Tables (6.1) and (6.2) show how the new method using the ordered mask is
superior and takes less time. However the degree of parallelism in the upper level of
the matvecprod2 is only 6 meaning we can only able to divide it over at maximum
6 threads , it still much efficient to use that routine.

Time
N System size New Old Traditional
16 1536 1.79e-3 9.399e-3 6.789e-2
32 6144 2.159e-2 0.1578 0.759
64 24576 0.3498 2. 497 17.242
128 98304 6.223 54.591 190. 935
Table 6.1. Performance Comparison w.r.t. sequential time

Time
nThreads New Old Traditional

8 1.356 8.02 24.07
6 1.357 11.107 31.847

Table 6.2. Performance gain due parallelization in case of N=128

6.2.3 Overall performance gain
In order to test the overall performance gain we compared time of the old code
and the modified code using residual r = 10−13. Note that such residual is used to
determine the accuracy of the inverse mask columns and hence the total number of
iterations used by GMRES.

57

CHAPTER 6. CASE STUDY: PERIODIC STOKESLET PS

subrout ine matvecprod2 (x , y , Rows)
! t h i s computes a matrix vec to r product Ax needed by GMRES
! I assumed Nx=Ny otherwi s e some cond i t i on s have to be changed
! x (input) vec to r
! Rows (input) Rows at p o s i t i o n s (i −1)∗Nx∗Ny+1, i =1:6 as columns
! y (output) r e s u l t o f Ax
use parameters , only : Nx,Ny, s y s s i z e

real , i n t en t (IN) : : x (s y s s i z e) ,Rows(s y s s i z e , 6)
real , i n t en t (OUT) : : y (s y s s i z e)
real : : buf (Nx) , element
i n t e g e r : : i , j , k , l ,m,N=Nx
in t e g e r : : indBB , indB , s , indYs , indY , Bend

y=0.0d0
! $omp p a r a l l e l
! $omp do pr i va t e (i , j , k , l ,m, s , indBB , Bend , indB , buf , indY , indYs , element)
do i =1,6 ! b ig rows indY=(i −1)∗N∗N+1

do j =1,6 ! b ig columns
indBB=(j −1)∗N∗N+1
Bend=j ∗N∗N
do k=1,N ! i n s i d e big block

indB=indBB+(k−1)∗N
buf=Rows(indB : indB+N−1, i)
indYs=indY
do m=1,N ! i n s i d e smal l b lock

s=indB
do l =1,N

y (indYs)=y(indYs)+sum(x (s : s+N−1)∗buf (1 :N)) ! N mu l t i p l i c a t i o n s
indYs=indYs+N
s=s+N
i f (s >= Bend) then

s=indBB
end i f

end do
element=buf (N)
buf (2 :N)=buf (1 :N−1)
buf (1)= element
indYs=indY+m

end do
end do

end do
end do
! $omp end do
! $omp end p a r a l l e l
end subrout ine matvecprod2

Figure 6.4. The new optimized code for Matrix-Vector multiplication

58

6.2. OPTIMIZATION

32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup between Old and Modified codes

N

S
pe

ed
 u

p

Figure 6.5. Speedup between old and modified code

N New Old
32 3.4357 13.6959
64 63.1757 250.3774
128 1498.6391 6941.5962

Table 6.3. Average execution time in sec. using residual r = 10−13.

Table (6.3) shows the average time between the old and modified code that uses
the ordered mask. Figure (6.5) shows the speed up we got given by:

Sp = Told

Tnew

where Tnew is total time needed to reorder the mask and find the solution with
same residual settings. We got speed up at least 4 and the reason that it grew as we
reach N=128 is due to the fact that the mask -and similarly the ordered one - does
not fit into the cache any more and so we can get more intuition of the importance
of using ordered way to access its elements. However, we still have overheads from
constructing and destroying the threads at each iteration but the GMRES routine
is not thread-safe [21, 22].

59

Chapter 7

Conclusions

The demands for computational power and application to run faster or be able to
serve expanding users requests are continuously increasing. Since single-processors
can not get any faster due to technical hardware and power consumptions issues,
parallelism needs to be exploited, for instance on multi-core systems wich provide
significantly increased computational power, but also new challenges and restric-
tions. Getting the expected performance gain from migrating to multi-core is highly
dependent on the application implementation, data layout and access patterns. In
shortly, multi-core programming does not only require parallelizing a sequential
code but –in order to get speed-up in the performance– one has to consider utiliza-
tion of cache usage. Although this is also an issue on single core sytems, multi-core
processors have even more demands on proper cache utilization. Immature task and
data partitioning will lead to waste performance as cores will be always fighting over
shared resources. If developers are unable to design software to fully exploit the
resources provided by multiple cores, then they will ultimately reach a frustrating
performance ceiling.

In our study we studied two types of algorithms to solve linear systems of equa-
tions as important step in most of numerical methods to solve partial differential
equations. The experiments and results obtained on the 8-cores system. We were
able to show that data locality has a great influence on the performance of the
algorithms and how the application of performance optimization steps can help
overcome these limitations.

The first case study was Gaussian Elimination algorithm (GE) to perform the
LU factorization of a full non-singular matrix. The naive parallelization using
OpenMP directives only show a poor speed-up (less than 1.8) for array sizes less
than 2000 and a slow-down for large array sizes (speed-up less than 1). Using cyclic
column-chunk distributions to split the matrix between different threads and the
parallel technique we called Chunk GE with double elimination, we were able to
decrease execution time dramatically. For chunk size 25 we got speed-up over than
30 for array size less than or equal 2000 and about 25 for large matrix sizes in

61

CHAPTER 7. CONCLUSIONS

comparison with the sequential algorithm. We also compared the results with the
LAPACK library routine DGETRF that computes the LU factorization. For small
array sizes we got the same order of execution time but for array sizes larger than
2000, DGETRF was still about 3 times faster.

The second case study was a numerical algorithm based on boundary integral
method. The algorithm uses the Generalized minimal residual method (GMRES) as
iterative method to solve linear system of equations. The matrix A in that algorithm
has a special structure which is block-Toeplitz-symmetric with circulant sub blocks,
and the specific structure is preserved for A−1. At each dimension, A has 6 Blocks
of size ((N2)2), each of those blocks has (N2) sub-blocks that are circular toeplitz,
further more each of those sub-blocks has (N2) sub-sub-blocks that are also circular
toeplitz. The total number of elements in A has (6N2)2 elements. However instead
of storing the whole matrix, it was sufficient to store a smaller 6N × 6N array
–called the mask– and generate the matrix elements from it. GMRES required
an implementation of the matrix-vector product which is implemented using the
mask. By replacing the mask with an ordered mask that is N2 × 6 representing
the starting row of the 6 row-blocks of matrix A, we provided a new mechanism to
perform the matrix-vector product. The new method was based on the concept of
exploiting data reusability and regular access patterns. We were able to speed-up
overall computations of the algorithm by factor of 4 for sizes 32 and 64 and by 4.5
for 128.

In our experiments we also exploited cache and memory profiling tools, specially
for the analysis of complex structures, separated data files and/or multi-threaded
applications. The use of smart tools becomes vital when we migrate from single-
to multi-threaded applications. It is not always easy to spot bottlenecks and their
causes in such codes. Moreover, a deeper understanding of the code and expected
results is really necessary and case dependent. In general, Optimization is not
always an obvious or intuitive process.

Through optimization, codes can lose readability and portability and this makes
maintenance of the code very hard. The recommendation is to delay optimization
and keep the development of the solution as simple as possible in the early stages
where stability, robustness and convergence behavior are most of the concerns. Al-
though compilers nowadays are able to perform many optimizations, the results are
still far from being optimal and thus it is still the programmer’s responsibility to
applying optimization techniques in order to help the compiler producing efficient
code. The reason is that many performance bottlenecks cannot be detected and ad-
dressed by static compiler analysis. One way to overcome these problems is to use
dynamic runtime analysis and optimization, as for instance aimed at in the latest
developments of the Acumem tool, that was used in this work for static analysis.
Until such techniques are able to produce stable and efficient results, producing
performing code is as hard as finding a correct solution to any problem.

62

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 3 ed., 2002.

[2] L. J. FLYNN, “Intel halts development of 2 new microprocessors.”
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=
1399348800&en=98cc44ca97b1a562&ei=5007, May 8 2004. [June, 2010].

[3] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill Science/Engineering/Math, 1 ed., 1992.

[4] D. A. Patterson and J. L. Hen, Computer organization and design : the hard-
ware/software interface. Morgan Kaufmann Publisher Inc., 1997.

[5] I. O. Articles, “Optimizing software applications for
numa.” http://software.intel.com/en-us/articles/
optimizing-software-applications-for-numa/, June 2010.

[6] S. A. McKee, “Reflections on the memory wall,” in CF ’04: Proceedings of the
1st conference on Computing frontiers, (New York, NY, USA), p. 162, ACM,
2004.

[7] “Pdc resources, ferlin specifications.” http://www.pdc.kth.se/resources/
computers/ferlin/, June 2010.

[8] Intel, “Intel xeon processors.” http://ark.intel.com/ProductCollection.
aspx?codeName=26555, June 2010.

[9] “Official openmp manual specifications.” http://openmp.org/wp/
openmp-specifications/, June 2010.

[10] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology, Architecture,
Programming. McGraw-Hill Science/Engineering/Math, 1 ed., 1998.

[11] “Ibm compiler optimization flags.” http://www.nersc.gov/nusers/
resources/software/ibm/opt_options/. [June 2010].

[12] M. Kowarschik and C. Weiß, “An overview of cache optimization techniques
and cache-aware numerical algorithms,” in Algorithms for Memory Hierarchies,
pp. 213–232, Springer Berlin / Heidelberg, 2003.

63

http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://www.pdc.kth.se/resources/computers/ferlin/
http://www.pdc.kth.se/resources/computers/ferlin/
http://ark.intel.com/ProductCollection.aspx?codeName=26555
http://ark.intel.com/ProductCollection.aspx?codeName=26555
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/
http://www.nersc.gov/nusers/resources/software/ibm/opt_options/
http://www.nersc.gov/nusers/resources/software/ibm/opt_options/

BIBLIOGRAPHY

[13] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms,” in ASPLOS-IV: Proceedings of the fourth
international conference on Architectural support for programming languages
and operating systems, (New York, NY, USA), pp. 63–74, ACM, 1991.

[14] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis
for multicores,” in EMSOFT ’09: Proceedings of the seventh ACM international
conference on Embedded software, (New York, NY, USA), pp. 245–254, ACM,
2009.

[15] ACUMEM, Acumem ThreadSpotterT MManual, 2010.0 ed., Nov. 2009.

[16] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen, “Lapack: a portable
linear algebra library for high-performance computers,” in Supercomputing
’90: Proceedings of the 1990 ACM/IEEE conference on Supercomputing, (Los
Alamitos, CA, USA), pp. 2–11, IEEE Computer Society Press, 1990.

[17] “An updated set of basic linear algebra subprograms (blas),” ACM Trans.
Math. Softw., vol. 28, no. 2, pp. 135–151, 2002.

[18] A.-K. Tornberg and K. Gustavsson, “A numerical method for simulations of
rigid fiber suspensions,” J. Comput. Phys., vol. 215, no. 1, pp. 172–196, 2006.

[19] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Vis-
cous Flow. Cambridge University Press, 1992.

[20] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM Journal on Scientific and
Statistical Computing, vol. 7, no. 3, pp. 856–869, 1986.

[21] S. Maria, W. Layne T., and K. Rakesh K., “A new adaptive gmres algorithm
for achieving high accuracy,” tech. rep., Blacksburg, VA, USA, 1996.

[22] J. Claerbout. http://sepwww.stanford.edu/sep/prof/geelib/gmres.f90. Stan-
ford University.

64

	Introduction
	Literature Review
	Multi Core Architecture
	Multi-Core systems
	Processors
	Memory Hierarchy

	Technology
	Ferlin: our multicore system

	Programming for Multi-cores
	Performance measurement
	Speedup
	Efficiency

	Optimization Techniques
	Automatic Optimizing
	Arithmetic Expressions
	Cache Optimization
	Data Structures and Object-oriented programming

	Optimization Tool: Acumem ThreadSpotterTM
	Analysis Commands
	Sampling an Application
	Report Generation

	Main Report Issues
	Utilization issues
	Loops issues
	Hot-Spots

	Snap shots from the report

	Case Studies
	Case study: Gaussian Elimination GE
	Introduction
	Matrix Generation
	Correctness

	Experiments
	Forward Elimination: Experiment 1
	Forward Elimination: Experiment 2
	Blocking failure: Experiment 3
	Double Elimination: Experiment 4
	Chunk distribution with double elimination : Experiment 5

	Comparison to LAPACK

	Case study: Periodic Stokeslet PS
	Code Analysis
	Optimization
	Ordered Mask
	Performance Gain
	Overall performance gain

	Conclusions
	Bibliography

