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Foreword

The Center for Parallel Computers at the Royal Institute of Tech-
nology has now been active for more than three years as a national
forum for research on and use of parallel computers.

The continued positive trend from our first progress report is
apparent: the diversity of projects in this second progress report
is evidence that the Connection Machine is a general-purpose su-
percomputer. The total number of users have more than doubled
during the past year. In particular, the growth in the number
of projects from Physics-related areas is remarkable. Also note-
worthy is the tendency towards production. In fact, around fifty A national resource
percent of our projects are in a production phase. The Connec-
tion Machine is truly a national resource: half of the projects are
pursued by groups outside of KTH and a number of groups from
other countries.

To achieve our general goal we believe it is of prime importance
to provide the Connection Machine as an open and easily accessi- An easily accessible resource

to academia and industryble resource to academia and industry. Time on the Connection
Machine is provided free of charge for academia, and we intend
to keep this policy as long as our funding allows – at the time of
writing our funding from July 1993 is still unclear.

However, our role is not only to provide hardware resources but
also to offer help and advice to users and actively try to catalyze
interest and activity in parallel computing. We are convinced that
close relations between computing scientists and scientists from
different application areas are some of the important advantages
offered by a small organization such as PDC, and a prerequisite
for continued progress in scientific computing.

The essential aspect of a supercomputer is its solution capabil-
ity for large and complex problems. For many real-world problems
with large data sets, this translates into solving a problem in rea-
sonable time as compared to not solving it at all.

The development of massively parallel computers is application
driven. Today, such machines provide higher performance on a
number of important applications compared to more traditional
vector computers. A new generation of massively parallel ma-
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chines has been introduced since we acquired the Connection Ma-
chine. By acquiring such a machine we will be able to begin solving
larger and more complex problems. This generation of computers
has a tremendous potential and it is projected that on some ap-
plications a sustained TFlop/s will be achievable in three to four
years. Efficient use of these computers also requires substantialWe plan to strengthen

the user support group investment in education and training. Consequently, we plan to
strengthen the user support group at the center. Such expansion
is necessary to properly support our growing academic user base
and also to attract industrial projects. The need for an expansion
of the resources at our center has also been pointed out in a re-
cent evaluation by a group of international experts, working for
the Swedish National Board for Industrial and Technical Develop-
ment.

With some notable exceptions, Swedish industry has been some-
what reluctant to use large-scale computing on supercomputers,
in particular parallel supercomputers. This will hopefully change,
and we intend to make a serious educational effort to demonstrate
successful and cost-effective computing projects.

One of the backbones of the supercomputing infrastructure inLarge Swedish investments
in education, training

and supercomputer
hardware are required

Sweden, are the national high-performance networking projects.
However, we would like to stress that to make the infrastructure
balanced and complete, large Swedish investments in education,
training and supercomputer hardware are required.

Thus, we are confident that the near future will see a rapid
growth of the supercomputing community. We will do our best to
provide continued parallel computing resources and expertise in
this exciting development.

The Board of the Center for Parallel Computers, March 1993
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1 PDC– Parallelldatorcentrum

This is the second progress report of the Center for Parallel Com-
puters (PDC) at the Royal Institute of Technology (KTH). It covers
the activities of the center during 1992. A brief overview of the
center follows in this section. User projects are described in Sec-
tions 3 through 10. The last three sections contain a glossary, a
bibliography and an index of terms and names.

1.1 Background

Massively parallel computers are important because they offer so-
lution capability for large and complex problems. For many real-
world problems with large data sets, this translates into solving a
problem in reasonable time as compared to not solving it at all.
Parallel computing however requires new ways to approach a prob-
lem and develop algorithms. This means that practical experience
of parallel computing in many different areas is important.

The Center for Parallel Computers at KTH was established in
January 1990 to act as a focal point and national forum for both
research on and use of parallel computers, including the new Con-
nection Machine. In December 1991 the Connection Machine has
been upgraded to a CM200, including larger memory and a parallel
disk array.

PDC is an interdisciplinary organization. Our goal is to stim-
ulate research and spread information on the use of parallel com-
puters. This is achieved by providing high-performance parallel
computers and expertise on their use to the technical and scientific
computing community in Sweden. We aim to reach professionals
from academia and industry who have large and compute-intensive
applications.

PDC is a national resource and as such we provide our services
free of charge to academic users in Sweden. Industrial partners
are also welcome to explore the possibilities of parallel computing.

PDC –Parallelldatorcentrum 5



1.2 Funding

The original grant of 10 MSEK for the CM2 was given by Skan-
dinaviska Enskilda Bankens Stiftelse för Ekonomisk och Teknisk
Forskning and the Swedish Council for Planning and Coordina-
tion of Research, FRN. The grant of 4.72 MSEK for the upgrade
came from FRN. The operational cost, including staff, has been
covered by the Royal Institute of Technology, the Swedish Na-
tional Board for Industrial and Technical Development, NUTEK
and the Swedish Research Council for Engineering Sciences, TFR.
Our past and present funding is detailed in the table below.

Grants kSEK 89/90 90/91 91/92 92/93

NUTEK 1500 1500 1785 473
KTH 100 300 380 880
TFR 0 0 0 300

Total 1600 1800 2165 1653

The relatively low cost during the fiscal year 1992–1993 is due to
a one year warranty included in the upgrade of the CM.

1.3 Organization

The Center for Parallel Computers is headed by a board, with
Professor Thorelli as the chairman and Dr. Oppelstrup as the vice
chairman. The complete list of members is:

Björn Engquist Professor of Numerical Analysis, NADA
Fredrik Hedman Application Engineer, PDC
Anders Lansner Director of Research SANS, NADA
Jesper Oppelstrup Director of Research C2M2, NADA
Yngve Sundblad Chairman of the KTH Computer Council
Gert Svensson Coordinator, PDC
Lars-Erik Thorelli Professor of Computer Systems, IT

From an administrative point of view, PDC is currently a project
in the Department of Teleinformatics (IT, previously TDS). Tele-
informatics has just relocated to new premises at Kista, as a con-
sequence of the new organization at KTH. For this reason PDC will
be transferred to the Department of Numerical Analysis and Com-
puting Science (NADA) in April 1993. Professor Björn Engquist
will be chairman of the board, starting May 1993.
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We are currently establishing a scientific advisory committee,
which will give us a broader insight in different application areas
and provide more information about the need of different user
groups and universities.

The center has a staff of four persons, or about three full-time
equivalents: Fredrik Hedman, application engineer; Johan Ihrén,
UNIX system manager and graphics specialist; Britta Svensson,
administrative assistant; and Gert Svensson, project coordinator.

1.4 Educational Activities

Throughout the year several seminars on the use of parallel com-
puters have been arranged. The Connection Machine has been
used for courses in the M.Sc. program at KTH and CTH. A two-
day introduction to the CM-system was given in October at Ume̊a
University with about 15 participants. Two complete courses (3
KTH-credits each) on programming of massively parallel comput-
ers have also been arranged:

Course Date Students

Programming of MPP Computers April 92 28
Advanced Programming of MPP Computers May 92 14

1.5 Project Summary

Currently there are some 35 ongoing projects. The statistics col-
lected in the table below stem from a rough classification of the
contributions as new or continued, and whether in a production
or development phase.

Area New Cont. Production Development

Neural Networks 2 2 3 1
CFD 3 3 3 3
Biocomputing 1 1 2 0
Physics/Geophysics 9 3 7 5
Chemistry 3 0 0 3
Numerical Analysis 3 2 2 3
Computer Science 2 1 1 2

The growth in the number of applications from Physics-related
areas is quite remarkable. It is a strong testimony to the useful-
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ness of parallel computers in basic science. The trend towards
production is seen clearly: about 50 percent of the projects are in
a production phase. The machine is a national resource in realityThe machine is a national

resource in reality and
not only in theory

and not only in theory: more than half of the projects are pursued
by non-KTH groups situated in Göteborg, Linköping and Upp-
sala; international groups come from Denmark, France, Russia,
Switzerland and the USA.

In many of the projects under way, PDC has given substantial
support by actually participating in the development of programs
and in the development of algorithms.

1.6 Hardware Resources

PDC provides access to three classes of computer architecture:
SIMD, MIMD with shared memory and MIMD with local memory.
Currently most of the activities are centered around the SIMD
computer, the Connection Machine.

The Connection Machine

The CM200 Connection Machine at PDC is a SIMD supercomputer
with 8192 bit-serial processors, 256 64-bit floating-point processors
and 1024 MByte of main memory. It can be used either as an 8K
machine or as two separate 4K machines. Connected to the CM is a
10 GByte DataVault, i.e. a parallel disk array, which substantially
improves the I/O performance of the system as a whole.

Included in the Connection Machine system is a framebuffer,
which is a high-speed graphical device connected directly to the
CM. This enables quick display of large amounts of data stored in
the machine, and makes it easy to visualize a simulation as it is
performed.

The two Sun front-end computers run the UNIX operating sys-
tem; they are easily accessible via the Swedish University Network
(SUNET). The front-end computers act as control processors in the
CM system during user program’s startup and execution, and they
also host user’s program development and compilation.

Other Hardware Resources

PDC has direct access to two other parallel computers, a Sequent
Symmetry and a transputer based system. These are not meant for
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high-performance computing, but rather serve as typical examples
of their respective architectures.

1.7 Software Environment

SIMD computers such as the Connection Machine are especially
successful in many scientific applications where one can represent
the data set of the problem as a large number of identical elements.
Experience shows that the Connection Machine can be successfully
used in many more areas than was initially thought, the reason
being the accumulation of knowledge of how to program a SIMD
computer. The rapid evolution of compilers, scientific libraries,
debuggers and system software on the CM200 is also important.

The CM2 was one of the first commercially available scalable
computers. A CM2 or a CM200 can be acquired in sizes ranging
from 4096 to 65,536 processors. Programs are independent of the
size of the machine due to the use of so called virtual processors.
The number of virtual processors can be much greater than the
number of real processors in a machine. The mapping of the vir-
tual processors to physical processors is automatically taken care
of by system software.

In the data-parallel programming model, each data element is
treated by its own processor. The Connection Machine has three
complete programming languages which all support this model
directly: CM Fortran, a subset of Fortran 90; C*, an extension of
ANSI C; and *LISP, an extension of Common Lisp.

Designing scalable programs is simplified in the data-parallel
programming model. It should be noted that the model can be
implemented on both SIMD- and MIMD-machines, making it very
attractive as a base for writing programs and designing algorithms.

1.8 The Future

The supercomputers of the future have an enormous potential. PDC has the ambition to
be both a meeting place
and a focal point for
people involved with the
supercomputers of the future.

They will have an ever increasing impact on society at large and
in particular on computational sciences and engineering design
calculations. Efficient use of these machines will require in-depth
knowledge in many different fields, and PDC has the ambition to
be both a meeting place and a focal point for people involved with
these machines.
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Many areas of Computational Science is currently undergoing
a transition from 2D to 3D models; partly because of a specific
need to produce more realistic models and partly because of the
growth in capacity of supercomputers. To gain insight and under-
standing into complex problems characterized by very large data
sets, a combination of advanced visualization systems and high-
end graphics computers is needed. In collaboration with several
groups at NADA, PDC is currently conducting an investigation of
what systems to acquire.

Furthermore, PDC is planning to acquire a scalable massively
parallel MIMD-computer with programming environment for inte-
grated parallelism in the 93/94 timeframe. A proposal has been
sent to FRN and the Knut and Alice Wallenbergs foundation. We
will also participate in the Swedish High-Performance Comput-
ing Network project (SHPCNet). It is one of the prerequisites of
the national supercomputing infrastructure in Sweden. However,
we would like to stress that to make the infrastructure balanced
and complete necessitates large Swedish investments in education,
training and supercomputer hardware. It is vital that these hard-We view a MIMD computer

as an important continuation
and a natural extension to
the work that has already

begun on the CM2 and CM200

ware investments provide solution capability. This implies both a
very large primary memory and competitive computational power.
We view a MIMD computer as an important continuation and a
natural extension to the work that has already begun on the CM2
and CM200.

An increase in funding for user support would greatly contribute
to making present and future investments in hardware become
even better used. In addition, to follow the strong international
trend towards the establishment of the field “Parallel Computa-
tional Science”, we feel it is the right time to further strengthen
our role as a national center. There are many good reasons for
this:

• The overall development in the parallel computing area has been
very rapid in the last couple of years. Both software and solution
methods have now evolved to a point where parallel computers
are not only a promising technology for the future, but can
directly be applied to solve many large industrial and scientific
problems.

• The interest for “high performance” computers has been boosted
by the High Performance Computing and Communication (HPCC)

10 PDC –Parallelldatorcentrum



initiative, already underway in the USA, and by the High Perfor-
mance Computing and Networking (HPCN) project in Europe.
Also, because of a growing insight into the present and future
potential of large engineering and scientific calculations.

• The corresponding Swedish SHPCNet initiative with a computer
network that initially will link universities with supercomputer
installations. This is a first step towards realistic distributed
supercomputing, meaning that there will be a large opportunity
to efficiently execute demanding applications over the network.

• In Sweden, high-performance computing is less utilized – in in-
dustry especially – compared to most other highly industrialized
countries. A large investment to develop the use of parallel com-
puting would make it possible to put Sweden back as a leader
in industrial computing.

• Introducing new techniques, such as parallel programming, takes
several years and will require considerable efforts in education,
training and programming. If we start now Sweden can be well
prepared when parallel computing becomes dominant in high-
performance computing.

It is central to continue to operate without having to charge
users, since, today, the time between inception of the idea to use Central to continue to operate

without having to charge usersa parallel computer in a particular project and its completion is
often long. In the event that we would have to charge projects for
the use of the machines it would mean that the turnaround time
would be extended and the build up and transfer of knowledge
would be slowed down. It would also discourage the necessary
creativity, if each experiment and new idea a user would like to try
on the machine would burden the individual project economically.

We would like to point out that PDC has funding only until July Crucial that we can secure
stable and long-term funding1993. If we are to continue operating as a national resource, it is

crucial that we can secure stable and long-term funding.
The possibility of easy access to powerful parallel computers is

important both to stimulate the use of this new technique and be-
cause it enables scientists to attack important problems in science,
using these machines. Easy access means for the user to be able to
access the machine without cost and without special security mea-
sures. A simple and helpful interactive environment, without long
waiting times, enabling the user to try out new ideas quickly is

PDC – Parallelldatorcentrum 11



especially important. We believe that we have succeeded in creat-
ing this kind of user friendly environment, and we are determined
to continue this policy.
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2 Color Plates

Figure 2.1. Contour plots of the
velocity and normal stress compo-
nent in the horizontal direction in
a transient simulation of an UCM
fluid in planar contraction. The
velocity-field (top) is smooth and
well resolved but the stress-field
(bottom) shows singular behavior
around the sharp corners; the stress
components vary between extremal
values in the region of just a few
gridpoints from the corners. The
problems do not disappear on a
finer grid and this behavior together
with numerical errors finally makes
one of the eigenvalues of the stress
tensor negative so that the com-
putation breaks down. This seems
to be one of the reasons for failure
in visco-elastic simulations of this
flow-geometry. (See Section 4.3 on
page 34.)
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Figure 2.2. Blas-twave computations. In collaboration with FOA we computed
the muzzle-blast from a recoil-free hand-held gun. The picture shows the com-
puted pressure distribution. Note the complex interactions of the direct wave
and waves reflected from the ground. The computation was done using 6 blocks
of different size using a total of 85,000 points. (See Section 4.2 on page 30.)
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Figure 2.3. Supersonic computations using an air-intake geometry from
SNECMA, France. The free-stream Mach-number is set to 1.865; the figure shows
iso-mach contours. The shock system in the intake effects the thermodynamically
efficient compression for the jet engine further downstream. The intake must be
properly shaped for the compression to work over a range of flight-conditions.
The computation uses four blocks of 1252 each. (See Section 4.2 on page 30.)

Figure 2.4. Contour plot of the horizontal velocity, computed for flow over the
mid-section of a sports car. High velocities are represented in cyan/magenta and
low values in green. The block boundaries are represented by lines; only 13 of
the 16 blocks are shown in these plots. This computation uses 1252 points in
each block. (See Section 4.2 on page 30.)
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Figure 2.5. Contour plot of the reduced two-dimensional probability density
of a 3D wavepacket describing the formation of a molecule by an Eley-Rideal
reaction of two hydrogen atoms at a surface. It gives the probability to find the
atoms in a relative position b perpendicular to the surface and with a relative
distance a parallel to the surface. Note that the wavepacket has been defined for
negative a by a reflection in the a = 0 axis. (See Section 5.2 on page 42.)
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Figure 2.6. A simulation of an electron moving through a nanometer size Y-
branch switch. The movement of the electron has been calculated using the
Schrödinger equation. The height of the “bump” represents the probability of
finding the electron at that point. With a potential difference of 0.4 V between
the left and the right electrode, it is clearly seen how the electron, i.e. the current,
primarily enters the right branch. (See Section 5.1 on page 41.)
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Figure 2.7. The concentration gradients (top) and electric potential field (bot-
tom) for two dimensional forced convection flow in channel, with Pe = 100. (See
Section 5.8 on page 52.)
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Figure 2.8. Plot of total displacement of the surface from time 0.068 s to time
1.87 s with a time difference of 0.45 s. The vertical displacement is magnified by
a factor 2000. The unit of the plot is meters. Bedrock is plotted in blue color.
(See Section 5.4 on page 46.)
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Figure 2.9. An illustration of seis-
mic 2D waveform modeling. It
shows the evolution in time of the
wavefield as the energy, injected
as an acoustic point source, prop-
agates and undergoes reflections
and refractions from discontinu-
ities in the acoustic properties of
the model. The properties of the
medium vary with depth. The pic-
tures represent snapshots taken
from the framebuffer as calcula-
tions proceed. (See Section 8.1 on
page 63.)

in the paper version
This figure is only available

in the paper version
This figure is only available

in the paper version
This figure is only available
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3 Neural Modeling and

Computation

Most work in the field of Neural Networks (NNs) is today done on
standard sequential von Neumann machines. It has been pointed
out many times that such sequential computers are quite inef-
ficient for execution of NNs, as the networks themselves are in-
herently parallel. For this and other reasons it is important to
implement the NN-algorithms and architectures on parallel hard-
ware. Above all, this enables high computational capacity and
therefore also the simulation of more realistically sized NNs. This Enables the simulation

of more realistically
sized Neural Networks

allows us to investigate the scaling properties of our algorithms as
problem size increases. It also opens up the possibility of escaping
from “toy problems” to some real-world applications. A second,
perhaps less obvious, reason for this implementation research is
that the use of parallel hardware puts relevant constraints on al-
gorithm development. In this way we avoid inadequate solutions
with embedded sequential sections. The fact that we have conve-
nient access to a massively parallel computer (an 8K CM200) at
our institute further enhances our possibilities for conducting the
projects described below.

3.1 Protein Sequence Matching

Björn Levin, Anders Lansner
SANS, KTH

Higher-order units are frequently needed to improve the perfor-
mance of our network models. These units can be regarded as
“specialized sensors” or “feature detectors.” In this project we
have built such units by random formation followed by a selection
based on different statistical measures. These measures have no
knowledge of what type of data the primary sensors of the complex
unit operate on. Here we are using a feed-forward network that
leads from letter (character) sensors to units associated with doc-
uments. A Bayesian learning rule (SANS I, [Lansner and Ekeberg,
1989]) is used to calculate connection strengths and unit biases.

The methods have been applied to both free text document re-
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trieval and protein sequence matching [Levin and Lansner, 1992].
Given a short or long description of the topic of interest, document
retrieval is in this case defined as finding the documents with a
content closest to that topic. Protein sequence matching consists
of ordering a given set of protein sequences according to similarity
with one target sequence. It should be noted that, as all of these
algorithms are independent of the elements that the complex units
are formed from, it is possible to use these methods in future sys-
tems in other problem domains. The work has been carried out
using the CM and has resulted in a program that compares favor-
ably with systems based on other search schemes. For instance,
the retrieval of best matches to a protein sequence of length 200 inRetrieval of best matches

to a protein sequence of
length 200 in a database

containing 20,000 sequences
is accomplished in 3.5 seconds

a database containing 20,000 sequences is accomplished in 3.5 sec-
onds. The resulting ordering has been compared with the result
from an “editing distance”-based system and found to agree quite
well (See Section 6.1) [Wallin, 1991]. However, in that system, the
same best-match search took about 10 minutes. Our system needs
a “training” phase to form and select its complex units as well as
to form the connections from sensors to documents. This phase
currently takes around 1.5 hours for the above-mentioned protein
data base. On the other hand, it only has to be done once per
database and even allows fast addition of new documents, as long
as the text is homogeneous. (See also Section 6.1 on page 56)

3.2 Relaxation and Learning in Large Networks

Per Hammarlund, Anders Lansner
SANS, KTH

Implementing the basic Bayesian model on the CM2 was explored
first using the SANS I in [Lansner and Ekeberg, 1989] and [Levin,
1990]. Here we continue to implement the SANS model with dif-
ferent mappings of the data to the CM2. We also try to rewrite
and modify the basic algorithm implementing this model to better
fit the architecture of the CM2.

It is very often said that ANNs have inherent parallelism. In
fact, there are numerous possibilities of how parallelization can
be done. With each parallelization there are a number of possible
data-mappings onto a specific architecture. In this project we have
been looking closely at optimizing the usage of the CM2. Different
possible parallelization strategies have been tried and evaluated.
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These implementations have involved writing microcode (CMIS) Have involved writing
microcode for the CM2for the CM2 to get support for primitives that are not present

in the instruction set of the machine. This project has also in-
volved optimizing the storage and handling of very large, sparse
activity patterns both on the CM2 and on the front-end computer
[Hammarlund and Lansner, 1992, Hammarlund et al., 1993].

In the implementation of the fully connected case, one vp-set
is used and each unit is mapped to a virtual-processor. In each
virtual processor the incoming connections, i.e. the weights, are
stored in an array. They can be stored either as floating-point val-
ues or as integers of adjustable length. Learning and relaxation can
be done with only broadcast-type communication. In the sparsely
connected case, two vp-sets are used, one for the units and one for
a “compacted” array of connection weights. Here general commu-
nication is required between the two vp-sets.

On an 8K CM200 with 1 GByte main memory we can run fully
connected networks with 8–16K units using low-resolution weights
and sparsely connected networks with up to about 64K units. In
the fully connected case, learning of a couple of hundred patterns
of size 8K is a matter of seconds, and relaxation of one single
pattern takes well below one second. In the sparsely connected
case, learning as well as relaxation is somewhat slower.

Even though the CM2 is a general-purpose massively parallel
computer, it has its particularities. In the second part of this
project we have allowed ourselves to make changes in the algorithm
implementing the SANS I model, to make it fit the architecture of
the CM2 better. This work is only possible with a good under-
standing of both the hardware and the mathematics of the SANS
model. Using the understanding of the architecture, the algorithm
has been rewritten to use only primitives for which we can imple-
ment efficient code. Together with the PDP group at the IT, work
is also done in the area of languages suitable for describing these
computations; most traditional parallel languages are not optimal
for describing the sparse computations in parallel ANN implemen-
tations [Hammarlund and Lisper, 1992, Hammarlund and Lisper,
1993]. (See also Section 10.1.)
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3.3 BIOSIM: a Backend to SWIM
Per Hammarlund, Björn Levin, Anders Lansner
SANS, KTH

The BIOSIM program for the CM2 [Levin et al., 1990, Hammarlund
et al., 1991, Hammarlund et al., 1992b, Hammarlund et al., 1992a]
is aimed at giving researchers the opportunity to run very large
biologically realistic simulations. On an 8K CM200 BIOSIM is ca-
pable of simulating, for instance, 32 thousand cells and four mil-
lion connections or 128 thousand cells and one million connections.
Simulation-times are typically in the order of minutes to hours per
second simulated time.

BIOSIM is integrated with SWIM, a simulator for workstation
environments [Ekeberg et al., 1993, Ekeberg et al., 1990], in such a
way that the transition from simulating smaller networks, or parts
of the complete network, to simulating the complete, full size net-
work is easy. The researcher need not bother with the particular-
ities of the CM2; the interface is still SWIM and its specification
language.

The BIOSIM program has been written to take advantage of theTake advantage of the
inherent SIMD-type
parallelism in this
type of simulation

inherent SIMD-type parallelism in this type of simulation and also
to make the most use of the CM2s floating-point hardware and fast
communication network. Informally speaking, this implies solving
the stiff, coupled differential equation of the same form in parallel,
and also to handle synaptic communication in parallel.

Work is currently under way to improve the handling of the
very large amounts of simulation data. One bottleneck of the cur-
rent system is the sequential parsing and inheriting process of the
object-oriented specification file. This is being implemented in
parallel on the CM2 – inheritance of the object-oriented specifica-
tion of a neural network will be done in parallel. Work is also done
to analyze the simulation result in parallel on the CM instead of
bringing large amounts of data to the front-end computer.

3.4 Hebbian Cell Assemblies
Erik Fransén, Anders Lansner, Hans Liljenström
SANS, KTH

Recurrent Neural Network (NN) models, so-called “attractor net-
works”, can be regarded as mathematical instantiations of Hebb’s
cell assembly theory [Hebb, 1949] of cortical associative memory.

24 Neural Modeling and Computation



To investigate the biological relevance of these abstract models we
have tried to make a network comprised of biological neurons op-
erate as a content addressable memory (CAM) in much the same
way as e.g. a Hopfield network. In particular, we have studied the
ability of such a network after-activity as proposed by Hebb, and
to perform pattern completion and reconstruction.

In the first study, nine neurons were simulated using the Spine
simulator [Fransén and Lansner, 1990] running on the Apple Mac-
intosh II. The following study, with a network of fifty neurons,
using the simulator SWIM [Ekeberg et al., 1991] for workstations,
verified the earlier results: neurons modelled on spinal motor neu-
rons are not able to support after-activity, whereas when using
cortical pyramidal cell models, the network function can be quite
similar to that of a recurrent ANN [Lansner and Fransén, 1992].
The operation of this network is now studied when effects from
various neuro modulators are applied. In this way the different
operations of the network can be enhanced or inhibited. A larger
assembly size for the motor neuron network has been tested, show-
ing preserved functional features. The assembly operations were
shown to be robust when adding geometry-dependent axonal time-
delays up to 10 ms [Fransén et al., 1993].

A more elaborate network model of a cortical “microcolumn” is
now under study. In the first step two new cell types have been
developed. One version with 50 columns (750 neurons) has been
used to explore features of the column model. Tests with a larger
network (2000 neurons and 200,000 synapses) have been done with
the BIOSIM simulator for the CM2.
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4 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the art and science of
computational modeling of fluid-flow phenomena under various
physical conditions. The mathematical models are variants of
the non-linear Navier–Stokes equations which can have very com-
plicated solutions. Numerical simulations of these problems are
therefore a necessary complement to the theoretical and experi-
mental analyses. CFD is also pursued as an engineering discipline
because it leads to better products and to savings in the design
process.

Most CFD simulations today are made with discretizations whichMake progress by constructing
computationally efficient

methods and by exploring
the possibilities offered by

massively parallel computers

are not sufficient to completely resolve all interesting physical
scales. What is lacking is both computational power and phys-
ical memory size. However, it is still possible to make progress by
constructing more efficient numerical methods and by exploring
the new possibilities offered by massively parallel computers.

The CM is now routinely used for both pilot studies of a prob-
lem and for production runs with programs already developed.
The method development projects under way in the CFD area ex-The CM is routinely used

for both pilot studies
and production runs

plore several different directions: methods for unstructured meshes
(Section 4.1), adaptive finite-element methods (Section 4.4), finite-
volume methods (Section 4.2) and high-order finite-difference meth-
ods (Section 4.6). The more application-oriented projects cover
non-newtonian fluid flow (Section 4.3) and the initial stages of a
study of detonation wave phenomena (Section 4.5).

The CFD projects have also inspired international contacts with
groups working at EPFL, Switzerland and CERFACS, France.

4.1 Compressible Flow Computations using
Unstructured Meshes
Lars Bomholt, Rémi Choquet, Pénélope Leyland
IMHEF, EPFL, Switzerland

Massively parallel computers of SIMD-type have been very suc-
cessful in solving partial differential equations on structured grids.
The use of unstructured meshes, however, has many advantages for
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modeling as well as for computation, as good solutions can be ob-
tained at a relatively low cost using conceptually simple adaptive
mesh refinement in critical areas. Unfortunately, the implemen-
tation of such codes is not straightforward. The data structures
are generally more complex than for programs using structured
grids, and the communication patterns associated with unstruc-
tured meshes can lead to low performance.

The aim of our project is to study the problem of efficiently im-
plementing such codes for compressible flow simulations on mas-
sively parallel machines. As a practical example, two different
types of numerical schemes for solving the 2D compressible Eu-
ler equations have been implemented on the CM200 in Fortran 90
using the data-parallel approach.

The first scheme is an explicit/implicit scheme of pseudo-Newton
type. It is based on a conservative formulation of the equations
and involves flux balance estimations at element interfaces and
the resolution of linear matrix subsystem by an iterative method.
The second code uses an entropy-variable formulation in a fully
non-linear implicit scheme, presenting a complete range of large
sparse matrix manipulation techniques as well as the resolution of
matrix subsystems. [Bomholt et al., 1992, Bomholt and Leyland,
1992]

A successful implementation of finite-element codes on a fine-
grained, massively parallel machine requires communication to be
reduced as much as possible, via adapted data structures, algo-
rithms, and machine dependent means such as communication
compilation and mapping.

Explicit/implicit code

The underlying numerical scheme is based on an explicit step with
a two-step predictor-corrector scheme to compute a residual b. In
the explicit version, the time-step for the flow field is directly com-
puted from b. In the implicit scheme, the time step is computed
from a linear system of equations Ax = b, where the sparse ma-
trix A is the sum of a linear approximation of the operator and
a diagonal mass matrix. Space discretization is by triangular P1
finite-elements.

Due to its generality and simplicity this scheme forms an ideal
basis for studying various aspects of an implementation. The im-
plicit version is also used to compare different iterative methods for
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solving the sparse matrix equations. Two methods are currently
implemented; one is the standard Jacobi relaxation, the second a
preconditioned GMRES (generalized minimal residual) method.

In the implementation on the CM200, both element and node
data structures are used. The node and element data are partially
replicated at elements and nodes, respectively, in order to avoid
unnecessary communication. This isolates the communication op-
erations between the node and element data structures (gather
and scatter) and allows a better optimization. The remaining el-
emental and nodal computations do not require any further com-
munication and can be fully executed in parallel. Analogously,
an additional node-neighbor data structure is necessary for the
assembly and the storage of the sparse matrix A in the implicit
scheme.

For communication, such as the scatter and gather operations
both the FastGraph communication compiler and the CMSSL com-
munication primitives provided on the CM200 have been used.
Both involve a preprocessing step, in which the communication
patterns are optimized and stored for subsequent use. Whereas
the CMSSL routines allow a quite straightforward implementation
of the typical finite-element gather and scatter operations, Fast-
Graph is more general and is therefore more complicated to use.
The preprocessing time with FastGraph is considerably longer, but
the performance slightly better.

Communication is further optimized by techniques for mapping
the data structures onto the distributed memory of the computer.
Finding the optimal mapping is, in principle, an NP-complete
problem, but with efficient heuristic algorithms a comparably good
mapping is found in a reasonable time. For a fine-grained machine
like the CM200, simulated annealing and similar deterministic al-
gorithms based on pairwise exchange with optimization of a global
cost function have been used with good results. Quite surprising
is the efficiency of a simple randomized mapping, which yields
almost as good performance at a much lower preprocessing cost.

The following performance results have been obtained by solv-
ing the sample problem (25,025 nodes, 49,152 elements) on an
8K CM200. Randomized mapping and the communication primi-
tives from CMSSL version 2.2 have been used.

The following tables show the time spent in the different parts
of the program and the true floating-point performance in 32-bit
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MFlop/s. The first table shows the relations for the evaluation
of the residual b, which represents most of the computation to be The main obstacle to higher

performance is the time
spent in communication

performed in the explicit version. The second table shows the rela-
tions for a matrix vector product Ax, which is the dominant type
of operation in the iterative matrix solvers. The main obstacle to
higher performance is the time spent in communication.

Program Part Relative Time in % MFLOPS

Communication Gather 24
Scatter 38

Computation Bulk 24 400
B.C. 14 3

Total 100 96

Program Part Relative Time in % MFLOPS

Communication Gather 88
Computation MatVec 12 680

Total 100 82

A serial Fortran 77 version of the same code has been generated
for traditional sequential computers; it has also been fully vector-
ized for CRAY vector computers. The CPU times for solving a
problem on an 8K CM200 and on one processor of a CRAY Y-MP
are currently about the same.

Implicit code

The second scheme is a non-linear and implicit. It uses an al-
ternative formulation of the Euler equations. The system is sym-
metrized with a change to entropy variables; thus the weak formu-
lation automatically enforces the second law of thermodynamics.
To improve stability, the Petrov-Galerkin formulation introduced
by Hughes is employed. At each time-step of the scheme, a non-
linear system of equations needs to be solved. The implemen-
tation uses the non-linear Generalized Minimal Residual method
(GMRES), an iterative algorithm based on Krylov-subspace projec-
tion methods that is very efficient for large problems. It involves
a matrix-times-vector assembly, performed directly on the Con-
nection Machine; smaller, dense sub-problems are solved on the
front-end by QR-factorization and resolution of successive trian-
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gular problems. This method avoids the use of global matrices,
which contributes to a reduction in global memory requirements.

Each mesh point and all its neighbors are contained in a local
data structure. As a consequence, the element integrals can be
evaluated without further communication. This implementation
has proved to be slow, because excessive redundant operations
were found to be more time-consuming than scatter operations.
A second method was thus implemented, using an element-by-
element data structure. Then the scatter/gather routines found
in CMSSL could be more extensively employed. In the method
the most expensive operation was the node-to-node communica-
tion when the solution was updated after each step of the GMRES
algorithm, whereas in the optimized version this was no longer the
case. However, compared to the explicit/implicit code described
in section 4.1, it is the actual resolution process of the assembled
element integrals which become time-consuming.

The first implementation is now completed, but many optimiza-
tions remain to be tested. This code is more of an experimentalAn experimental platform for

testing non-linear algorithms
and their implementation

on parallel machines

platform for testing non-linear algorithms and their implementa-
tion on parallel machines than a candidate for production simula-
tions. The discretization technique involves element-by-element
discretization of the governing equations, which is particularly
adapted to SIMD machine architectures. The extension of such
methods to MIMD machines, using domain decomposition tech-
niques, could be even more promising. In particular, the domain-
decomposition approach could act as a preconditioner, enhancing
the efficiency of the numerical non-linear Newton type scheme.

4.2 Multi-Block Methods for Compressible Flows

Magnus Bergman
C2M2, KTH
Per Wahlund
TDB, Uppsala University
Mark Sawley, Jon Tegner
IMHEF, EPFL, Switzerland

A study of the parallel computation of 2D/3D, inviscid/viscous,
compressible flows using structured meshes is being undertaken as
a collaboration between PDC/C2M2/KTH and IMHEF/EPFL. The
aim of this project is the development of efficient solvers that are
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portable over a range of parallel architectures.
In order to compute flow in complex geometries using struc-

tured meshes, multi-block methods are often employed. In such
methods, the flow region is divided into a number of sub-domains
(blocks) based on geometrical considerations. Structured meshes
are constructed for each of the sub-domains. Such methods, which
retain the possibility of using relatively simple numerical algo-
rithms, also lend themselves in a natural way to parallel compu-
tation.

Two different forms of parallelization can be distinguished: fine-
grain parallelism at the mesh cell level, and coarse-grain paral-
lelism at the block level. Depending on the programming models
available, either or both of these forms can be employed. The
data-parallel programming model employed by the CM200 is bet-
ter adapted to fine-grain parallelism, while a control-parallel pro-
gramming model is generally employed on multi-processor com-
puters. More recent parallel computers, such as the CM5, provide
several different programming models. In the present study, both
data- and control-parallel models are being studied. [Sawley and
Bergman, 1991, Sawley et al., 1992, Sawley, 1993]

The basic code employed in the project was originally designed
as a general code for several different computer architectures. The
code solves the time-dependent Euler equations (for inviscid flows)
or Navier–Stokes equations (for viscous flows) using a finite volume
method based on spatial central differencing. Both second- and
fourth-order artificial dissipation are added for stability reasons.
The system of discretized equations are integrated in time using an
explicit five-stage Runge-Kutta scheme, using either global (time-
accurate) or local time-stepping.

In an initial phase, the application of the data-parallel approach
has been studied for single-block calculations. Both a Fortran 77
version (optimized for vector computers) and Fortran 90 versions
(optimized for SIMD computers) of the code have been developed
with the goal of examining both the performance and portability of
the code on different computer systems. A detailed performance
study has been undertaken for a simple 2D inviscid flow prob-
lem, using a wide range of computational mesh sizes (and hence,
problem sizes). Timings have been obtained for CM200/CM5 and
MP-1/MP-2 computers of different size, as well as for a series of
CRAY vector computers and a (serial) high-power HP 700 work-
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Figure 4.1. Performance measured
as a function of problem size for
a 2D inviscid flow problem using
a single-block mesh for a range
of CM200 computers (left), and a
number of different single-processor
vector and serial computers (right).
The computations have been per-
formed with 32-bit precision on the
CM200 and 64-bit precision on the
other computers.

1

10

100

1000

Pe
rf

or
m

an
ce

  [
M

Fl
op

/s
]

6 8 10 12 14 16 18 20 22 24

log 2 (Number of mesh cells)

CM-200 (4K)

CM-200 (8K)

CM-200 (16K)

CM-200 (32K)

1

10

100

1000

6 8 10 12 14 16 18 20 22 24

log 2 (Number of mesh cells)

HP 9000/730

Cray Y-MP C90

Cray Y-MP 4E

Cray 2

station. Some of the performance values obtained from this study
are presented in Figure 4.1. These results reveal that for medium
to large problem sizes, the CM200 performs at similar or higher
speeds than a single-processor vector computer. For example, the
8K CM200 performed the computation at 265 MFlop/s for theThe 8K CM200 performed

the computation at
265 MFlop/s, a factor of

1.4 times faster than a
single processor CRAY Y-MP

largest mesh considered (limited by the available memory), a fac-
tor of 1.4 times faster than a single processor CRAY Y-MP, while
a 32K CM200 performed at 1.06 GFlop/s, 2.0 times faster than a
single-processor CRAY C90. For small problem sizes, however, the
performance of the CM200 is significantly lower, due to the fact
that not all the processors are active. (It should be noted that
the performance values quoted here for the CM200 are for 32-bit
precision only; this was found to be of sufficient accuracy for the
present flow problem.) Further details concerning this study can
be found in [Sawley and Bergman, 1993].

The Fortran 90 versions optimized for the CM200 and MP-1, dif-
fer slightly because of the different syntax of the data distribution
directives and the different relative efficiencies of shifting data; the
CSHIFT intrinsic is more efficient than array syntax on the CM200.
Nevertheless, both version could be compiled without modification
using the NAG Fortran 90 to C compiler/translator, while only
minor modification (to eliminate currently unavailable intrinsic
functions) was needed to compile the code using the CRAY fpp
pre-compiler. The Fortran 90 code could therefore be employed to
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undertake the computations on either a workstation or a vector
computer, albeit at a reduced efficiency compared to that obtained
using the Fortran 77 code version.

Two different extensions of the basic code to compute more com-
plex flows using the multi-block approach have been implemented
on the CM200. The first computes the flow in individual blocks
using the data-parallel approach, with each block being computed
in a sequential manner.

For the second extension, the basic task of mapping a set of
blocks to memory has been studied for both SIMD and MIMD
architectures. An incremental one-pass algorithm for the packing
problem in 2D has been developed. Several different criteria for
the successive placement of the blocks are employed, with blocks
being processed in order of descending size. For the problem of
mapping a small number of blocks to a larger number of processors,
a subdivision algorithm for the 3D case is currently being studied
in collaboration with CERFACS.

An implementation that employs a combination of data-parallel
and control-parallel methods has also been investigated using the
CM200. [Sawley, 1993] While the CM200 is usually considered to
be a “pure” SIMD computer, the parallel processing unit is divided
into a small number of partitions, e.g. 2×4K for the 8K CM200 at
KTH. Each partition can communicate with the front-end via a
separate sequencer, and thus independent jobs can be executed on
the machine in parallel. Communication and serial data-transfer
between the partitions can be made via the front-end, but more
efficient transfer is possible via the DataVault. Such a configura-
tion has been employed to execute the multi-block code described
above. Each block is computed in a data-parallel manner on a
partition, with the transfer of data between partitions being un-
dertaken using simple message-passing style commands (involving
barrier synchronization). Unfortunately, for the CM200, even us-
ing the parallel route via the datavault, the data-transfer rate was
found to be insufficient to allow good performance to be obtained
for the multi-block computations. Nevertheless, it is expected that
such a combined data/control parallel method may lead to perfor-
mance advantages for the next generation of distributed-memory
parallel computers, such as the CM5. (See Figures 2.2, 2.3, 2.4 on
pages 14 and 15.)
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4.3 Non-Newtonian Fluid-Flow
Fredrik Olsson, Jacob Yström
C2M2, KTH

Many fluids such as blood, dyes, and yoghurt have complicated
relations between stresses and strains. They are usually called
non-newtonian fluids. The elastic mechanisms in visco-elastic flu-
ids at solid boundaries are not well known, and one has observed
a special type of vortices close to sharp corners, the so-called lip
vortices, not seen in newtonian fluids . For visco-elastic fluids, the
Upper Convected Maxwell (UCM) model relates the stress tensor
to the strain-rate tensor by a relaxation model,

λdτ/dt = ηγ − τ

where λ is the relaxation time, or material memory, γ the strain
rate, τ the stress tensor, and η is a viscosity coefficient. It reduces
to the familiar Newtonian linear relation in the limit of zero relax-
ation time. (This conjecture has not yet been completely proven.)
The UCM is a prototype of most models in practical use for visco-
elastic fluids. Computations with these models are notoriouslyComputations with these

models are notoriously
difficult and often

give solution blow-ups

difficult and often give solution blow-ups. We have shown, how-
ever, that the Cauchy problem for an UCM fluid is well-posed and
hence short-time numerical calculations should be possible, if the
adequate solid-wall boundary conditions can be applied. [Olsson
and Yström, 1993]

Flow in a Contracted Channel

Computations on a rectangular contraction were performed using
the CM200. The geometry used is of great interest both from the
theoretical point of view and in applications: the coating of paper
and the dispensing of dairy products both use flow geometries that
are contracted channels. In the paper application, it is of interest
to control the swelling of the fluid after the contraction, and in
the dairy application the stresses themselves must be monitored
lest the product quality be impaired. Resolution of the extremely
high stress gradients at corners requires a large number of grid
points. The CM simulations were done with sharp corners. The
blow-up does not go away with increased spatial resolution. This
indicates that the (unphysical) sharp corners induce breakdown
of solutions. We are currently computing the dependence of the
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flow, in particular the stress gradients, on the corner radii. (See
Figure 2.1 on page 13.)

4.4 Adaptive Finite-Element Methods

Kenneth Eriksson, Peter Hansbo, Claes Johnson
Department of Mathematics, CTH

The main objective of our work is to investigate principles for
the implementation of adaptive finite-element methods on mas-
sively parallel architectures such as the Connection Machine (CM).
Specifically, we have considered the implementation of the stream-
line diffusion (SD) method, which is a general finite-element method
for hyperbolic-type problems such as convection-diffusion prob-
lems and the Euler and Navier–Stokes equations of incompressible
and compressible flow. Our work so far has focused on SD methods
for compressible flow on unstructured grids in 2D and SD methods
for the neutron transport equation. We first give a brief descrip-
tion of the SD method, and then turn to parallelization aspects of
the above items. For a complete account, see [Hansbo and John-
son, 1992] and [Eriksson et al., 1992].

The SD method is a modified Galerkin method based on space-
time finite-element discretization with piecewise polynomial basis
functions, discontinuous in time and continuous in space. The
SD method contains the following two modifications of the stan-
dard Galerkin method: a weighted least-squares modification giv-
ing control of the residual of the finite-element solution, and an
introduction of artificial viscosity depending on the local residual
and the local mesh size. The residual is obtained essentially by
plugging in the discrete solution into the continuous equation. The
role of the modifications is, roughly speaking, to increase stability
without sacrificing accuracy.

We have done an implementation on the CM200 of the space-
time oriented SD method for time-dependent compressible flow on
unstructured grids in 2D. In an unstructured finite-element code,
two primary data sets are needed: elements and nodes. Typically,
each element and each node is independently associated with a
processor. The primary operations in each time-step for a time-
dependent problem concern formation of element-level matrices
and residual vectors and solution of a global system of equations.

The coupling of elements and nodes is usually represented by an
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array ITRI such that ITRI(i,j) contains the global node number
of node i in element j.

Information must be passed from nodes to elements in a gather
operation and from elements to nodes in a scatter operation. On
an unstructured mesh this requires general communication. The
gather and scatter operations are supported through the CMSSL
library. It contains routines that help the programmer set up a
static communication pattern, which allows efficient communica-
tion as long as the mesh is not changed.

SD methods for the neutron transport equation

We have conducted a study of the parallelization of numerical
methods for the neutron transport equation. This equation serves
as a model for the kinetic equations of gas dynamics, such as
the Boltzmann and Vlasov equations. These models play a fun-
damental role in physics and astrophysics, and their solution re-
quires massive computational work because of the seven indepen-
dent variables x, v, t, where x is a space coordinate, v is velocity
and t is time. Thus even a moderate number of degrees of freedom
in each variable will make the total number of degrees of freedom
very large, and only massive parallelization appears to be able to
provide the required computational power. We have studied dif-
ferent parallelization strategies, e.g. parallel over x and sequential
over v and vice versa, for numerical handling of the neutron trans-
port equation. We have completed an implementation in a model
case, where the SD method is used to solve the transport equation
for each given velocity, i.e. parallel over x and sequential over v.

We give a numerical example concerning neutron transport in
2D with initial angular flux equal to 1.0 in a disc of radius 0.25 for
all angles, and with given source equal to zero. The computational
domain, (0, 1)× (0, 1), was divided into 90× 90 elements, and the
time-step was set to k = 0.03. In Figure 4.2 we show part of
the mesh and the scalar flux after one time-step, using 40 discrete
angles. In Figure 4.3 we show the scalar flux after 10 time-steps,
using 20 discrete angles (left) and 40 discrete angles (right).

Conclusion
Efficient implementation of
finite-element methods on
the CM system is possible

Our research so far indicates that efficient implementation of finite-
element methods on the CM system is possible on fixed unstruc-
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Figure 4.2. Part of the mesh and
scalar flux after one time-step.

Figure 4.3. Scalar flux after 10
timesteps, using 20 discrete angles
(left) and 40 discrete angles (right).

tured grids. In our future work we plan to concentrate on problems
related to dynamic adaptive mesh modification.

4.5 Detonation Waves in 2D and 3D
Björn Sjögreen
CERFACS, Toulouse, France
Jean-Christophe Thil
University of Grenoble, France

The Euler equations in gas dynamics are routinely solved for the
simulation of gas flows. We have studied the flow of a gas in
which an exothermic chemical reaction is taking place. When a
shock wave is sent into a premixed reactive gas, the gas is ignited
by, and a reaction zone develops behind the wave. This is called
a detonation wave.

Similar phenomena can be found in the flow past a hypersonic
vehicle during reentry from orbit. The extreme heat in such a flow
dissociates the air molecules. Furthermore, it has been proposed
to use scramjet engines with a standing detonation wave to propel
aircraft at extremely high velocities. The numerical simulation of
these phenomena is therefore of great interest.
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It turns out that there are numerical difficulties associated with
this problem, due to the very large reaction rates, which give rise
to a very thin reaction zone. If this zone is not resolved by the
numerical computation, incorrect wave velocities are obtained. We
have previously studied this phenomenon [Engquist and Sjögreen,
1991, Engquist and Sjögreen, 1989] and tried to design a better
numerical method. We now plan to extend these results to a
problem with a larger number of chemical reactions.

In the beginning of 1992, a code to simulate two-dimensional
detonations with one reaction was implemented on the Connection
Machine. In the spring of 1992 the code was extended to include a
hydrogen-oxygen model. This work was done for a master’s thesis.

Our experience with CM Fortran is overall positive. Some pecu-
liarities have been noted, however. As an example, an array with
four quantities at each grid point is best declared u(4,ni,nj).
The code with declarations u(ni,nj,4) is about 50 times slower.
This is unsatisfactory. Compilation and linking is somewhat slow:
compiling and linking the entire code takes about half an hour.
Still, the ease of access to the CM is a very big advantage, whichThe ease of access to the

CM is a very big advantage greatly eased the work of implementing and debugging the code.
Performance on an 8K CM200 is around 100 MFlop/s in the com-

putationally intense parts of the code. The program has been run
on a CRAY X-MP at 50 MFlop/s, on an Alliant FX80 at 10 MFlop/s;
and a similar, but three-dimensional computation on a 32 proces-
sor iPSC/2 hypercube ran at 8 MFlop/s. So far, we have been
able to run the two-dimensional one-step chemistry program on
the CM. The multi-component chemistry is under development.

4.6 Data-Parallel High-Order Difference Methods

Pelle Olsson
TDB, Uppsala University

In this project we have studied how fluid-flow equations, such as
the Euler and the Navier–Stokes equations, can be solved on a
data-parallel computer. In particular, we have derived numerical
methods that employ the inherent parallelism of the mathematical-
physical problem.

In many ways, data parallelism offers a more natural approachData-parallelism offers a
more natural approach to

programming than does
the sequential paradigm

to programming than does the sequential paradigm. The typical
problem of proper loop ordering very often has little or no bearing

38 Computational Fluid Dynamics



at all on the real problem; the physical problem evolves concur-
rently over the whole domain. The key issues in parallelizing are:
communication, concurrency, and memory usage. In general, there
is a trade-off between these properties. To reach a high degree of
concurrency, or to reduce communication, one may have to use
more memory. This type of memory usage has no counterpart on
a serial computer. In the context of fluid-flow equations the consid-
erations above pertain to boundary conditions, difference stencils,
and coordinate mappings onto the computer. The findings of this
research are presented in a doctoral dissertation submitted to the
Department of Scientific Computing, Uppsala University [Olsson,
1992]. We give a brief summary below.

To be of practical importance, a numerical method must be sta-
ble, that is small perturbations cannot be allowed to grow without
control. Stability of the numerical method can only be achieved
if the original mathematical-physical problem is cast into a form,
which suppresses uncontrolled growth. It is shown how this can
be done for linear symmetric hyperbolic and parabolic systems in
several space dimensions. Existing stability results usually rely on
the assumption of smooth domains. We extend these results to
include the case when the boundary is non-smooth [Olsson, 1991].
As an illustration we consider the linearized Euler and Navier–
Stokes equations, including the energy equation.

Since finite-difference methods are employed, the domain of def-
inition of the discretized PDE is assumed to be diffeomorphic to
an n-dimensional hypercube. These domains have the benefit that
they can be efficiently mapped onto the computer topology by ex-
isting parallel compilers, such as the CM Fortran compiler. We
show how to derive stable semi-discrete schemes of arbitrary order
of accuracy using one-sided difference stencils at the boundaries.
The effects of the boundary conditions are taken into account. We
refer to [Olsson, 1991] for details.

It is demonstrated that the boundary conditions may be viewed
as projection operators. This observation forms the basis for the
implementation on parallel computers of SIMD-architecture. On
a serial computer, the time spent evaluating the boundary con-
ditions is negligible compared to the time needed for updating
the interior points. This may not be the case on a parallel com-
puter. Assuming that the number of boundary operations is of
the same order of magnitude at each boundary point, the simplest
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implementation leads to a total execution time for enforcing the
boundary conditions proportional to the number of boundary por-
tions that must be treated separately. Clearly, a highly irregular
boundary may reduce the inherent concurrency. We have shown,
however, that the boundary conditions for parabolic and hyper-
bolic PDEs may be concurrently evaluated, even if the boundary
is non-smooth. We provide an explicit example how this can be
done using CM Fortran in case of the Euler and the Navier–Stokes
equations [Durand and El Dabaghi, 1991, Olsson, 1991]. The best
performance is achieved if gradient-free boundary conditions are
used. We prove that such side conditions indeed yield stable nu-
merical approximations of the Euler and the Navier–Stokes equa-
tions.

We have also derived boundary-modified, semi-definite artificialThe current implementation
of a fourth order Euler solver

using eighth order artificial
viscosity runs at about

300 MFlop/s on the CM200

viscosity operators of arbitrary order of accuracy. The viscos-
ity operators are presented in a form that is particularly well-
suited for the implementation on data-parallel computers. Two
CM Fortran arrays per space dimension are needed, independently
of the order of dissipation. The current implementation of a
fourth-order Euler solver using eighth-order artificial viscosity runs
at about 300 MFlop/s (double precision) on the CM200.

40 Computational Fluid Dynamics



5 Applications in Physics

The number of projects in this area has increased considerably;
both those doing production runs and those that are in a develop-
ment phase. Some of the projects study field problems by numer-
ical solution of conservation laws such as the Poisson, Schrödinger
or wave equations, for which the CM200 is ideal. It is interesting to
note that there are many different types of studies, such as eigen-
value analyses of very large collections of small matrices, a model
for turbulent flow made up of particle-like vortices in a quad-tree
structure, and Monte Carlo (MC) simulations of spin glasses. We
note in passing that simple variants of MC are ideal for the CM200
and that we have seen fewer MC-projects than expected.

The ongoing projects in production come from a variety of
fields: supersymmetry in condensed matter (Section 5.10), ground
vibrations (Section 5.4), hierarchical models of turbulence (Sec-
tion 5.5), quantum surface phenomena (Section 5.2), high tem-
perature superconductivity (Section 5.3) and quantum electron-
ics (Section 5.1). Application programs and methods are being
developed in areas such as: smooth particle hydrodynamics (Sec-
tion 5.6), disordered magnetic systems (Section 5.7), evolutionary
models (Section 5.9) and electrolytic flow (Section 5.8).

5.1 A Quantum Electronic Y-branch Switch

Thomas Palm
Microwave Engineering, KTH

With the current trend in miniaturization of electronic compo-
nents it is inevitable that we will soon reach the point where the
wave nature of the electron will have to be taken directly into ac-
count. While this causes problems for some components like the
conventional transistor, it also creates an opportunity for making
new devices.

The wave nature of electrons is quite similar to that of pho-
tons. It is therefore natural to use optics as a source of inspiration
for possible components. At the Department of Microwave Engi-
neering we are developing an electronic Y-branch switch, which
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has been shown to have some advantages over existing transistors.
[Palm et al., 1993]

In the first experiments this device is supposed to be imple-
mented using a so called modulation-doped split-gate structure.
My model is split into two parts: one semi-classical, describing
the distribution of the electric potential and background charges
in the structure, and a more exact, fully quantum-mechanical de-
scription of the conduction electrons. Both steps rely heavily on
the FFT routines in the CMSSL library.The advantage of a

numerical approach In order to verify the model, I have also simulated other com-
ponents such as an Aharonov-Bohm interferometer and a point
contact. The advantage of a numerical approach is that many
different components are very simple to simulate using the same
code. (See Figure 2.6 on 17.)

The program is written in C*. This incurs a rather heavy speed
penalty over working in CM Fortran which is better supported by
Thinking Machines. Nevertheless the advantages of a better lan-
guage is repaid in reduced development time. In my case simula-
tions rarely take more than a minute per data point, or 20 minutes
in total.

5.2 Quantum Wavepacket Studies

Mats Persson
Department of Applied Physics, CTH
Bret Jackson
Department of Chemistry, U. of Massachusetts, Amherst, USA

A wide variety of important surface phenomena like catalysis, sur-
face chemical reactions, plasma-wall interactions, and growth of
materials, can only be understood from an analysis of elemen-
tary dynamical processes at surfaces. Examples of such processes
are sticking, desorption, diffusion, tunneling through and climbing
over reaction barriers and gas-surface energy transfer. The rapid
advances and developments in experimental methods for the study
of such processes like molecular beam scattering, time-resolved
laser spectroscopy in the femtosecond domain, and scanning tun-
neling spectroscopy makes this field a timely subject for theoretical
studies.

In many cases a quantum-mechanical description is needed, and
the associated complexity often makes it necessary to perform
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computer simulations of detailed models. We have an ongoing
project where we study such processes using pseudospectral meth-
ods for time-dependent propagation of multi-dimensional wavepack-
ets on the CM. In these methods the multi-dimensional wavefunc-
tion is represented on a grid, and in each time-step the action of
the kinetic part of the Hamiltonian on the wavefunction is handled
by an FFT of the wave-function. The limiting factors in the com-
putations are then determined by the primary memory needed to
represent the wave function and the speed of the FFT subroutines.
A parallel machine like the CM200 is found to be very well suited A parallel machine like

the CM200 is found to
be very well suited to
handle these factors

to handle these factors.
At the moment we are studying a prototype catalytic surface

reaction: the formation of hydrogen molecules by the recombina-
tion of an incoming hydrogen atom with an adsorbed hydrogen
atom. This reaction is of prime interest in understanding the for-
mation of hydrogen molecules in interstellar space and also for
plasma-wall interactions in fusion reactors. Recent experiments
have suggested that the reaction follows an Eley-Rideal mecha-
nism, where the incoming atom reacts directly with an adsorbed
atom.

We have earlier performed two-dimensional wavepacket studies
of this process in a restricted collinear configuration, where we
were able to show that this kind of reaction can produce the ob-
served high vibrational excitations of the molecules formed [Jackson
and Persson, 1992]. However, this study was done on a SPARC
workstation and a CRAY and, due to the limited primary memory
on the machines available to us, could not be extended to a less
restrictive model yielding full rovibrational distributions and re-
active cross-sections. The large primary memory of a CM200 and The large primary memory

of a CM200 allows us to
study a more realistic model

also its high speed allows us to study a more realistic model. This
model includes all six degrees of freedom of the two atoms and uses
a potential energy surface which effectively reduces, by introduc-
tion of three conserved quantities, the six-dimensional problem to
a three-dimensional in curvilinear coordinates. We have developed
an efficient method to handle the kinetic part in these coordinates.

We are now obtaining results for reaction probabilities and in-
ternal state and translational energy distributions of the formed
molecule. In Figure 2.5 on page 16 we show a snapshot of the re-
duced two-dimensional probability densities of the three-dimensio-
nal wavepacket in the reaction zone. As shown in Figure 5.1, the

Applications in Physics 43



Figure 5.1. Internal rotational
and vibrational state distributions
of a para-hydrogen molecule formed
in an Eley-Rideal reaction at a sur-
face. The heights of the peaks,
P(n,j), give the relative probabil-
ities for finding the molecule in
rotational states j and vibrational
states n. The solid circles give the
energy positions of the different ro-
tational states j = 0, 2, 4, ... in a
definite vibrational state.
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produced molecule ends up in highly excited vibrational and rota-
tional states. The large amount of rotational excitations are due
to the reaction only taking place for a narrow range of impact
parameters. A quantum effect of this steric constraint results in a
distribution that is much broader than the result from a classical
treatment.

The original Fortran 77 code for the propagation of the wavepacket
has been straightforward to transfer to CM Fortran, in part due
to its simple structure. The code consists of one part that initial-
izes the incident wavepacket on the grid and runs on the front-end
with minor modifications of the code. The time-consuming part is
the discrete FFT in the time-propagation. This routine has been
replaced by the versatile CMSSL routine, and we have followed
the standard recipe for its optimization. We have enjoyed theWe have enjoyed the

possibility of using
Bellman interactively

in the development
and debugging phase

possibility of using Bellman interactively in the development and
debugging phase.

Presently one time-step takes about 1.3 second for a grid size
of 1283 in single precision, and the final state analysis requires
about 4000 time-steps. The plot of the reduced two-dimensional
probability densities in Figure 2.5 takes about 20 minutes, while
the final state internal energy distribution of the formed hydrogen
molecule shown in Figure 5.1 takes less than 2 hours. This allows
us to make rather extensive studies of the “topological” effects
of different potential energy surfaces on the reaction. The large
primary memory size of a CM200 also makes it feasible to study
the isotope effect on the reaction by considering also deuterium.
In this case the larger mass makes it necessary to have a grid
size of 2563. The representation of the wavefunction on such a
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grid requires a memory space of about 128 MByte for the array in
double precision, and we need at least 5 such arrays.

In summary, the computational study of dynamical processes
at surfaces using multi-dimensional quantum wavepackets is very
computationally demanding and also well-suited for a parallel ma-
chine like Bellman. For instance, a calculation using a more realis-
tic potential energy surface requires a higher-dimensional wavepacket,
up to six dimensions, which would require a machine with much
larger primary memory and speed. The availability of Bellman has The availability of Bellman

has made it possible for us
to go beyond the simplified
two-dimensional models
for quantum dynamics
to more realistic models

made it possible for us to go beyond the simplified two-dimensional
models for quantum dynamics to more realistic models. For in-
stance, recent molecular-beam experiments have shown most sur-
prisingly that a weakly van der Waals bonded hydrogen dimer,
(H2)2, survives the collision with a surface, and we are now in
a unique position to understand the quantum dynamics of this
process by using our program developed on Bellman.

5.3 Order Parameters in High Temperature
Superconductors

Fabian Wenger, Stellan Östlund, Anders Eriksson
Institute for Theoretical Physics, CTH

The phase transition of a material to a superconducting state can
be described by an order parameter which measures the tendency
of electrons to form pairs. Since the discovery of new supercon-
ducting materials with unusually high transition temperatures by
Müller and Bednorz in 1986, theorists try to determine suitable
order parameters with the correct symmetry properties. Guided
by analytical considerations we were led to investigate the case of
electrons paired in a state with d-wave symmetry.

To make use of existing experimental data, we calculated the
low-lying excitations of the system and determined the resistivity
of a tunnel junction consisting of two pieces of superconducting
materials separated by a thin insulating region.

Due to the appearance of singularities, a very fine mesh of data We have used the CM as an
everyday calculational toolpoints is crucial to get accurate integrals that determine the resis-

tivity. The CM allows an accurate high-speed calculation of these
expressions, which greatly enhances the predictive power of the
theoretical analysis. We have used the CM as an everyday calcu-
lational tool which has provided us with immediate and accurate
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results. [Wenger and Östlund, 1993]
In the future we will continue our investigation in a direction

that will be possible only because we have developed a routine on
the CM that diagonalizes thousands of small Hermitian matrices
in a small fraction of a second.

5.4 Simulation of Ground Vibrations in 3D
Marcus Berglund
C2M2, KTH
Sigurdur Erlingsson
Department of Soil and Rock Mechanics, KTH

Solving the 3D elastic wave equation in the time-domain is of
growing interest in engineering practice. This project uses com-A problem of general

interest in soil dynamics putations of 3D elastic wave propagation to study the vibrations
induced in the ground by dynamic loads on the surface. This
problem is of general interest in soil dynamics with all kinds of
site responses as application, such as earthquakes, machine vibra-
tions, pile drivings and blastings.

The finite-difference technique was chosen in this case because of
the large memory of the CM200 and because the simple geometry
allows the coefficients of the computational stencil to be precom-
puted and stored, which substantially increases the performance
of the program.

The case studied here dates from 1985. At a rock concert in a
large sports arena “Nya Ullevi”, Göteborg, Sweden, the audience
of 60,000 jumped periodically to the rhythm of the music. This
rhythmic motion lead to violent vibrations resulting in structural
damage.

Earlier studies have been limited to 2D models by the comput-
ing resources. The 2D model is a very crude approximation to
reality, since the decay of the amplitude with distance is 1/r in
2D, compared to 1/r2 in 3D. Also the fact that the bedrock under
the stadium is very irregular, see figure 5.2, makes the 3D effects
important.

Figure 2.8 on page 19 shows the total displacement of the sur-
face at different times when a periodic vertical driving load of 3000
Pa is applied on part of the surface. A maximum velocity of 18
mm/s was calculated under the structure, which should be com-
pared with the maximum limit of 20 mm/s, given by the German
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Figure 5.2. Geometry under the
sports arena “Nya Ullevi” where
bedrock is approximated with
splines. The length scale of all three
axis is meters.
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Figure 5.3. Plot of displacements
of the surface at time t=1.25 sec.
A time-periodic vertical load of
3000 Pa is applied on a part of
the surface. Every second point is
shown.
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building code DIN 4150. With speeds above this limit serious
damage starts to occur. [Clayton and Engquist, 1977, Berglund
and Erlingsson, 1992, Erlingsson and Berglund, 1992]

5.5 Hierarchical Model of Turbulence
Erik Aurell
Department of Mathematics, Stockholm University
Fredrik Hedman
PDC, KTH
Peter Frick, Vladislav Shaidurov
ICMM, Perm, Russia

The understanding of turbulence in fluid dynamics is one of the
main problems in classical physics. In our view, turbulence is a
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state of matter, analogous to the critical state in phase transi-
tions in statistical physics, which may arise in a great variety of
physical systems, as soon as the time-scales of inertial forces are
much shorter than those of viscous forces. In that case, the system
has time to revolve many times before viscous effects become im-
portant, and the resulting motion can be complex and involved,
seem erratic and at times display violent bursts, all of which is
understood by the word “turbulent”.

The ratio between two time-scales is a dimensionless number. In
incompressible hydrodynamics, the relevant ratio is the Reynolds
number:

Re =
tinertial
tviscous

=
LV

ν
(5.1)

where L is the large spatial scale and V the large-scale velocity,
and ν is the kinematic viscosity. Turbulence in hydrodynamics is
the asymptotic state when the Reynolds number tends to infinity.

Kolmogorov postulated in 1941 [Kolmogorov, 1941] that there
is a hierarchy of scales in turbulence, where energy is transferred
steadily from large scales down to small scales. One then finds
that the second-order moments, like < |vr|2 >, scale as r2/3, which
implies that the energy density at wave-number k decays as k−5/3.
This famous result is often referred to as the Kolmogorov “k−5/3

law”.
The experimental results do not contradict the Kolmogorov the-

ory. In fully developed three-dimensional turbulence there is a
wide range of excited scales, and direct numerical simulation will
be out of reach in the foreseeable future. There are however many
theoretical arguments which suggest that there should be correc-
tions to the Kolmogorov laws, just as there are corrections to the
mean-field predictions of critical phenomena in three dimensions.
These corrections are called “intermittency effects” in turbulence,
since they come about from rare but violent and energetic events.
One may think of the collision of two large vortices, which tear
each other apart and generate intense small-scale motion. Such
events give more lasting impressions than the random steady be-
havior in the Kolmogorov scenario.

In [Aurell et al., 1992] we constructed a hierarchical model of
turbulence in two dimensions. We chose two dimensions, since
there exist in this case results of many large-scale direct numerical
simulations, at relatively high Reynolds number. It is therefore
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Figure 5.4. A hierarchical tree
that displays the structure of inter-
actions between vortices. A vortex
on any scale is connected to four
vortices at the next smaller scale,
and reciprocally to one vortex on
the next larger scale. A given vor-
tex is driven by the influence of two
others, that may be both below,
both above or one above and one
below in the tree, but all three al-
ways lie on the same branch. The
full system which was simulated
included 11 levels and 1398101 vor-
tices.
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well suited to comparison and evaluation of our model. We note
however here, and refer to [Aurell et al., 1992] for the details, that
hydrodynamics in two spatial dimensions has many peculiar fea-
tures, and changes in a major way the Kolmogorov predictions.

The hierarchical model consists of vortices of different sizes that
move in the fluid. The vortices are connected in a regular tree, and
the relative motions are restricted in such a way that the distances
between “parent” vortices and “child vortices” are fixed for all
times. We call it a model because we have so far not been able to
find an exact representation of the hydrodynamical equations in
such a basis. If the vortices were not allowed to move, one could
build a complete, orthogonal hierarchical basis: such bases are
today known as wavelet bases. We do not believe that one can gain
much over traditional methods with such a representation: the
very basic feature of fluid-flow is advection by large-scale motions.
The deformation of the small scales caused by the strain is a much
slower process, although of course very important for long times.
We summarize here the main scientific results:

• The spectral law is independent of initial conditions and details
of the driving forces.

• The intermittency correction is about 0.3, i.e. about 10% on the
two-dimensional spectrum.

• The energy on small scales is concentrated in an asymptotically
vanishing fraction of the vortices.

• Quantitative predictions for 2D-turbulence made in [Benzi et al.,
1990] also hold for our model.
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Figure 5.5. Histogram of loga-
rithm of ratios between the enstro-
phy of parent and child vortices.
Different markers correspond to
different levels in inertial interval.
The histogram shows that the cas-
cade process from scale to scale
is the same in the inertial range
(within numerical accuracy), and
displays a wide range of available
local scale exponents.
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The program was written mainly by Vladislav Shaidurov, sup-
ported by Erik Aurell and Fredrik Hedman. The scientific treat-
ment was done mainly by Erik Aurell and Peter Frick. The present
C* code is hence the result of three months’ work and as such it
is highly respectable: the central part of the algorithm runs at
100 MFlop/s, notwithstanding a quite involved data structure, and
we have been able to obtain interesting and new results. The code
can be improved considerably by embedding the hierarchical tree
of vortices differently into the Connection Machine. We leave this
for future work, as well as many interesting questions raised by
the results in [Aurell et al., 1992].

This Swedish-Russian cooperation was made possible by guest
researcher grants from the Wenner-Gren Center Foundation, for
which we are most grateful.

5.6 Smooth Particle Hydrodynamics

Magnus Selhammar
Uppsala Astronomical Observatory, Uppsala University

Smooth Particle Hydrodynamics (SPH) is a Lagrangian method in
which one does not need a grid to calculate the spatial derivatives.
The method is often ideally suited for many astrophysical appli-
cations, because the particle description of the mass distribution
also allows complex physics in three dimensions to be included in
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a natural way, such as conduction or magnetic fields. The most
important astrophysical phenomenon, self gravitation, has been
included in this code.

In SPH a particle has a finite spatial size. Particles move freely
and interact hydrodynamically with each other if they lie within
the domain of interaction. As the particles move in space, the
nearest particles with which they interact may become more dis-
tant and other may come closer. Thus, the particles are allowed to
change their interacting neighbors. However, SPH is not without
disadvantages. The smallest spatial scale resolved is a few inter-
particle distances, which imposes restrictions on e.g. how shocks
can be treated. In the past, models have often been restricted
to a few thousand particles, but with the CM much more data- With the CM much

more data-intensive
models can be used

intensive models can be used. On the 8K CM200, models with
256K particles are possible.

The program will be used in numerical studies of the environ-
ment around young stellar objects. Work on inclusion of radiation
transport in the method is in progress. Radiation transport is
typically a non-local phenomenon and more complicated than self
gravitation. The implementation will use complicated commu-
nication patterns, thus requiring more of the CM hardware and
software.

5.7 Dynamics of Disordered Magnetic Systems

Jan-Olov Andersson
Department of Technology, Uppsala University

Disordered magnetic systems, such as spin glasses, random-field
magnets and diluted antiferromagnets, are important model sys-
tems for an understanding of the physics of disorder and random-
ness in general. They are simpler to treat analytically than other
related systems, such as structurally disordered materials. Never-
theless, the randomness makes an analytical path to the solution
of the problem intractable. On the other hand, the simplicity
in formulation makes the problem ideally suited for Monte Carlo
(MC) simulations.

By providing access to theoretical concepts that are not exper-
imentally measurable, and because of the possibility to closely
mimic the experimental procedure in a simulation, MC simula-
tion can help bridge the gap between theory and experiment. The
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complexity of the problem has made it necessary to use special-The problem has made
it necessary to use

parallel computers to
reach conclusive results

purpose machines and parallel computers to reach conclusive re-
sults. While the majority of all simulations have been aimed at
studying the static and equilibrium properties of spin glasses, we
have focused on the crossover from equilibrium to non equilibrium
dynamics, an issue that has been studied extensively in experi-
ments for the last ten years, but has been almost neglected in sim-
ulations. In my earlier studies using conventional workstations, I
have been able to reproduce the qualitative features found in ex-
periments. Still, to look at more quantitative aspects and to study
the spin system at higher temperatures we needed more computer
power.

So far, my work has been concentrated on validating and opti-
mizing the program for the CM by trying to reproduce experimen-
tal results from temperature-cycling experiments.

I have also been working on a study of the nature of the phase
space close to a local energy minimum. This work is done in
cooperation with Paolo Sibani at Odense University, Denmark.

In the future I intend to look at the time-dependent AC suscep-
tibility, the growth of correlations in a spin glass and the behavior
close to the phase transition temperature.

5.8 Electrolytic Flow in 2D

Lars-Göran Sundström, Fredrik Wallgren
Department of Hydromechanics, KTH

Many electrochemical systems involve electrolyte flow between two
parallel electrodes. The problem has been treated previously by
others, but to our knowledge no one has taken the fully numerical
approach, as in this project, to get the complete picture of the
concentration gradients and electric potential field between the
electrodes. The program was developed as a first step in treating
the total problem where there is no forced convection, and the mo-
tion of the electrolyte is instead set up through the concentration
differences.

This program was first developed for a serial computer, and
then converted to a parallel code for the CM200. The two codes
were compared with each other in terms of execution time, and
we came to the conclusion that for our first implementation, the
CM was slower than the serial Alliant FX80. The reason for this is
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that the algorithms we used were developed for serial computers,
and we have not yet put any effort into making them efficient for
parallel computers.

It should be noted, though, that in several cases this requires a
totally different algorithm which forces the programmer to choose
between parallel and serial computing at an early stage. The algo-
rithm used to solve the non-linear equation system, for instance,
was Gauss-Seidel´s point relaxation method. While this is rea-
sonably efficient on a serial computer, it is not so well suited for
parallelization.

The program was run with different Peclet numbers (affecting
the boundary-layer thickness), and the result of Pe = 100 are
shown in the color-graphs. The result agrees with previous results
from simplified models based on assumptions of thin boundary-
layers [Parrish and Newman, 1970], but gives the solution in the
total domain instead of only adjacent to the electrodes. Full solu-
tions were also found for very thick (interacting) boundary layers.
(See Figure 2.7 on 18.)

5.9 Spatial Effects in Evolutionary Models

Kristian Lindgren
Institute of Physical Resource Theory, CTH
Mats Nordahl
Santa Fe Institute, New Mexico, USA

A simple model of a population of interacting individuals on a
square lattice is presented. At each lattice point there is one indi-
vidual interacting with its four neighbors, according to a variation
of the Prisoner’s Dilemma game. An individual has a genetic
code that describes the strategy that it uses in the game. The
most successful strategy in a local neighborhood (a lattice point
with its four neighbors) will occupy the central lattice point in the
next time-step (generation), and in this way better strategies may
spread on the lattice. In the transition from one generation to the
next (one time-step), mutations may alter the genetic code, lead-
ing to new strategies. In this way the whole system may evolve,
and better strategies may appear.

The lattice is updated in parallel, which means that it can be
described as a cellular automaton, although a probabilistic one
due to the mutations. Therefore a CM is excellent for simulations

Applications in Physics 53



of this model. A typical lattice size is 4096 points, which allows
for one individual per processor.

In a previous paper [Lindgren, 1992b], a similar model was stud-
ied, in which the spatial dimension was not included. The present
study aims at exploring spatial effects, e.g. , regions of different
strategies and spatio-temporal chaos, that may evolve in artificial
ecological systems. It is well known that the spatial degree of
freedom may stabilize a system that otherwise would have been
unstable. A preliminary report on this research is available in
[Lindgren and Nordahl, 1993].

5.10 Simulations of Supersymmetry in
Cahn-Hilliard-Cook Theory

William Klein
Boston University, Boston, USA
Lawrence Thomas
Theoretical Physics, KTH

Supersymmetry is an idea that has been around for a few years and
caused a great deal of excitement in its early years. It is basically
a theory that says that there is a an invariance in a system under
the transformation of commuting to non-commuting variables. In
condensed-matter physics, for example, supersymmetry represen-
tations have contributed to our understanding of the random-field
model, the linear model and branched polymers. In high-energy
physics it has yielded relations between bosons and fermions such
that transformations are possible between the pairs.

W. Klein and G. G. Batrouni introduced a supersymmetric rep-
resentation of the Cahn-Hilliard-Cook linear theory of spinodal
decomposition and continuous ordering. In contrast to previous
applications of supersymmetry in condensed matter physics, they
related the Grassmann variables to physical objects.

In an attempt to take a step towards concretely proving these
theories along with their mathematical formulations, we have done
computer simulations that take advantage of percolation theory,
with respect to a simple square short-range interaction Ising model
system. First, a description of what we are seeking.

With respect to a graph of temperature versus density in a
system made up of two constituents, there is a curve, called the
spinodal, that represents the separation of the stable region from
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metastable and unstable regions. Above the curve, the two com-
ponents are homogeneously and stably miscible in all proportions.
Below the curve are the metastable and unstable regions. The
metastable region is similar to the stable region in most respects,
i.e. the mixture remains homogeneous. They differ in that the
Gibbs free energy (at constant p and T ) is higher for the homoge-
neous mixture than for a system formed by two co-existing phases.
Further below, in the unstable region, the material separates into
different phases.

In the past, computer simulations on various other machines
have been done by several groups in order to display the phe-
nomenon of spinodal decomposition. These experiments assume,
a system at a very high temperature with equal amounts of two
types of “atoms” distributed at random. A difference in the chem-
ical potential or magnetic field is used in the direction from the
top to the bottom of the system. The system is then quenched at
t = 0 to a very low temperature, say T = 0.5Tc (Tc defined as the
point separating the stable and unstable points on the spinodal
curve).

We find that the CM is well suited for this type of simulations.
Taking advantage of its parallel processing, we have set up a very
large Ising model random-spin system in order to simulate the
particle-hole supersymmetry we are studying. We have been able
to take full advantage of the parallel processing because we are
able to work on every site within the system simultaneously. Con-
sequently, simulation-times have been cut drastically. [Klein and
Thomas, 1993]

Applications in Physics 55



6 Biocomputing

Scientific computing done by researchers in medicine and biology
is beginning to form a new branch of science, often termed biocom-
puting. This new branch – driven by computing – is transforming
many parts of medicine and biology from an informational sci-
ence into a computational and analytical science. [Lander et al.,
1991] Almost since the start of PDC we have had people work-
ing on protein sequence matching. Currently, a protein sequence
matching server is running on the CM. Researchers can connect
to this server with a client program running on their local work-
station and match a protein sequence against the database on the
CM (Section 6.1). The other project comes from an area in bio-
computing where large data sets are one of the obstacles, namely
analysis of PET scan images (Section 6.2 on page 58).

6.1 Sequence Alignment on the CM

Gunnar von Heijne
CBT, Karolinska Institutet
Fredrik Hedman, Erik Wallin, Christian Wettergren
PDC, KTH

Proteins and nucleic acids, the building blocks of the genetic ma-
terial, can be described as sequences of characters, with a twenty-
letter alphabet for proteins and a four-letter alphabet for nucleic
acids. Currently, the amount of collected sequence-data is growingCurrently, the amount of

sequence-data is growing by a
factor of two every three years

by a factor of two every three years, and this rate will increase as
the Human Genome Project (HUGO) gets well underway.

With the rapidly increasing amount of sequence data there is a
pressing need for faster and more sensitive means of scanning se-
quence data banks for similarities between newly determined and
already published sequences. If a new sequence can be aligned
with some of those already known, many years of experimental
work can be avoided, since the data of the known sequences can
be used as a starting point for further investigations of the newly
found sequence. [von Heijne, 1988, Coulson et al., 1987, Argos
et al., 1991] Recent developments in computer architecture and
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Figure 6.1. Bringing supercom-
puter power to the desktop. A
client program running on the
user’s workstation takes care of
all the communication with the
server program which does the ac-
tual computation on the CM200.
This application can easily be used
by people who know very little
about supercomputers. What they
see is an application that could not
even be run on their workstation
before, and now it is within arm’s
reach.

Network

CM-200 Supercomputer Sun workstation

PDC/KTH Lab/office

hardware for parallel computing have led to vast increases in com-
putational speed for certain classes of problems. Protein sequence
data bank scanning is well suited to parallelization, and more sen-
sitive comparison algorithms may be executed within acceptable
times.

During 1991 we developed a program on the CM for search-
ing these data banks. [Wallin et al., 1993] It is based on the
Needleman–Wunch algorithm, which is considered to be the most
sensitive available. Unfortunately it is also the most computation-
ally demanding, and it is therefore not very widely used for data
bank searching. The algorithm is well suited for parallelization,
and the fact that the databases are growing makes the parallel
implementation more efficient every year. (see also Section 3.1)

Not every researcher has a supercomputer in the lab. There-
fore, to enable users to access the sequence databases through
our programs, we have developed a client-server interface. This Supercomputer power

brought to the desktopeffectively brings supercomputer power to the desktop. The in-
terface program was written during 1992, and we have recently
begun testing and adding users. The search program is written in
C*. During development we had tremendous help from Prism, the
new debugging environment.

The computations are done by a server program running on the
CM. The client program, which runs on the user’s workstation,
takes care of communication with the supercomputer, prepares
data to be sent to the server and presents results once the com-
putation is finished. Typically, a search which would take sev- A search which would

take several hours using a
sequential implementation
takes only a couple of
minutes on the CM

eral hours using a sequential implementation takes only a couple
of minutes on the CM. At the moment this interactive service is
available during daytime. It was made possible by several new
facilities. Firstly, it was absolutely necessary for the CM to run
in time-sharing mode. This is because the server program usually

Biocomputing 57



only runs for a few seconds to service the user, and then sits idle
for several minutes. Furthermore, the purchase of a DataVault
and the upgrade to larger memory was also very important.

Currently we are adding more features to the server and also
refining the user interface. The next step is to add DNA sequences
to the database.

6.2 Analysis of 3D Brain Data

Per Roland
Karolinska Institutet, Stockholm
Björn Levin
SANS, KTH

New brain-imaging methods, such as measurements of the regional
cerebral metabolism or the regional cerebral blood flow in combi-
nation with Positron Emission Tomography (PET), sample data
from more than 50,000 parts of the brain.Because of the 3D structure

and the large amount of data,
data analysis by a traditional

sequential computer
would be cumbersome

We have performed a series of simulations to study the effects
of noise on different detection schemes to be used in the analysis
of PET images. By generating 100 or 1000 re-runs of the same
experiment using distribution data from a group of persons in the
control state, i.e. a state in which the brain is not engaged in a
particular task, it was possible to generate empirical distributions
of false positive activation events in the brain.

The simulations were done in several steps. First the CM was
used to investigate the spatial 3D autocorrelation function in a
sample of regional cerebral blood-flow pictures. This function was
then used to generate a 3D filter that imposes the found auto-
correlation in subsequent simulations. Finally, to get the desired
accuracy in the estimations, tens of thousands of randomly gen-
erated images having the correct statistical properties were ana-
lyzed using the mentioned methods, at the same time as false pos-
itive events were recorded. In each such generated image around
200,000 values mimicking measurements of biochemical and phys-
iological variables in the brain are generated simultaneously, mak-
ing the task very well suited for analysis by parallel computing.
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7 Applications in Chemistry

Computer simulations of chemical systems is a complement to the-
oretical and experimental chemistry, made possible by the rapid
growth of computer capabilities. These simulations can be re-
garded as computer experiments at a molecular level, and they
require large amounts of computing power measured both as raw
CPU power and as volume of stored and transferred data. By sim-
ulating a sufficiently large system one can compare experimental
results with simulation results, thereby simplifying the fundamen-
tally important interaction between experiment and theory.

In many systems studied, it is crucial to be able to perform as
large simulations as possible to ensure that the results are phys-
ically relevant. These large simulations are often naturally mas- Large simulations are often

naturally massively parallel.sively parallel and require both very large memories and fast cal-
culations. Typical examples are classical and quantum-mechanical
many-particle calculations of structural features and dynamic be-
havior. The present projects running on the CM are examples from
molecular dynamics (Section 7.1), reaction dynamics (Section 7.2)
and quantum chemistry (Section 7.3).

7.1 Molecular Dynamics for Liquids

Fredrik Hedman
PDC, KTH
Aatto Laaksonen
Department of Physical Chemistry, Stockholm University

The advent of massively parallel computers holds great promise in
that they provide the power to substantially improve the accuracy
of molecular simulations and hence their predictive potential. As
raw compute power, main memory and I/O capacity increase, the
size of the modeled systems can be enlarged. These larger systems Massively parallel computers

change the underlying
assumptions about how
an effective simulation
method should be designed.

become more realistic by limiting possible numerical artifacts and
by preventing a too early truncation of the long-range interactions.
Both of these problems are caused by applying periodic boundary
conditions in a too small simulation cell.

Massively parallel computers change the underlying assump-
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tions about how an effective simulation method should be designed
[Modi, 1988]. To use these computers effectively, a great deal of
effort must be put into developing new methods and adapting
old ones. This project is concerned with developing data-parallel
methods which will enable us to study large systems of liquids
which are modeled by both short-range interactions.

We use a method of molecular dynamics (MD) to study sim-
ple Lennard–Jones particles in a liquid phase. A suitable model
is constructed by taking a box and filling it with particles to a
desired density. The number of particles is chosen as a compro-
mise between available computer resources and the reliability of
the model. The more particles we have in the box, the better
“macroscopic” description of the system. After the particles have
been initialized to the desired temperature we solve the numer-
ical equations of motion in order to find the new positions and
velocities of all particles in the box. The numerical equations of
motion are based on a discretization of Newton’s second law. The
procedure is repeated over and over again, thereby advancing the
system in time.

The computationally heavy part in each time-step is the calcu-
lation of the force Fi on each particle i:

Fi =
∑
i6=j

F (rij) (7.1)

where rij is the distance between particles i and j. In a Lennard–
Jones fluid the forces are short-range, and this means that most
of the terms in Eq. (7.1) will be close to zero. In fact, with rc =
the cut-off radius and rij ≥ rc one sets F (rij) = 0. Several meth-
ods have been devised to avoid calculating these nonproductive
terms, such as Verlet neighbor lists and linked cells (LC) [Allen
and Tildesley, 1987].

We have chosen to start from a parallel version of the LC algo-
rithm which is often called the coarse-grained cell method.

In this method the simulation box is divided into a number of
equally sized cells. Usually these cells are chosen to be cubic.
For short-range forces, a suitable choice of the cell size (with side
length L) limits the interaction neighborhood of a molecule to the
first layer of surrounding cells. Even though this method avoids
a substantial part of the nonproductive force calculations one can
easily see that there will still be interactions calculated which turn
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out to be negligible. In fact, a particle will find all of its inter-
actions in a volume Vc = 4/3πr3

c , but the method will search for
neighbors in the volume VL = 27L3 ≥ 27r3

c and Vc/VL ≈ 0.16.
To avoid a larger fraction of the nonproductive calculations we

have developed a geometric sorting procedure based on particle
distances to subcell boundaries. Due to particle migration, the
contents of the subcells need to be updated. This is done with a
method based only on nearest-neighbor communications. Special
“null-particles” are introduced, which act as buffers during peri-
odic updates and allow for a globally uniform algorithm during
the force calculations.

We have implemented our code in CM Fortran on the CM. Com-
munication cost is around seven percent of the total CPU time. Our results show that

it is possible to develop
very efficient programs
for large-scale computer
simulations of liquids
using the data-parallel
programming model.

The overall speed for one million particles is approximately 5.9 µs
per MD time-step and particle, and 5.5 µs for five million parti-
cles. Our results show that it is possible to develop very efficient
programs for large-scale computer simulations of liquids using the
data-parallel programming model. Implementation of a program
to include long-range interactions is in progress. [Hedman and
Laaksonen, 1992a, Hedman and Laaksonen, 1993b, Hedman and
Laaksonen, 1992b, Hedman and Laaksonen, 1993a]

7.2 Reaction Dynamics

Anders Broo
Department of Physical Chemistry, CTH

Non-reactive three-atom collisions are studied by Monte Carlo sim-
ulations and RRKM-theory for the formation and decomposition
of the reaction complex. The underlying experimental informa-
tion is obtained from molecular beam experiments. A Fortran 77
program [Rynefors, 1982] has been ported to the CM at PDC.
The transformation from Fortran 77 to CM Fortran was quite time-
consuming, and the performance is still not very impressive. The
difficulties of the transformation were mainly due to the intrinsic
sequential nature of the original Fortran 77 program, and much
still remains to be done to increase the speed.
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7.3 Semi-empirical Quantum Chemistry

Anders Broo
Department of Physical Chemistry, CTH

A semi-empirical quantum chemistry program [Broo and Lars-
son, 1992] written in Fortran 77 has been ported to the CM. The
calculation spend most of the time on diagonalization of a rela-
tively large matrix and the formation of matrix elements in the
configuration-interaction matrix.

The diagonalization is performed with subroutines from the
CMSSL library. The formation of the elements of the configuration-
interaction matrix requires a double loop over the dimension of the
basis set (100–1000) for each matrix element. The structure of the
program is thus well suited for running very efficiently on a mas-
sively parallel computer. Benchmark calculations are in progress.
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8 Geophysics

Parallel computers have in recent years found many applications
in the field of computational geophysics. These applications in-
clude 2D and 3D solutions of the elastic anisotropic wave equation
by finite-differences, reverse time migration, modeling of fracture
behavior of rocks, lattice-gas modeling of wave propagation and
solution of the seismic travel-time inversion problem, using neu-
ral networks. In particular, access to GBytes of fast data storage,
as well as calculation speeds on the order of GFlop/s, allows the
inversion of real seismic waveforms, given the data volume of a
seismic survey.

Waveform inversion of seismic data is a highly compute-intensive
process. The high degree of parallelism inherent in the problem
allows the modeling algorithm to benefit from enhanced compu-
tational speed due to simultaneous operations on different data.
(Section 8.1)

Numerous rocks and materials exhibit anisotropic behavior. The
first step in understanding the effects of anisotropy in the seismic
data we collect is to model seismic wave propagation in anisotropic
media. (Section 8.2)

8.1 Seismic Waveform Inversion
Jonas Lindgren
Solid Earth Physics, Uppsala University

The seismic reflection method is presently one of the most power-
ful geophysical remote-sensing methods, yielding high-resolution
information concerning the elastic properties of the Earth on a
crustal or lithospheric scale. The theoretical foundation of the
method is the study of wave propagation in an elastic medium. In
a seismic survey, the response of the Earth to an artificial source,
such as an explosion, is used to retrieve information about the
medium through which the elastic energy has propagated. Record-
ings made at, or near, the surface by vibration-sensitive geophones
on land, or pressure-sensitive hydrophones at sea, provide informa-
tion that is used to describe how the energy has been transmitted
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and reflected from discontinuities in the elastic properties of the
rock.

Seismic inversion is the process of using these recordings to yield
quantitative maps of the properties of the subsurface. The inver-
sion process makes use of the wave equation to predict the char-
acteristics of the subsurface that, given the excitation in the form
of the seismic source, yield the observed wavefield.

Figure 8.1. Seismic model-
ing/inversion. Whereas the mod-
eling, or the forward, problem con-
sists of the calculation of seismo-
grams (right) resulting from a seis-
mic experiment in a known geology,
the inverse problem is the retrieval
of the geological model (left) from
the seismograms.

This figure is only available in the paper version

Inversion can be thought of as the inverse process of modeling,
see Figure 8.1. Whereas the modeling, or the forward , problem
consists of the extrapolation in time or depth of the wavefield re-
sulting from a seismic source function and some initial and bound-
ary conditions through the use of a wave equation, the inverse
problem is the retrieval of the properties of the medium, given the
observations of the wavefield at some discrete locations, generally
at the surface.

The formulation of the seismic inverse problem adopted here
relies on the successive updating of an initial Earth model un-
til observed and modeled seismograms match. Fundamental to
the method is the ability to accurately model the propagation of
seismic waves in a general elastic medium. The backbone of the

64 Geophysics



algorithm consists of an elastic high-order finite-difference scheme.
The modeling/inversion program package was originally devel-

oped for a Convex C-1 at Institut de Physique du Globe in Paris.
These codes have been further developed and adapted to the CM,
using the CM-sites at Centre de Calcul in Paris and PDC in Stock-
holm. (See Figure 2.9 on page 20.)

The data-parallel concept provides a programming environment
which simplifies the task of expressing operations that apply to
many data simultaneously. To the first approximation, the pro-
grammer does not need to be concerned with the actual hardware
implementation of the code; however, a knowledge of the machine Knowledge of the machine

architecture is crucial in the
development of efficient codes

architecture is crucial in the development of efficient codes of a
more complex nature.

When attempting to perform seismic modeling, a number of op-
erations have to be carefully coded, such as the input of the source,
boundary conditions and the recording of the field at the receiver
locations. On a serial computer the cost of these operations is
small, or even negligible, compared to the cost of modeling. On
the CM the cost of these operations seriously degrades the overall
performance unless they are carefully coded. As an example, if the
sampling of the wavefield were coded in the same way as for se-
rial execution, general communication would have to be performed
within the time-loop. Such an operation could easily double the
overall execution time of the program.

An efficient solution of the sampling problem requires many lines Recoding into CMFortran
is generally a step
toward simplicity
rather than complexity

of code. However, although several other examples exist where
elaborate programming is necessary to avoid unacceptable execu-
tion times, the recoding into CM Fortran is generally a step toward
simplicity rather than complexity.

In order to be able to perform waveform inversion of real seismic
waveform data, a seismic inversion package (15,000 lines of code)
has been converted into CM Fortran. The experience shows that
software optimized for a serial computer is not likely to perform
well on a parallel machine like the CM without extensive reorga-
nization. Due to the facilities of a parallel language, the resulting
code can be made clearer and faster than the serial version.

The introduction of massively parallel computers in geoscience
not only enables things to be done faster than before, but it al-
lows problems to be attacked which, due to various computational
considerations, were previously computationally impossible. Al-
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though parallel computing in geoscience is still at an initial stage,
the access to computers like the CM is an important step towards
the goal of the complete seismic waveform inversion of real 3D
data sets. [Lindgren, 1992a]

8.2 Anisotropic Elastic Wave Propagation in 2D

Christopher Juhlin
Solid Earth Physics, Uppsala University

Numerous rocks and other materials are anisotropic, that is their
physical properties are dependent upon the direction on which
measurements on the material are made. Consequently, waves
propagating through the rocks have a velocity which is a function
of the azimuth and the dip angle of propagation. Discontinuities
in the physical properties of the rocks reflect elastic waves, and it
is the motion of these reflected waves recorded on the surface or in
bore-holes that provides us with information about the subsurface.

Although it has been realized for some time that many rocks
are anisotropic and that even a sequence of thin isotropic layers
makes up a rock which is effectively anisotropic, anisotropy is not
generally taken into account in seismic-data processing and mod-
eling. However, this situation is changing. This is partly due to
the advent of large fast computers, which allows anisotropy to beThe situation is changing

due to the advent of
large fast computers

dealt with comprehensively, but also to the fact that if it is not
taken into account in some, areas the resulting seismic images do
not represent the geological subsurface adequately.

The first step in understanding the effects of anisotropy in the
seismic data we collect is to model seismic wave propagation in
anisotropic media. A suitable technique for modeling is the finite-
difference method. In the past, finite-difference methods have been
widely used to model seismic wave propagation in both acoustic
and elastic isotropic media. Most of this modeling has been for
the 2D problem, but there have also been 3D applications. In the
majority of these cases a single second-order hyperbolic equation
is solved for the acoustic case or two second-order hyperbolic equa-
tions for the 2D elastic case with pressure or displacement as the
variable, respectively. However, in relatively recent applications to
2D elastic isotropic media [Levander, 1988] the wave equation, as
a second order hyperbolic equation, is not solved directly. Instead,
the problem is formulated in the form of a first-order hyperbolic
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system where the variables are stresses and velocities, rather than
displacements.

The displacement formulation has a number of drawbacks. [Levander,
1988] The most serious objection to the second-order displacement
approach is the complicated computer code which is required to
set up the mixed spatial derivatives. This objection becomes pro-
gressively more serious as more complicated anisotropy is to be
modeled.

In my work, thus far, I have assumed hexagonal anisotropy, also
called transverse isotropy, to be present in the rocks. This is the
simplest form of anisotropy, with one axis of rotational symmetry.
Although simple, it is commonly the dominant one present in real
rocks. Recently, in [Igel et al., 1991] results from implementing
a finite-difference scheme, fourth-order in time and eighth-order
in space, to the 3D anisotropic problem has been presented. The
scheme I am working with is similar, but applied only to 2D prob-
lems. With the present capacity of the CM200 at PDC it is possi-
ble to model relevant and realistic 2D problems, but not 3D ones.
Therefore, I have concentrated on the 2D case for the present time.

The numerical code has been implemented in Fortran 77 and
CMFortran code. On a SPARC 10 running at 10.7 MFlop/s, the
CPU-time for a 404 × 404 grid and 2000 time-steps was about
90 minutes. On an 8K CM200, the same problem requires about
5 minutes. The parallel code has not yet been optimized. Signifi- 5 minutes instead

of 90 minutescant improvement can be expected with optimization.
Future 3D modeling will require considerable amounts of mem-

ory and there will be a tradeoff between run-time and the size of
the problem that can be solved. Since my project also involves
physical modeling, i.e. carrying out seismic experiments in the
laboratory with a scale model built from epoxies and similar ma-
terials, I will eventually have to deal with the 3D problem to be
able to compare the results with numerical modeling. For exam- A more powerful and

larger-memory computer
will be necessary for
the full 3D problem

ple, a 256 × 256 × 256 cube will require on the order of 2 GByte
of memory. This is probably the minimum size that can be used
to model realistic seismic problems. Extrapolating the current
run-time for the present code to the 3D problem implies that a
single model will take about 12 hours. Optimization will reduce
this time, but it obvious that a more powerful and larger memory
computer will be necessary for the full 3D problem.
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9 Numerical Analysis

Massively parallel machines present a large challenge to numeri-
cal analysts, since many old and established serial algorithms and
methods turn out to perform very poorly on these machines. How-
ever, those algorithms that are well adapted to these machines are
worth optimizing. This has been done in the FFT project (Sec-
tion 9.1). It is also interesting to investigate how well some al-
gorithms can be implemented directly in Fortran 90 (Section 9.4).
New opportunities in using new parallel algorithms have been ex-
plored in the areas of: Legendre transforms (Section 9.2), paral-
lelizable preconditioning methods (Section 9.3) and optimization
(Section 9.5).

9.1 Development of Efficient FFT Library Routines

Lars Malinowsky
NADA, KTH

Spectral methods give very high accuracy for problems with smooth
solutions, and they have for some time been the methods of choice
for computing unsteady viscous flows with resolution of all scales,
i.e. the direct simulation of turbulent flows. The methods rely on
the Fast Fourier Transform (FFT) for which the Connection Ma-
chine Scientific Subroutine Library (CMSSL) has efficient routines
using complex arithmetic. The first versions were inefficient inHas led to highly optimized

FFT polyalgorithms,
now included in CMSSL

terms of memory for real data, and a real-to-complex code which
avoided this waste was first developed. The continued FFT code
development has led to highly optimized FFT polyalgorithms, now
included in CMSSL. The codes have options for many different
combinations of hardware and data-layout. [TMC, 1992]

9.2 Fast Legendre Transform

Erik Aurell
Department of Mathematics, Stockholm University

A class of nonlinear partial differential equations that have been
widely studied are the hyperbolic conservation laws. They express
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the conservation of a certain quantity, say momentum, in the con-
tinuous motion of a macroscopic system, e.g. a gas. The resulting
equations must balance the transport of the conserved quantity
against a force, thus a gas resists compression because the pres-
sure increases with density. The equations of gas dynamics are of
this type. In some situations the equations of fluid dynamics and
plasma physics are also of this type.

The dominant physical effect in hyperbolic conservation laws
is the formation of shock waves, where the solutions are discon-
tinuous. On the other hand, in a real physical macroscopic sys-
tem, there is always dissipation, which is generally well modeled
by the Laplace operator multiplied by an appropriate transport
coefficient (for instance ν, the viscosity in compressible hydrody-
namics). When the solutions of the hyperbolic conservation law
develop strong gradients, the dissipative term, which up to then
can be neglected, becomes relevant. A careful analysis then shows
that the shock waves are not completely sharp, but have a width
proportional to the transport coefficient.

Since a transport coefficient, for dimensional reasons, is propor-
tional to the mean velocity times the mean free path, we find that
the width of a shock wave at ordinary temperatures is always much
larger than the scales where the macroscopic laws of motion begin
to hold. This means that the discontinuities in the solutions to the
hyperbolic conservation laws do not contradict the assumptions
made when one derives these laws from the microscopic equations
of motion. This also means that the solutions of the hyperbolic
conservation laws with discontinuities make mathematical sense:
the limit when transport coefficient tends to zero selects, among
many possible weak solutions, the one that is physically relevant
[Lax, 1973].

It is a remarkable fact that a large class of hyperbolic conserva-
tion laws can be integrated as Legendre Transforms of the initial
conditions [Lax, 1973, Burgers, 1974]. In words: it is not nec-
essary to integrate numerically the partial differential equation
up to some time T ; one can transform directly from the initial
conditions, and find the solution at time T , without computing
the solutions at intermediate times. There exists a version of the
Legendre Transform which requires a number of operations of the
order N log N , if the initial conditions are realized on N discrete
points in one dimension [Burgers, 1974]. By analogy with the Fast
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Fourier Transform, this transformation is called a “Fast Legendre
Transform”, and it is extremely useful if one wants to study the
behavior on large scales after long times [She et al., 1992, Aurell,
1992a].

With the aim of continuing the study on one of the simpler con-
servation laws, the one-dimensional Burgers equation [She et al.,
1992, Aurell, 1992a], a parallel version of the Fast Legendre Trans-
form was implemented on the CM200 at PDC [Aurell, 1992b].

On the CM the data are naturally organized in two different
ways: either as initial conditions (called Lagrangian coordinates
in hydrodynamics), or as the positions at time T (called Eulerian
coordinates in hydrodynamics). One cannot avoid transmitting
data between the two sets of coordinates. In between, one per-
forms maximizations over partitions of the initial (Lagrangian)
coordinates. The delimiters of this partitioning are determined by
the initial conditions, so they are only known at run-time. For-
tunately there is a built-in function on the CM, the “segmented
scan” operation, which is precisely suited for this purpose.

At present the algorithm needs at most 2 log N general com-
munications operations, and 8 log N segmented scan operations.
If each of these operations each take of the order of log N oper-
ations, the integration would theoretically take about 10(log N)2

time-steps, as long as N is less than the number of physical pro-
cessors. In reality, one is of course interested in as large arrays as
possible, that is with high virtual-processor ratios.

The test runs are encouraging, but so far no systematic measure-
ments have been made of the execution speed actually achieved.
Probably this is not the most important point: the real advantageThe advantage in

implementing the Fast
Legendre Transform on

a parallel architecture is
that one can make good
use of the large memory

in implementing the Fast Legendre Transform on a parallel archi-
tecture is that one can use the large memory and lose relatively
little in speed compared to a serial implementation.

The program was written in C, with function calls to the assembly-
level language PARIS. In retrospect, the results would not have
been very different if the code had been written in C*. There would
probably be more to gain from rewriting the code in CM Fortran,
since that language uses the slice-wise model, a different machine
model which is not supported by C*.
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9.3 Completely Parallelizable Preconditioning Methods

Ivar Gustafsson, Gunhild Lindskog
Department of Computer Sciences, CTH

We present a class of parallelizable preconditioned iterative meth-
ods for the solution of finite-element linear systems of equations.
The iterative method may for instance be the conjugate-gradient
method. We consider elliptic second-order orthotropic boundary-
value problems. The matrix in the resulting linear system of equa-
tions is symmetric and positive definite.

Most of the ideas presented in the field of parallel iterative
methods are based on block-wise parallelization suitable for par-
allel computers with a small number of processors. In our present
work we consider completely parallelizable preconditioning meth- Completely parallelizable

suitable for implementation
on massively parallel
computers such as the CM

ods, that is, methods in which the construction of the precondi-
tioning matrix as well as the solution of the preconditioning sys-
tem can be done in parallel over the total number of mesh-nodes.
Hence, the methods are suitable for implementation on massively
parallel computers such as the CM.

Our main idea for the construction of the preconditioner is based
on the calculation of approximative inverses of the Symmetric Suc-
cessive Over-Relaxation (SSOR) factorization of the matrix of the
linear system. The solution of the preconditioning system is then
performed by matrix-vector multiplications, which makes it pos-
sible to carry out all operations involved in parallel over the total
number of unknowns. The rate of convergence of the method is
increased by making the approximations of the inverses more ac-
curate. However, this also increases the computational complexity
in each iteration.

We have chosen two test problems: an isotropic problem and a
problem with strongly varying orthotropy. The calculation times
for the iterations, when the residual error in 2-norm is reduced
by a factor of 10−4, show an improvement of about 25 percent
compared to diagonal scaling. This is for a problem of size 5122.
The improvement is somewhat less for smaller problems.
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9.4 Matrix Computations on the CM2

Göran Svensson, Lars Eldén
Department of Mathematics, LiTH

Fortran 90 is a standardized language available for many different
platforms, and programs written in this language will be easy to
port. However, it has not been clear if it is possible to program
massively parallel machines like the CM on a sufficiently low level
with Fortran 90, i.e. if assignment of data to processors and load
balancing can be made efficiently. The purpose of this project
is to investigate if certain matrix computations can be executedInvestigate if certain matrix

computations can be executed
efficiently on the CM when
programmed in CMFortran

efficiently on the CM when programmed in CM Fortran.
In particular we have studied the implementation of an algo-

rithm for QR decomposition of a matrix based on Householder
transformations. The QR decomposition is used in numerous ap-
plications, e.g. when solving linear least squares problems. By
applying a sequence of Householder transformations, the matrix
is step by step reduced to upper triangular form, which is the r
matrix in the QR decomposition. This reduction starts at the top
left corner of the matrix and proceeds down along the diagonal.
If the Householder transformations are multiplied together, then
the q matrix in the decomposition is obtained.

Loosely speaking, an algorithm for a parallel computer is said
to have a good load balance if most of the processors are busy do-
ing useful work most of the time. For the computation of matrix
decompositions, load balancing is usually achieved by performing
the reduction in the standard way, and assigning matrix elements
to processors in a clever way, or, alternatively, by performing the
reduction in a clever way and assigning matrix elements to pro-
cessors in the standard way.

The standard way of assigning matrix elements to processors on
the CM assigns each matrix element to a virtual-processor. Virtual
processors are then mapped to physical processor in such a way
that a block of neighboring matrix elements is stored in the same
physical processor.

It is obvious that load balancing cannot be done by using the
standard virtual-processor assignment, since after some steps in
the Householder procedure, more and more of the processors would
become idle. We avoid this problem by storing the matrix as a
blocked matrix in a rank-4 array, with two dimensions parallel
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and two serial. This corresponds to a block-cyclic assignment of
matrix elements to processors, and using this procedure, we can
design a block-matrix algorithm, where the computations are par-
allel within the blocks (to a large extent matrix-vector operations),
and serial over the blocks. Further, this algorithm can be coded
completely in CMFortran, with data-parallel operations within the
blocks. Since the algorithm is serial over the blocks, all proces-
sors will be active almost all the time, and the algorithm is load
balanced. This kind of parallelization also works well on MIMD
parallel computers of hypercube type, e.g. iPSC/2.

Our results indicate that at present matrix algorithms written in
CMFortran cannot compete in speed with low-level codes, such as
the ones in CMSSL. However, using knowledge about the architec-
ture and the compiler, it is possible to get much higher efficiency,
than that which would have been obtained by straight-forward
translation of a serial algorithm into CM Fortran.

9.5 The Traffic Assignment Problem

Athanasios Migdalas, Olof Damberg, Saied Ghannadan
Department of Optimization, LiTH

Most large cities face serious urban transportation problems be-
cause of the increasing number of vehicles. In order to analyze
the present situation and to predict future transportation needs,
mathematical programming and modelling are suitable tools.

For a given network, the traffic assignment problem involves a
travel demand associated with each origin and destination pair of
nodes, and a travel cost function for each link. The travel costs
may depend on the load pattern, due to the congestion effect, while
the different travel demands may depend upon the travel costs
associated with the origin and destination pairs. The problem is
to find the traffic pattern which possesses the property that, once
established, no network user can decrease the personal travel cost
by altering travel decisions.

Our intention is to implement and test different strategies for the
solution of the traffic assignment problem on real-world data from
large cities, e.g. Barcelona and Stockholm. These real-world prob-
lems easily become very large; many thousands of links and nodes
together with many thousands of origin and destination nodes are
generally present. It is a nonlinear problem which often has to be
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solved repeatedly or, in the case of route guidance systems, instan-
taneously. Currently, on a workstation, more than eight minutes
of computation is needed to solve just one instance of the prob-
lem in a network with 1000 nodes, 2500 links and 8000 origin and
destination pairs. Suitable optimization algorithms that can beSuitable optimization

algorithms that can
be implemented on

massively parallel machines
must be developed

implemented on massively parallel machines must be developed.
Currently we are working with the so-called partial linearization

technique and the regularized Frank–Wolfe algorithm [Larsson and
Migdalas, 1990, Migdalas, 1990]. The idea is to decompose the
problem into similar subproblems, by origin and destination pairs,
and to solve the subproblems in parallel by algorithms for single-
commodity network flows with quadratic link costs. In this setting
we define two problems to be similar if they occupy the same
amount of memory and if the same algorithm, applied separately
to each of them, solves the problems. This similarity property
allows the subproblems to share the same virtual-processor set
and to be solved in parallel by the same algorithm.

So far we have implemented algorithms for the quadratic sub-
problem. We have tried two different methods. A partial lin-
earization method on the Lagrangian dual and a dual active-set
conjugate-gradient method. The implementations are being tuned
for the CM.
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10 Computer Science

Many regarded the CM as having a rather strange computer ar-
chitecture and predicted that the most of its users would come
from predominantly computer science related research areas and
not from other research fields. This prediction has turned out not
to be true; the bulk of the users at the center come from areas
that are not computer science related. In fact, rather few of the
large number of projects at the center are strictly computer science
related.

The three current computer science related projects represent Three different areas:
data-parallel programming
languages, parallel
logic programming, and
architecture simulations

three different areas: data-parallel programming languages, par-
allel logic programming, and architecture simulations. In the lan-
guage project (Section 10.1) a new language model suitable for
describing data-parallel computations is presented and this model
can act as a guideline for implementing new data-parallel program-
ming languages; the logic project (Section 10.2) presents possible
extensions to the logic programming language Prolog, and also
their implementation; and finally the architecture project (Sec-
tion 10.3) presents some aspects of low-level process synchroniza-
tion primitives of interconnection networks, which are studied for
a future hardware realization.

10.1 Data-Parallel Functional Programming Languages

Per Hammarlund
SANS, NADA, KTH
Björn Lisper
IT, KTH

Data-parallel programming is becoming an increasingly important
tool for exploiting parallelism in data-intensive applications, espe-
cially on SIMD and vector computers. Many algorithms appearing
in such applications can be succinctly expressed in data-parallel
languages: this indicates that data-parallel programming can be a Data-parallel programming,

a powerful abstract
programming paradigm

powerful abstract programming paradigm rather than just a high-
level syntax for explicit programming of SIMD computers. The
data-parallel languages in practical use today are, however, expo-
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nents of exactly the latter point of view: even though they incor-
porate some elements of abstraction, their semantics is in every
case to some extent based on a SIMD execution model. There-
fore it is hard to use these languages to express algorithms in the
problem domain in an abstract, machine-independent way. This is
likely to make programming in these languages more error-prone
and programs less portable than if they had been designed with
more clean-cut abstract semantics.

We have analyzed and evaluated existing data-parallel program-
ming languages and parallel execution techniques [Hammarlund
and Lisper, 1992]. Existing data-parallel programming languages
are mainly extensions of existing sequential languages, e.g. C* and
*LISP are extensions of ANSI C and Common Lisp respectively
[TMC, 1991a, TMC, 1991b]. This makes them very specific to
the target machine hardware architecture and therefore difficult
to port. In order to capture the more machine-independent as-
pects of data-parallel programming we have made mathematical
definitions of some data-parallel primitives. These can be used to
guide the design of data-parallel languages with a higher level of
abstraction [Hammarlund and Lisper, 1993]. The key idea is to
view data-parallel entities as tabulated functions, where the tables
are stored in a distributed fashion. Operations on data-parallel en-
tities are then simply operations on functions, just as operations
in pure functional languages. Thus, from a programming perspec-
tive there is no difference between the function that generates a
data-parallel entity and the data parallel entity as such. This im-
plies that transformation techniques for functions can be applied
to data-parallel entities. An interesting observation is that tra-
ditional data structures, like lists and arrays, are also covered by
our definitions. This illustrates the level of abstraction achieved.An especially interesting

possibility is to integrate
data-parallel and lazy higher

order functional languages

An especially interesting possibility is to integrate data-parallel
and lazy higher order functional languages. “Lazy data-fields”,
i.e. data-parallel entities whose entries are computed on demand,
are the result. With such fields, many data parallel algorithms can
be succinctly expressed. This is especially true when the domain
of computation is irregular and varies strongly with the input.
We thus believe that such languages are eminently suitable as
specification languages for data-parallel algorithms.
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10.2 Massively Parallel Logic Computation

Jonas Barklund, Henrik Arro, Johan Bevemyr
Computing Science Department, Uppsala University

Unlike most other projects carried out on PDCs CM, our work is
research within parallel computation itself, rather than on using
parallel computation for doing research in an application domain.

Advocates of logic programming languages have always claimed
that these languages are good for computation on parallel comput-
ers, because their semantics is not based on a sequence of changes
to a store. Still, imperative languages, such as Fortran 77, have so
far been more successful for parallel computation than logic pro-
gramming languages, even taking into account the results of the
Japanese project for Fifth Generation Computer Systems.

The reason for this is that the Single Program Multiple Data
(SPMD) model of computation has been successfully applied in
these languages, by exploiting parallelism when running definite
iterations (so-called for or do loops). Logic programming lan-
guages have mainly attempted to implement more general methods
for achieving parallelism; so far these methods have unfortunately
had quite significant overheads.

Computer programming languages based on logic usually have
recursion as their only means for repetition. Theoretically this
is sufficient, and in practice it often works fine. However, for
essentially the same reasons that parallelizing so-called while loops
is difficult, recursion is not easy to run in parallel.

We have therefore turned our attention to another construct
for repetition in logic, namely quantification. In fact, we have re-
stricted ourselves to bounded quantifications, an example of which
is the expression

∀i : 0 ≤ i < n → a[i] = b[i] + c[i].

That a quantification is bounded means that we know a priori
that we only need to evaluate the body, a[i] = b[i]+c[i] for a finite
number of values of the bound variable i, here the values 0 to n−1.
Seen as a truth-valued statement in a programming language, this
expression says that the first n elements of the vector a are the
sums of the corresponding elements of the vectors b and c, provided
that they are all vectors whose indices go from 0 and upwards.
This clearly corresponds to a do loop in Fortran 77.
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We have designed an extension of the logic programming lan-
guage Prolog that contains bounded quantifications. For example,
a goal can be a universal bounded quantification all(ρ) where ρ is
a range formula that restricts some locally scoped variable ι to a
finite number of values, and β is a goal, presumably containing ι.
A goal can also be an arithmetic bounded quantification κ(ρ, β, τ)
where κ is sum or product (or any other supported quantifier),
ρ is as above, β is an arithmetic expression and τ is a variable,
which is unified with the sum or product of the values of β. For
example, sum(I index ofA,A[I]∗A[I], R) unifies R with the sum
of the square of every element of the array A.

Our work on PDCs CM has been to add this construct to anAn implementation of a
data-parallel version of Prolog implementation of the logic programming language Prolog that

has previously been developed at our department [Bevemyr, 1992].
This gives us a data-parallel version of Prolog where ordinary Pro-
log expressions are run sequentially, but bounded quantifications
are run on the parallel processors of the Connection Machine.

The implementation is based on a compiler that translates the
Prolog programs to sequences of instructions for an abstract ma-
chine [Warren, 1983]; the abstract machine is then realized by an
emulator. This sequential emulator was written in C; therefore we
could extend the machine with parallel instructions for bounded
quantifications by adding a little data-parallel C* code to the ex-
isting C code. This was a relatively modest effort in terms of
programmer time. We must conclude that the idea of having a
data-parallel language as a conservative extension of a sequential
programming language has worked very well.

More work is certainly needed before we can tell whether bounded
quantification is a good extension of logic programming languages,
but our experience so far is positive. Not only do our exam-
ple programs run well on the Connection Machine, but bounded
quantifications are perceived by many as more natural than re-
cursion for expressing common forms of repetition. We hope that
bounded quantifications will be useful in expanding the applica-
tion areas of logic programming to include numeric computations
[Barklund and Millroth, 1992, Barklund and Bevemyr, 1993, Arro
et al., 1993].
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10.3 Barrier Synchronization for Multicomputers

Abdel-Halim Smai, Lars-Erik Thorelli
IT, KTH

Barrier synchronization is an important mechanism for coordinat-
ing parallel processes. In shared-memory multiprocessors common
memory space is used to implement barrier synchronization. In a
distributed memory parallel machine, however, synchronization is
accomplished by passing messages between processors.

In most existing multicomputers, wormhole routing is adopted
to support the underlying interprocessor communication. Apart
from deadlock, a notable source of problem with this technique
is congestion. Because a packet is not removed from the network
when it is blocked, it can rapidly lead to more blocked packets
and therefore to more congestion, especially with large message
lengths and network sizes. This situation can be difficult to man-
age, and system performance can be significantly affected. occurs
with non-uniform traffic patterns, for instance in the realization
of software barriers. In particular, this occurs with non-uniform
traffic patterns, for instance in the realization of software barriers.
There are readily apparent drawbacks in such a case: not only is
the delay for a barrier operation increased but it can also affect
the communication delay of the other types of messages in the
network.

A physical communication channel may be split into multiple
virtual channels. A virtual channel is a logical channel which
has its own buffer, data- and control-paths. A network can thus
provide better node connectivity, and multiple paths and routes
for packet transmission are made available. Our first goal is to test
and compare different scheduling methods for virtual channels in
order to optimize the delay for barrier synchronization operations
and to limit the network congestion.

This work is part of the EDA (Extended Dataflow Architecture)
project at the IT. In this study, we are considering some aspects of
interconnection networks for a future hardware realization of an
architecture supporting the EDA execution models.

We are using C* as our programming language. Its parallel The parallel features of C*
suit quite well the natural
parallelism present in the
model being simulated

features suit quite well the natural parallelism present in the model
being simulated. Performance is, however, still a certain handicap.
A few hours’ execution time for a simulation run is common.
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Glossary

CFD, Computational Fluid Dynamics CFD is the study of flow
phenomena by computational methods. In fluid dynamics, like in many
other branches of natural science, the traditional physical methods of
theoretical analysis and experimental observations can now be comple-
mented by computational experiments. Present advances in computer
power and algorithm design allow serious efforts both in basic science,
such as the understanding of the properties of the Navier–Stokes equa-
tions, and in practical applications to aerospace engineering.

FLOPS, Floating Point Operations per Second A measure of nu-
merical performance of a computer.

FFT, Fast Fourier Transform Any signal can be seen as the su-
perposition of harmonics with different frequencies. The set of ampli-
tudes of the different frequencies is the Fourier Transform of the signal.
Multi-variate functions can be decomposed by treating one variable after
the other, and we then speak of multi-dimensional Fourier Transforms.
When the decomposition is performed on a sampled signal we call it a
Discrete Fourier Transform (DFT). The actual computation of the DFT
can be seen as a complex matrix-vector multiplication where the matrix
elements are roots of unity and the vector is the set of N samples. The
many symmetry properties of the matrix allows one to perform the calcu-
lation in only O(N log N) arithmetic operations as compared to O(N2)
required for a general matrix multiply, and these algorithms are there-
fore called Fast Fourier Transforms (FFT). FFTs are used extensively in
scientific computations. They perform filtering operations in image and
signal processing applications, such as speech recognition and synthesis
and computed tomography, and they make spectral methods for solving
differential equations computationally tractable.

HUGO, Human Genome Project The Human Genome Project aims
at creating a database of the human genome, the DNA, that will for in-
stance aid research in medicine. Collecting this information is a formidable
task that includes work and development in many different areas – from
biotechnology to computer science. As a first step the laboratory has
to find the sequences; much of this work has been automated. The se-
quences are stored in a database. When the information on the sequences
has been collected, researchers can start using it. New techniques have
to be created for maintaining and using this database.
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MIMD, Multiple Instruction Multiple Data Computer A term
describing a specific parallel computer architecture. In a MIMD com-
puter the processing elements (PEs) have their own code and can all per-
form different instructions on their local data. The MIMD programming
model is more general than the SIMD model. Recently there has been
a revival of the MIMD computer as the microprocessors have become
very powerful – this can be seen in the CM5 from Thinking Machines
Corporation and the Paragon from Intel.

SHPCNet, The Swedish High-Performance Computing Net-
work The intention of the project is to connect the Swedish supercom-
puter centers Linköping (CRAY), Stockholm (CM200) and Skellefte̊a
(IBM 3090) with 34 Mbit/s links. This is a first step towards realis-
tic distributed supercomputing. Apart from a number of projects that
aim directly at the distributed possibilities, it is also reasonable to fore-
see a more efficient sharing of existing computer resources among high-
performance users in Sweden.

SIMD, Single Instruction Multiple Data Computer The term
describes a specific parallel computer architecture. In a SIMD computer
instructions are broadcast to all processing elements (PEs) from the
control processor. The PEs all perform the same instruction on their
own local data. One reason for building computers like this is that the
architecture reduces the complexity of the PEs– they do not have to
have local code and hardware for parsing this code. The fact that all
PEs perform the same instruction is a restriction in the programming
model; a SIMD computer can however perform any operation a MIMD
computer can, it only increases computing time by a constant factor. A
SIMD computer will usually have more PEs than a MIMD computer.
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SUNET, see Swedish University

Network
Superconductors, 45

High Transition Temperatures,

45
Supersymmetry, 54
Surface Phenomena, 42
Svensson, Britta, 7
Svensson, Gert, 6, 7
Svensson, Göran, 72
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