
Progress Report
1993

0

PDC
Center for Parallel Computers

Progress Report
1993

Front Cover Picture: A rendering of a geometric model of the computers
installed at the Center for Parallel Computers at KTH. In the picture we
see the Connection Machine CM200 with its framebuffer and DataVault, the
MasPar MP-1, the Silicon Graphics Onyx VTX, and also the newly installed
FDDI ring at PDC connected to SHPCNet and the world. The rendering
model was developed by Johan Ihrén, using the ray tracing program rayshade.
(Copyright c© 1993 Center for Parallel Computers.)

Back Cover Text: This is David H. Bailey’s list of different ways to ’improve’
the performance of ones parallel program. It is a ’tongue in cheek’ summary
of questionable practices found in a field that is not yet quite mature. David
H. Bailey works at the NASA Ames Research Center and can be reached at
dbailey@nas.nasa.gov.

PDC Parallelldatorcentrum
Royal Institute of Technology
S–100 44 Stockholm, SWEDEN
Telephone: +46–8–790 78 84, +46–8–790 78 91
Telefax: +46–8–24 77 84
Email: info@pdc.kth.se
WWW: http://www.pdc.kth.se/

Publisher: Parallelldatorcentrum
Editors: Fredrik Hedman, Per Hammarlund, Jesper Oppelstrup
Typesetting & layout: Jan Michael Rynning, Fredrik Hedman
Printed by: Ekblads, Västervik, November 1994

ISBN 91-7170-805-7

http://www.pdc.kth.se/

Foreword

The Center for Parallel Computers provides open and convenient
access to parallel computing for Swedish academic and industrially
related research. The Center promotes the use of parallel comput-
ing through courses, workshops, a research program and provides
access to applications engineers for the users.

During 1993 a number of new research groups have started to
use the PDC facilities. The earlier users in the different fields of
physics, chemistry, mechanics, biology, geophysics and computer
science have continued, many of them with new exciting projects.

In December 1993, PDC organized an international conference
on Applications in Parallel Computing “Parallel High-Performance
Applications”, with around 90 participants. The conference should
be seen as part of PDC’s effort in promoting the knowledge of par-
allel computing and increasing international cooperation.

During a period, PDC has rented a MasPar MP-1 computer from
Digital Equipment in Sweden. The computer was successfully and
rather heavily used in application areas like Computational Elec-
tromagnetics and also in weather forecasting.

The international trend of increased importance of parallel ar-
chitectures within high performance computing became very pro-
nounced in 1993. A clear sign was the entry of CRAY and IBM
as serious manufacturers of high performance parallel computers.
In addition, the number of vendors of scientific and commercial
parallel software increased substantially during the year.

When this foreword is being written we are nine months into
1994. PDC has just doubled the capacity of the CM200 to 16K
processors and 2 GByte of memory. The users have immediately
taken advantage of the increased capacity. An IBM SP-2 system
with 29 nodes and 4 GByte of memory will soon be installed. With
this system, PDC can offer high-level, state-of-the-art MIMD capa-
bility to both industrial and academic users. The computers will
be housed in the recently modernized part of KTH. The PDC local
environment now includes integrated machine rooms, a computer
graphics laboratory, support staff offices and conference rooms, all
located centrally at KTH.

Foreword 1

With these new facilities PDC can serve large groups of sci-
entists, engineers and students with easy access to a diversified
parallel computing environment. However, scientific development
is pressing on and there is a continuous need for very large scale
parallel platforms for grand challenge problems. These large sys-
tems are needed for breakthroughs in an increasing number of
fields of science. We are confident that the new National High
Performance Computer Council will make every effort to support
continuous upgrading of the national supercomputer facilities.

The industrial users will benefit from the creation of the Par-
allel and Scientific Computing Institute (PSI). The proposal for
this Institute was chosen by NUTEK as one of the centers of excel-
lence to be established in the near future. Naturally, PSI will work
closely with PDC in the increased contact between PDC and in-
dustry. The Institute will work with parallelization of algorithms
and existing codes as well as development of new software.

PDC is looking forward to the coming year with new facilities
and an active academic and industrial research program. Our
priorities will be to reach new groups of users from both industry
and academia and to increase the knowledge of high level parallel
computing in Sweden.

The Board of the Center for Parallel Computers, September 1994

2 Foreword

Contents

1 PDC – Parallelldatorcentrum 5
1.1 Background . 5
1.2 Organization of PDC 6
1.3 Funding . 7
1.4 Hardware Resources 8
1.5 Educational Activities 9
1.6 The Conference and Tutorial 9

2 Color Plates 11

3 Neural Modeling and Computation 19
3.1 Document Retrieval Protein Sequence Matching . . 19
3.2 Developments of the SWIM Simulator Environment 21
3.3 Modeling Cortical Associative Memory 21
3.4 Simulating the Complex Dynamics of a Brain Struc-

ture . 24

4 Computational Fluid Dynamics 29
4.1 Numerical Computation of Detonation Waves . . . 30
4.2 Adaptive Finite-Element Methods 32
4.3 Computational Electromagnetics in 2D 34
4.4 Simulation of Turbulent Couette Flow on the CM200 36
4.5 Data-parallel Multi-block Flow Computations . . . 38
4.6 High Resolution Numerical Weather Prediction . . 41

5 Applications in Physics 45
5.1 Colliding Galaxies on the Connection Machine . . 45
5.2 Hierarchical Model of 2D Turbulence 48
5.3 Scattering in Electron Waveguides 49
5.4 Smooth Particle Hydrodynamics 50
5.5 Quantum Wavepacket Studies 51
5.6 Global Effects in Cellular Automata 53
5.7 Monte Carlo Studies of the Dynamics of Random

Anisotropy Dipolar Models 55
5.8 Excitation Morphology of Ising Spin-glasses 56

Contents 3

5.9 Mapping the Spinodal Region 57

6 Biocomputing 60
6.1 Gene Sequence Database Scanning 60
6.2 Large Sequencing Projects 61
6.3 Recognition of Human mRNA using Recurrent ANN 62
6.4 Analysis of 3D Brain Data 63

7 Applications in Chemistry 65
7.1 Molecular Dynamics for Liquids with Coulombic In-

teractions . 65
7.2 A Direct Recursive Residue Generation Method . . 66

8 Geophysics 68
8.1 Simulation of Ground Vibration on the CM200 . . 68
8.2 Elastic Wave Propagation in 3D Heterogeneous Media 72
8.3 Groundwater Transport Modeling 73

9 Numerical Analysis 75
9.1 Mingle and Un-mingle for Real-to-Complex Trans-

forms . 75
9.2 Parallelizing the Fast Wavelet Transform 76
9.3 Fast Parallel Legendre Transforms 79
9.4 Solvers for Systems of Equations Arising from PDE

Problems . 79
9.5 Implementation of an Approximate SSOR Precon-

ditioner . 81
9.6 Matrix Computations on the Connection Machine 82
9.7 Concentrator Location 84

10 Computer Science 86
10.1 Analysis Techniques for Lazy Data-Parallel Func-

tional Programming Languages 86
10.2 Data-Parallel Functional Programming Languages 87
10.3 Massively Parallel Logic Computation 89
10.4 Barrier Synchronization for Multicomputers 91

Glossary 92

Bibliography 96

Index 104

4 Contents

1 PDC– Parallelldatorcentrum

This third progress report of the Center for Parallel Computers
(PDC) at the Royal Institute of Technology (KTH) covers the ac-
tivities of the center during 1993. A brief overview of this year’s
activities at the center follows in this section. User projects are
described in Sections 3 through 10. The last three sections contain
a glossary, a bibliography and an index.

1.1 Background

The Center was formed in January 1990 to act as a focal point To stimulate research and
spread information on the
use of parallel computers

and national forum for research on and use of parallel computers.
Our goal is to stimulate research and spread information on the
use of parallel computers.

This is achieved by providing high-performance parallel com-
puters and expertise on their use to the technical and scientific
computing community in Sweden. Parallel computing is an im-
portant and necessary technique because parallel computers seem
to provide cost-effective increase in capacity to levels not previ-
ously anticipated.

Parallel computing however requires new ways of approaching a
problem and in many instances new algorithms and techniques –
in short one has to learn to think in parallel. This means that
practical experience of parallel computing in many different areas
of science is important. The computer resources at PDC are used
both in projects which have as their main goal to develop new
methods and in projects which are more oriented to solve a large
problem in some application area.

To achieve our general goal it is of increasing importance to take
an active part in the development of new methods, algorithms and
tools and also in application projects. This is necessary in order
to develop and maintain the competence at the center.

The Connection Machine CM200 is the most powerful computer
in Sweden for a number of problems. The machine with its large
primary memory is especially useful in problems which require
large amounts of data.

PDC –Parallelldatorcentrum 5

PDC is an interdisciplinary organization and our intention is
to disseminate knowledge of how to apply parallel computers in
science and engineering to experts in both computer science and
computing intensive application areas. We feel that the organiza-
tion of PDC as a small independent unit in close cooperation with
different research groups has worked well.

The procurement of the next generation parallel supercomputer
at PDC is currently going on with a funding of 15 MSEK from FRN.
This system will be more powerful than the Connection Machine
CM200 and have an architecture which is applicable to a larger
class of problems. This new computer will further increase the
number of application projects at PDC and will require additional
user support.

Most of the application software used at PDC has been devel-
oped locally. As a consequence the need for user support is larger
compared to what is needed at supercomputer centers with more
conventional architectures and a larger base of commercial third
party software.

The application engineer has proved to be an important and
efficient way of providing user support. The application engineer
takes part in a number of research projects in the same way as
the other researchers of the project, and through his in depth
knowledge of parallel computers he can contribute with new views
on how to approach the problem at hand as well as advise on how
the implementation should be done.

PDC has recently received support from NUTEK for an applica-
tion engineer especially directed to industrial applications. This
will make it possible to introduce the technique of parallel com-
puting in Swedish industry on a much broader scale.

1.2 Organization of PDC

The center has a staff of four persons, or about three full-time
equivalents: Fredrik Hedman, application engineer; Johan Ihrén,
UNIX system manager and graphics specialist; Britta Svensson,
administrative assistant; and Gert Svensson, project coordinator.
Associated part-time staff are Per Hammarlund and Lars Mali-
nowsky.

As a part of a recent reorganization of KTH, PDC was in April 93
transferred from the Department for Teleinformatics (previously

6 PDC –Parallelldatorcentrum

TDS) to the Department of Numerical Analysis and Computer Sci-
ence (NADA). Professor Lars-Erik Thorelli has been the chairman
of the board from the formation of PDC until May 93, when Pro-
fessor Björn Engquist became chairman. Members of the board:

Björn Engquist Professor of Numerical Analysis, NADA
Fredrik Hedman Application Engineer, PDC
Anders Lansner Director of Research SANS, NADA
Jesper Oppelstrup Lecturer, NADA
Yngve Sundblad Chairman of the KTH Computer Council
Gert Svensson Coordinator, PDC
Lars-Erik Thorelli Professor of Computer Systems, IT

1.3 Funding

The original grant of 10 MSEK for the CM2 was given by Skan-
dinaviska Enskilda Bankens Stiftelse för Ekonomisk och Teknisk
Forskning and the Swedish Council for Planning and Coordination
of Research, FRN. The operational cost, including staff, has been
covered by the Royal Institute of Technology, the Swedish Na-
tional Board for Industrial and Technical Development, NUTEK,
the Swedish Research Council for Engineering Sciences, TFR, and
the Swedish Natural Science Research Council, NFR. Our past and
present funding is detailed in the table below.

A grant of 8 MSEK for the budget year 93/94 and 7 MSEK for
94/95 has been given by FRN to purchase a scalable MIMD-system.
This procurement is underway.

Cost of Operation and Staff

Grants kSEK 89/90 90/91 91/92 92/93 93/94

NUTEK 1500 1500 1785 473 920
KTH 100 300 380 880 880
TFR 0 0 0 300 300
NFR 0 0 0 0 300

Total 1600 1800 2165 1653 2400

The relatively low cost 92/93 was because the upgrade of the
Connection Machine included a one year warranty.

PDC –Parallelldatorcentrum 7

1.4 Hardware Resources

Current Hardware

• Connection Machine CM200 with 8 192 processors, 1 GByte mem-
ory and a 10 GByte DataVault. Scalable massively parallel
SIMD-computer with data-parallel programming environment.

• MasPar MP-1 with 16 384 processors and 1 GByte of memory.

• High-end equipment for visualization. One SGI Onyx VTX and
three SGI Indigo R4000.

• Five workstations for personal use and visualization.

• Equipment for access to SHPCNet (Swedish High Performance
Computing Network). Currently being installed.

The Maspar Computer

As part of an engineering research cooperation project PDC has
rented a MP-1 computer from Digital Equipment in Sweden, start-
ing in August 1993. Initially the computer had 8K processors but
it was later upgraded to 16K processors and a total of 1 GByte
of memory. The frontend computer also went through a series of
upgrades to match the needs of PDC’s users.

The architecture of the MP-1 computer is similar to that of the
CM200 with a couple of interesting differences in network topology
and memory organization. The MP-1 processors are organized
in a 2D grid for nearest neighbor communication and are also
connected with a general purpose communication network. The
MP-1 can be seen as a register based machine as compared to the
CM2 that is more of a memory based machine. The MP-1 has
a large number of registers on-chip and also faster support for
indirect addressing.

The MP-1 was primarily used for computational electromagnet-
ics (CEM) and weather forecasting. Examples of projects that
have used the MP-1 can be found in Sections 4.3, 4.6.

Our experiences with the MasPar were positive and it was in-
teresting to make comparative studies of its performance with the
CM200. It is also our impression that many users appreciated be-
ing able to test both systems and then to use the one best suited
for their needs.

8 PDC –Parallelldatorcentrum

Graphics Workstations

During 1993 several new workstations from Silicon Grahics, with
a 2-CPU Onyx VTX as the most powerful one, were installed at
NADA. They are intended specifically for scientific visualization
and are located close to PDC. Currently experiments with a par-
allel interface between the SGI Onyx and the Connection Machine
are underway with the intention that it should be possible to use
the Onyx for realtime visualization of computational results from
the Connection Machine.

Planned Hardware

Scalable MIMD-computer with programming environment for in-
tegrated parallelism. Currently being purchased by a grant of
15 MSEK from FRN.

1.5 Educational Activities

Throughout the year several seminars on the use of parallel com-
puters have been arranged. The Connection Machine has been
used for courses in the M.Sc. program at KTH and CTH. Two
complete courses (3 KTH-credits each) on programming of mas-
sively parallel computers have also been arranged:

Course Date Students

Parallel Computer Systems Spring 93 60
Programming of MPP Computers Mar. 93 23
Programming of MPP Computers Oct. 93 18
New Comp. Arch. for Numerical Calculationsa Jan. 93 16
Numerical Solution of Large Sparse Systemsa Nov. 93 11

aAt CTH.

1.6 The Conference and Tutorial

During December 15–17, 1993 PDC organized a conference and tu-
torial on Parallel High-Performance Applications. The event took
place at KTH, with tutorials during the first day and sessions dur-
ing the last two days. The conference had about 90 participants,
many from other Nordic countries and continental Europe. Spon-
sors of the conference were: Digital Equipment Corp., MasPar
Computer Corp., and Thinking Machines Corp.

PDC –Parallelldatorcentrum 9

The tutorials were given by Björn Lisper, KTH, Robert Schreiber,
RIACS, and Barry Smith, UCLA. The topics that were covered
were: introduction to parallel computing, overview of parallel
hardware architectures, data parallel programming, High Perfor-
mance Fortran (HPF), message passing programming, and exam-
ples of parallel algorithms.

For the conference sessions there were 13 contributed papers
and 9 invited speakers:

• Günther Bachler, AVL, Parallel Applications in Automotive In-
dustry.

• Petter Bjørstad, University of Bergen, Domain decomposition
and parallel computing with applications to oil reservoir simu-
lation.

• Ian Duff, RAL & CERFACS, Exploiting vector and parallel com-
puters in sparse calculations.

• Lennart Johnsson, Harvard University & Thinking Machines
Corporation, Scientific Libraries on Scalable Architectures.

• Diane Lynch, Thinking Machines Corporation, Molecular Dy-
namics Simulations on the CM-5.

• John R. Nickolls, MasPar Computer Corporation, Data-Intensive
Applications on Massively Parallel Clusters.

• Rob Schreiber, RIACS, Subway, a communication compiler for
the Maspar MP-x computer.

• Barry Smith, UCLA, Large PETSc: a Portable Extensible Large
Toolkit for Scientific Computation.

• Brian Wylie, Centro Svizzero di Calcolo Scientifico, Switzerland,
PARAMICS: Parallel Microscopic Traffic Simulator.

The last topic of the conference was a panel discussion on In-
dustrial use of Parallel Computing. The panel laboured with ques-
tions like: “How can industry benefit from high-performance com-
puting?” and “Is parallel computing mature enough to be used
industrially?”.

10 PDC –Parallelldatorcentrum

2 Color Plates

Figure 2.1. A plane TE pulse
enters the computational domain
from above, top left picture. The
pulse strikes a metallic cylinder
and is scattered by the cylinder.
The scattered pulse propagates out-
wards from the metallic surface, top
right picture. In the bottom picture
the incoming pulse has just passed
the cylinder. The scattered pulse
leaves part of the computational do-
main and we can see creeping waves
on the metal surface. The pulses
leaving the computational domain
must not be reflected back by the
artificial outer boundary. Therefore
great care must be taken in creating
an absorbing outer boundary con-
dition. The calculations have been
made on the MasPar using a O-grid
with 1024×128 cells. It is clear that
the absorbing boundary condition
works well. (See Section 4.3 on
page 34.)

Color Plates 11

Figure 2.2. Pressure contours for
inviscid flow in a supersonic air
intake computed using an eight-
block mesh. High pressure is in-
dicated in pink, low pressure in
blue. The white lines indicate the
block boundaries. (See Section 4.5
on page 38.)

Figure 2.3. Simulation results of
the dynamics of the 3-layered olfac-
tory cortex model following a weak
input pulse. The activity at time
t = 78 ms in the three layers, each
consisting of 64× 64 network units.
(See Section 3.4 on page 24.)

12 Color Plates

Figure 2.4. Each graph displays
the activity of the 64 × 64 network
units in the excitatory layer at time
intervals of 4 ms, going from top
left to bottom right. The corre-
sponding area of the real cortex
is 10 × 10 mm. The network units
represent populations of (pyrami-
dal) cells, with the activity given
by the “mean cell membrane po-
tential”. The short pulse, which
originates at the upper left cor-
ner of the network, initiates waves
of activity that move across the
network surface. The unit activ-
ity values range from -4.0 in deep
blue to 6.7 in red. Units with pos-
itive values are sending to other
units, those with negative values
are silent. Each 0.5 ms time step of
this simulation required 0.8 seconds
on the 8K CM200. (See Section 3.4
on page 24.)

2 ms 6 ms 10 ms 14 ms 18 ms

22 ms 26 ms 30 ms 34 ms 38 ms

42 ms 46 ms 50 ms 54 ms 58 ms

62 ms 66 ms 70 ms 74 ms 78 ms

82 ms 86 ms 90 ms 94 ms 98 ms

102 ms 106 ms 110 ms 114 ms 118 ms

Color Plates 13

Figure 2.5. Velocity model show-
ing the salt dome (4400 m/s ma-
terial) from which the synthetic
seismic section was generated. (See
Section 8.2 on page 72.)

Figure 2.6. Snapshot of the wave-
field shortly after the reflectors have
exploded.

Figure 2.7. The synthetic seismic
section that is recorded over the
velocity model.

Figure 2.8. The seismic section
after migration using a 1D velocity
function.

14 Color Plates

Figure 2.9. An electron wave-
packet entering from the top prop-
agating through a Y-branch switch.
Ideally the electron would be
equally split between the two lower
waveguides. Random fluctuations
in the potential causes it to instead
mainly enter the left branch. (See
Section 5.3 on page 49.)

Figure 2.10. The streamwise ve-
locity field in the x-z plane at the
center of the channel, at Reynolds
number 750. In the laminar flow
the instantaneous velocity is zero
at the center line, but in the turbu-
lent case the instantaneous velocity
is non-zero. The deviation from zero
are color coded in read and blue,
for positive and negative deviations
respectively. (See Section 4.4 on
page 36.)

Color Plates 15

Figure 2.11. Jet winds at about
10 km altitude from the same fore-
cast. The wind speed is color coded
with 5 m/s intervals starting at
40 m/s in violet up to more than
75 m/s in dark red. (See Section 4.6
on page 41.)

0 h 12 h

24 h 36 h

48 h

16 Color Plates

Figure 2.12. A 48 hour forecast
at 12 hour intervals. This forecast
was done on MasPar MP-1 with
110 × 100 horizontal gridpoints
(55 km grid distance) and with 16
vertical levels. The complete fore-
cast runs in 20 minutes on the MP-1
and in 10 minutes on the MP-2. One
low pressure system over Southern
Scandinavia moves north, while de-
creasing in intensity, and another
low pressure system is approaching
western Europe from the Eastern
Atlantic. The black contour lines
show the mean sea level air pres-
sure. The blue arrows indicate the
wind direction with more “feath-
ers” for higher wind speeds. The
green colors show relative humid-
ity. The bright green areas are more
or less overcast with 80% to 95%
relative humidity and the darker
green indicate rain areas with more
than 95% relative humidity. (See
Section 4.6 on page 41.)

0 h 12 h

24 h 36 h

48 h

Color Plates 17

Figure 2.13. Output from a sim-
ulation of a network with 750 cells
and 18,000 synapses. Each small
square shows the soma poten-
tial of a cell with spiking activity
red-yellow and resting blue-purple
(maximum over 2 ms from -65 mV
(purple) to +0 mV (red)). The total
time simulated was 300 ms. Four
frames are shown representing ac-
tivity in 2 ms bins. Each column is
shown as a 3 × 4 block of RS-cells
and 3 FS-cells and the 50 columns
are displayed as a 7 × 7 + 1 block.
The stored pattern is the one shown
in the margin of this section. (See
Section 3.3 on page 21.)

18 Color Plates

3 Neural Modeling and

Computation

Most work in the field of Neural Networks (NNs) is today done on
standard sequential von Neuman machines. It has been pointed
out many times that such sequential computers are quite inad-
equate for execution of NNs, as the networks themselves are in-
herently parallel. For this and other reasons it is important to
implement the NN-algorithms and architectures on parallel hard-
ware. Above all, this enables high computational capacity and
therefore also the simulation of more realistically sized and struc- Enables the simulation

of more realistically
sized Neural Networks

tured NNs. For neurocomputing applications, this allows us to
investigate the scaling properties of our algorithms as problem
size increases. It also opens up the possibility of escaping from
“toy problems” to some real-world applications. A further, per-
haps less obvious, reason for this implementation research is that
the use of parallel hardware puts relevant constraints on algorithm
development and discourages inadequate solutions with embedded
sequential sections. For our biological simulations, the use of effi-
cient parallelized simulators means that we can get closer to the
actual numbers of neurons in the systems under study and that we
can simulate neuronal structures comprised of several interacting
sub-networks.

3.1 Document Retrieval Protein Sequence Matching

Björn Levin, Anders Lansner
SANS, KTH

The task examined is how to select relevant documents from a
data base given a text description of the area of interest. A neural
network is used to create a distance measure between the descrip-
tion and the documents of the database. Since the documents are
treated as mere strings of characters the same procedure can be
used to assign distances between the documents of the data base
and can thus be used for clustering purposes. As the conventional
coding for protein sequences are strings of letters, clustering and
search for similarities among these sequences can be handled by

Neural Modeling and Computation 19

the same mechanisms. The reason for our interest in this specific
field is the existence of widely accepted automatic methods for
determining distances, methods that we then use to compare our
achievements against [Wallin, 1992].

Naturally the essential part is how the distances are assigned.
Our approach is to let the neural network determine these by build-
ing detectors sensitive to different features in the documents. Such
a feature could for instance be the presence of a certain word or
part of a sentence or protein sequence. Our system generates
such feature detectors randomly and then evaluates them accord-
ing to several investigated quality measures. These created units
are then connected using the Baysian learning rule of the SANS I
model [Lansner and Ekeberg, 1989a] to units representing the doc-
uments. In the retrieval phase the activity of these units constitute
the representation of the assigned distances. It should be noted
that the procedure of creating feature detectors has a far wider
aspect than the document comparisons it is used for here. It is
an example of the general creation of necessary complex units,
needed in any neural network. The specific task of document re-
trieval serves here both as a platform for general research as well
as an important real problem to be attacked [Levin and Lansner,
1992].

To be more specific about the continuation of the research that
has been carried out during the year, effort has been directed
towards adding another level hierarchically as well as including
certain recurrent connections. One of the underlying ideas for this
work has been to create sets of mutually exclusive units, i.e. sets
where for any given input only one of the members is activated
[Holst and Lansner, 1993]. At the same time the system has been
extended to handle graded units; we have moved on from the bi-
nary unit, capable of signalling only the presence or absence of a
feature, to a unit with a real valued output, capable of signalling
also its estimate of the probability of the features presence in the
data. This posed many problems algorithmically, but is of great
value in many instances where a simple yes-no signal is too coarse.

During learning the times needed have increased. A non-graded
learning can still be completed in around 1.5 hours using the new
code but a complete treatment, including the disjunct sets, re-
quires about 8 times more time. In that time all possible complex
units built from up to 20 primary units have been evaluated, 2048

20 Neural Modeling and Computation

selected, all pair wise correlations examined as well as all corre-
lations of 2048 selected second level units; in all a considerable
amount of statistics gathered from the protein data base men-
tioned earlier.

The modifications have not changed the retrieval times signif-
icantly. The almost constant overhead has increased by a few
seconds; the system is still able to rank 20,000 protein sequences
in less than 10 seconds.

3.2 Developments of the SWIM Simulator Environment

Per Hammarlund
SANS, KTH

One goal of the SWIM simulator project is to create a simulator
environment that can run on a wide variety of hardware platforms.
Our simulations are quite large and we anticipate that they will
become even larger. Still, there is the need of the researcher to be
able to simulate parts of or a down-scaled version of the network.
The large simulations must go on whatever supercomputer the re-
searcher can get time on and the small ones are most conveniently
performed on the workstation on the researcher’s desk.

The SWIM program has been updated to run efficiently on single-
and multi-CPU workstations, using threading, and on single- or
multi-CPU CRAY vector computers, using tasking. To be able to
incorporate even more hardware architectures like parallel SIMD
computers (CM2) and loosely connected parallel cluster-like com-
puters (IBM SP-2), the simulator engine of SWIM has been pulled
out and is being rewritten in C++. This new code is called SPLIT
and will be available in the form a of a library. The functional-
ity of the BIOSIM program [Levin et al., 1990, Hammarlund et al.,
1991, Hammarlund et al., 1992b, Hammarlund et al., 1992a] for the
CM2 is now being integrated into the SPLIT library. The SWIM
simulator will use the SPLIT library at a low level.

3.3 Modeling Cortical Associative Memory

Erik Fransén, Anders Lansner
SANS, KTH

Here we describe a simplified model of the associative memory
function of the cortex. Our interest is to see how the connectiv-

Neural Modeling and Computation 21

Figure 3.1. This figure shows an
example of the connectivity used
in the cortical associative memory
simulations. In this figure there is a
dot in a position ij if there is a con-
nection between two neurons i and
j. Here there are 8 mini-columns
with 12 strongly connected neu-
rons, hence the dense squares along
the diagonal. The connectivity be-
tween the mini-columns is more
sparse, as can be seen in the less
dense off-diagonal areas.

ity structure of a recurrent artificial neural network (ANN) of the
Hopfield type can be arranged in order to get a more cortical-like
structure. The functional unit in our model, corresponding to an
ANN unit, is a cortical mini-column. Inside the mini-column con-
nectivity is dense and both excitatory and inhibitory, whereas the
long-range inter-columnar connectivity is sparse and only excita-
tory. By this arrangement the unbiological constraint of full and
symmetric connectivity is avoided, since, at the cell-to-cell level
connectivity becomes asymmetric and sparse on the average, see
Figure 3.1.

In this study we have used the general purpose simulator, SWIM,
intended for numerical simulation of networks of biologically re-
alistic model neurons [Ekeberg et al., 1993]. The model neurons
may be composed of an arbitrary number of iso-potential com-
partments. Voltage dependent ion channels are modeled using
Hodgkin-Huxley-like equations. Parameter values used here are

22 Neural Modeling and Computation

given in [Fransén and Lansner, 1994, Lansner and Fransén, 1994].
The model is currently extended and implemented using the SPLIT-
library, see Section 3.2.

The entire network consists of 750 cells arranged in 50 mini-
columns. The connection matrix was created using an ANN and
then incorporated into our network model. Eight different pat-
terns like the one in the margin, each composed of 8 out of 50
columns active, were stored in the network by a simple correla-
tion based (Hebbian) learning rule [Lansner and Ekeberg, 1989b].
Patterns/assemblies are overlapping, i.e. sharing some common
columns. Connections are excitatory between columns that oc-
cur together in one or more of the patterns stored, and inhibitory
between those columns that never occur together in any of the
patterns. Each column is composed of 12 pyramidal cells and o*o*ooo

oooo**o

ooooooo

ooooooo

oooo**o

ooooooo

ooo*ooo

*

3 inhibitory interneurons. Within a column the pyramidal cells
connect to each other by 70 randomly chosen synapses. The in-
hibitory interneurons each make a contact to 8 pyramidal cells.
The excitatory long range (inter-columnar) connectivity is from
2 pyramidal cells in the sending column to 6 pyramidal cells in
the receiving column. Inhibitory connectivity is from 6 pyramidal
cells in the sending column to 3 inhibitory interneurons in the re-
ceiving column. The total number of synapses in the network was
about 18,000. (See Figure 2.13 on page 18.)

The aim here was first to demonstrate that a mini-column was
capable to act as a functional unit. As an example, if eight pyrami-
dal cells in the same column were stimulated they could activate
their companions in some 10–30 ms. There was little tendency
for after-activity to occur. Next, when one assembly was stim-
ulated and the application of a neuromodulator like serotonin is
simulated [Fransén et al., 1993], the activity in an active assembly
will persist. The after-activity is a result of a reduced adaptation
of the cells. The firing rate in the after-activity period was rela-
tively low, about 70 Hz due to the saturating conductance of the
synaptic model [Fransén and Lansner, 1994]. With the summing
model commonly used the frequency would have been 150–200 Hz.
Further, when 6/8 of the columns in one assembly (pattern) are
stimulated the remaining 2 will get activated (pattern completion)
by the inter-columnar excitatory connections. A few randomly ac-
tivated columns will be suppressed (noise tolerance). This process
is relatively fast, a complete pattern is normally obtained in 40–

Neural Modeling and Computation 23

100 ms, comparable to that found in psychophysical reaction time
experiments. An activated assembly will not produce any spuri-
ous secondary activation of columns in other assemblies despite
the overlap. The spread of activation is prohibited by the lateral
inhibition between assemblies. This overlap is essential for having
an acceptable storage capacity. Finally, when parts of two assem-
blies are stimulated (ambiguous input) they will compete. When
one of the assemblies wins it will complete its pattern and shut
down the activity in the other one.

3.4 Simulating the Complex Dynamics of a Brain
Structure
Tomas Wilhelmsson, Hans Liljenström
SANS, KTH

A model of the olfactory cortex, the “odor brain”, has been im-
plemented on the CM200 [Wilhelmsson, 1994]. The intention is
primarily to investigate the biological significance of the complex
dynamics found in certain brain structures. In particular, its role
in perception, learning, and memory. A second goal is to study
how such a neural network model can be efficiently implemented
on SIMD computers for more realistic simulations. Much larger
and more detailed systems can be simulated on the CM200 than
on conventional workstations. Also several sub-systems can be
modeled and linked to form a functionally more complete sys-
tem. This will allow for a more realistic processing of (sensory)
input, associating it with any stored memory, and giving an ap-
propriate output that eventually could be used also for technical
applications. The much higher processing speed that this parallel
implementation provides, make it possible to run large simulations
in minutes instead of hours, which is crucial when tuning model
parameters.

The olfactory cortex is used as a model system because of its
structural and dynamical properties. In comparison with many
other brain structures, like the visual cortex, the olfactory cortex
is relatively simple. Its three-layered structure with extensive in-
terconnections distributed within the main layer resembles to a
high degree the architecture of artificial neural networks used for
associative memory. It has also a well characterized dynamics,
including chaos-like behavior and oscillations in the 5 and 40 Hz

24 Neural Modeling and Computation

Figure 3.2. An example of how
five excitatory network units may
respond to a weak input pulse given
to the system. The normalized ac-
tivity of the five units is shown
for one simulated second, with the
2 ms input pulse applied at time
t = 0. There are two dominant fre-
quency components in these oscil-
lations, corresponding to the theta
rhythm (around 5 Hz) and gamma
rhythm (around 40 Hz) of the ol-
factory cortex. The total number of
network units used in this simula-
tion is 3× 64 × 64, which required
30 minutes on the 8K CM200.

0 200 400 600 800 1000
msec

range. The odor information is thought to be encoded in the rich
and varying spatio-temporal activity patterns that are recorded
from this area in behaving animals.

Model description

An artificial neural network consists of network units communicat-
ing via synaptic connections. Each unit sums the weighted activity
levels it receives from connected units, using the sum to update its
own activity level. The complexity of the current model network
lies between that of abstract Hopfield nets and more biologically
detailed simulations with spiking, compartmentized network units.
The network units used here represent populations of cells (neu-
rons), with an activity level given by the “mean cell membrane
potential”. The input-output relation is a continuous (sigmoid)
function, and the network connectivity closely resembles that of
the real cortex.

The model has a three layered rectangular structure, where one
layer of excitatory units (pyramidal cells) is connected to two lay-
ers of inhibitory units (interneurons) on either side. Connections
within a layer only exist for the excitatory units. There are both
short and long range (asymmetric) connections, which are mod-
eled with distance-dependent delays.

Neural Modeling and Computation 25

Figure 3.3. Phase space plot show-
ing the activity of three excitatory
units plotted against each other for
one simulated second. The trajec-
tory for the initial 300 ms is dotted
to highlight the convergence to a
limit cycle attractor for the remain-
ing 700 ms.

-5

0

5

0

2

4

6
-2

0

2

4

6

8

External input is projected to the upper two layers (feedforward
inhibitory and excitatory units) and simulated as incoming fibers
from the olfactory bulb spreading out radially from one corner of
the network. Network parameters, like time and space constants,
as well as signal propagation speeds, are chosen within their phys-
iological ranges. With the parameter values used in most cases,
we simulate a 10× 10 mm square area of the olfactory cortex of a
rat. Network connection weights are adaptive to allow for learning
and associative memory to be studied. We are currently using a
modified Hebbian learning rule for weight updating.

Simulation results

Earlier simulations, using workstations, have shown that this modelMore than 70 million
interconnections is capable of reproducing the essential characteristics of experi-

mentally observed and previously simulated dynamic behavior of
the olfactory cortex [Liljenström, 1991]. These earlier simulations
were made with 10 × 10 network units in each layer. On the
8K CM200, with 1 GByte main memory, we are able to simulate
systems with up to 96× 96 units in each of the three layers, with

26 Neural Modeling and Computation

more than 70 million interconnections. The dynamics of the net-
work is exemplified in Figures 3.4 and 3.4 and also in Figures 2
and 2 on pages 12 and 13 showing different aspects of the same
one-second simulation with 64× 64 units.

Performance

The table below show simulation time per iteration for some layer
sizes for the 8K CM200 as well as a modern workstation, the
SPARC-10/51.

Layer size SPARC-10/51 8K CM200
Time (ms) Time (ms) CM Busy (%)

10× 10 62 362 55
16× 16 326 326 52
32× 32 4742 350 59
64× 64 76000a 1285 97
96× 64 171000a 2306 99

aFor the workstation, the times for layers larger than 32 × 32
are extrapolated from the 32× 32 case since there was not enough
memory in the workstation for larger systems.

Note that the elapsed time per iteration is approximately the The CM200 outperforms
the workstation by a
factor of 60 or more

same for all of the three smaller sizes, where overhead dominates
due to array padding. At a layer size of 64×64 units we achieve a
sustained performance of 83 MFlop/s, i.e. 41.5 million connections
per second. For the larger layer sizes, the CM200 outperforms the
workstation by a factor of 60 or more.

About 80% of the elapsed time is spent summing up the input
from all connections arriving at each network unit. The table
below shows relative time and floating point performance for the
different steps when doing the summation. The timings are for
the 64× 64 case.

Summation step Relative time MFlop/s

Get the delayed activity 37
Multiply by weight and
add to derivative 17 490
Shift the derivative one step 36
Remainder, not timed 10

Total 100 83

Neural Modeling and Computation 27

To get the delayed activity involves indirect addressing, which
is an expensive operation on the CM200. In our case it takes as
much time as the shifting. The calculation time is only 17% of the
total time.

Connection Machine implementation

The workstation implementation was rewritten in CM Fortran to
take advantage of the slicewise programming model of the CM200.
For efficiency, we have used the CMSSL subroutine PSHIFT for
doing four CSHIFTs at a time, and the subroutine CMF aref 1d for
the indirect addressing. The CM graphical debugger Prism has
been very useful when analyzing and debugging the program.

The connection probability within the excitatory layer is spec-
ified to 10–50% in the simulations. We have implemented both
sparse and full matrix storage of these connections. In the sparse
storage case, grid or general communication is selected at runtime.
Grid communications usually turns out to be faster than general
communication, even when the connection probability is below
20%. This is due to the high efficiency of the PSHIFT subroutine.
The sparse matrix storage also allows the 96 × 96 layer size to fit
within the available memory.

Future work

We plan to utilize the gain in speed and storage provided by the
CM200 for increasing the biological realism in our simulations.
This includes modeling several interconnected subsystems simul-
taneously, such as the olfactory bulb and cortex represented by
separate neural networks, with both forward and back projections.
We can also include more structural details in network units and
connections. The spatial resolution we obtain with these denser
networks allow for more realistic dynamics with local variability.
We can further simulate much longer time periods, which allows
for a better comparison with experimental EEG and PET data.

28 Neural Modeling and Computation

4 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the art and science of
computational modeling of fluid-flow phenomena under various
physical conditions. The mathematical models are variants of
the non-linear Navier–Stokes equations which can have very com-
plicated solutions. Numerical simulations of these problems are
therefore a necessary complement to the theoretical and experi-
mental analyses. CFD is also pursued as an engineering discipline
because it leads to better products and to savings in the design
process.

Most CFD simulations today are made with discretizations which Make progress by constructing
computationally efficient
methods and by exploring
the possibilities offered by
massively parallel computers

are not sufficient to completely resolve all interesting physical
scales. What is lacking is both computational power and phys-
ical memory size. However, it is still possible to make progress by
constructing more efficient numerical methods and by exploring
the new possibilities offered by massively parallel computers.

The CM is now routinely used for both pilot studies of a prob-
lem and for production runs with programs already developed.
The projects under way in the CFD area explore several different The CM is routinely used

for both pilot studies
and production runs

methodological directions: high-resolution finite difference meth-
ods (Section 4.1), adaptive finite-element methods (Section 4.2),
spectral methods (Section 4.4), (Section 4.6), and finite-volume
methods (Section 4.5).

The applications include weather forecasting (Section 4.6), det-
onation wave simulation (Section 4.1), and aerodynamics (Sec-
tion 4.5). Since the numerical techniques are very similar, we
include the application on electromagnetic fields (Section 4.3) in
this section.

The CFD projects have also inspired international contacts with
groups working at EPFL, Switzerland and CERFACS, France.

Computational Fluid Dynamics 29

Figure 4.1. Mass fraction (right)
and density of fuel (left).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

2

3

4

5

6

7

8

9

10
Density

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.2

0.4

0.6

0.8

1

Mass Fraction Unburnt Fluid

4.1 Numerical Computation of Detonation Waves

Björn Sjögreen
TDB, Uppsala University

Consider a shock wave traveling into a flammable fluid. The shock
wave increases the temperature, which triggers a chemical reac-
tion. Thus such a detonation wave consists of a shock wave fol-
lowed by a thin reaction zone immediately behind the shock. In
Figure 4.1 (left) we show the density of such a wave profile in one
space dimension. The wave travels into the unburnt state to the
right. Figure 4.1 (right) shows the mass fraction of unburnt fluid.

We solve the equations of reactive compressible fluid flow, using
a shock capturing finite difference method. The thin reaction zone
requires very high resolution in the numerical method for solving
the problem. This means that the number of grid points becomes
very large, especially in two and three space dimensions. It is then
necessary to use a powerful computer, such as the CM200.

In Figure 4.2 we show iso density contour lines of a detonation
wave in two space dimensions at six different times. The wave
propagates to the right, and transverse waves develop along the
front. Two triple points which bounce up and down against the
upper and lower walls are clearly seen.

The computation in Figure 4.2 was made using a high-resolution
second order accurate difference method in space, and a second
order Runge-Kutta integration in time. We used 256 × 128 grid
points, the entire computation took about 20 minutes on 4K pro-
cessors and the overall computational speed was 86 MFlop/s. All
computations were made using double precision. If we do the
same computation as in Figure 4.2, but instead use a less accu-
rate first order difference method in space, we obtain the result in

30 Computational Fluid Dynamics

Figure 4.2. Iso density contours,
second order accuracy, show the
detonation front moving left to
right with correct reflections at
walls top and bottom. The sequence
starts at the upper left figure.

Computational Fluid Dynamics 31

Figure 4.3. Iso density contours,
first order accuracy, show erroneous
solution due to excessive numerical
dissipation.

Figure 4.3. This result is not correct, due to insufficient accuracy
in the reaction zone. The triple points becomes stationary, and
a steady wave structure develops. The four different solutions in
Figure 4.3 correspond to the first four times in Figure 4.2. One of
the main interests in this project is to study the influence of such
numerical effects.

The performance of the CM200 on the present code was mea-
sured with the result shown in Figure 4.4. All results were com-
puted in double precision on 4K processors. The language was
CM Fortran and the compiler option -O was used. The code con-
tains some shift operations, but is dominated by arithmetic work.

We see that a maximum rate of about 100 MFlop/s is reached if
the problem is large enough. The number of grid points on the x
axis is normalized by the number of physical processors. It seems
that it is necessary to have this VP ratio above 16 in order to
obtain maximum performance.

This project will develop along two lines in the future. We will
implement a realistic reaction mechanism, with several chemical
species, and we will extend the code to three space dimensions.

4.2 Adaptive Finite-Element Methods

Claes Johnson, Peter Hansbo, Kenneth Eriksson
Department of Mathematics, CTH

The main objective of our work is to investigate principles for
the implementation of adaptive finite element methods on mas-
sively parallel architectures such as the Connection Machine (CM).
Specifically, we have considered the implementation of the stream-
line diffusion (SD) method, which is a general finite element method
for hyperbolic type problems such as convection-diffusion problems

32 Computational Fluid Dynamics

Figure 4.4. MFlop/s plotted
against problem size.

0 5 10 15 20 25 30 35
65

70

75

80

85

90

95

100

Grid points/4096

M
flo

p

4K processors, Fortran double precision

and the Euler and Navier–Stokes equations of incompressible and
compressible flow.

We are currently focusing on three-dimensional incompressible
flow computations with or without free boundaries. For this pur-
pose, we have implemented a 3D mesh generator, a 3D h-refinement
algorithm, and a multi-grid solution algorithm taking advantage
of the nested sequence of grids occurring in standard nested h-
refinement. See Figure 4.5 for an example.

The SD-method we use is a modified Galerkin method based on
space-time finite element discretization with piecewise polynomial
basis functions, discontinuous in time and continuous in space.
By orienting the mesh in space-time locally according to particle
trajectories, we obtain methods with the essential features of so
called ‘particle methods’ or Lagrangean methods. This yields a
way of generalizing particle methods to include diffusive effects,
impose boundary conditions and handle mesh distortion problems.

We are currently implementing our codes on the CM-system.
The new CMSSL library supports new powerful tools for mesh par-
titions and communication routes. These new tools significantly
strengthen the prospects of unstructured methods on parallel pro-

Computational Fluid Dynamics 33

Figure 4.5. A sequence of adapted
3D grids for the solution of Stoke-
sian closed cavity flow, with veloc-
ity solution on the finest grid (lower
right).

cessors, and we aim to investigate this possibility. In order to be
able to use these tools in our particular framework of adaptive
methods, we have initiated a cooperation with one of the prime
architects of the communications part of CMSSL, Zdenek Johan of
Thinking Machines Corporation.

4.3 Computational Electromagnetics in 2D

Ulf Andersson, Gunnar Ledfelt
C2M2, KTH

The project develops techniques for computing electromagnetic
fields by time integration of the Maxwell equations. The standard
tools of today are frequency-domain based methods, in particular
the Method of Moments (MOM). Frequency-domain based meth-
ods give the response for all angles of incidence at a single fre-
quency. Time-domain based methods, on the other hand, provide
solutions for many frequencies from one single transient calcula-
tion. Using spectral methods, the time-domain transient solu-
tions can be processed to provide the frequency-domain response.

34 Computational Fluid Dynamics

Time integration with explicit methods is well suited to massively
data-parallel computers, and indeed one of the pilot codes runs at
almost 50% peak speed of the CM.

Another benefit of time-domain techniques in Computational
Electromagnetics (CEM) is that they can take advantage of the
software technology developed in Computational Fluid Dynam-
ics (CFD). For a transverse electric field in an isotropic, resistive
medium the Maxwell equations can be written as

∂

∂t
Ex =

1
ε

∂

∂y
Hz − σ

ε
Ex

∂

∂t
Ey =

−1
ε

∂

∂x
Hz − σ

ε
Ey

∂

∂t
Hz =

−1
µ

∂

∂x
Ey +

1
µ

∂

∂y
Ex,

(4.1)

where Ē = (Ex, Ey, 0)T is the electric field, H̄ = (0, 0,Hz)T is the
magnetic field, σ is the conductivity, ε is the permittivity and µ is
the permeability. This is a hyperbolic system just like the Euler
equations of gas dynamics used in CFD. It is therefore possible to
take algorithms developed for the Euler equations and use them
to solve (4.1).

We have implemented a time domain based method for solving
(4.1) on both the CM200 and the MP-1 by porting a existing scalar
program [Gradin and Ledfelt, 1993]. We use a Finite Volume
method based on central differences and the time discretization
is made with a three stage Runge-Kutta method. This is second
order accurate in both space and time for regular grids. Both code
versions support periodic boundary conditions and boundaries at
perfectly conducting surfaces. The MasPar version also supports
absorbing boundary conditions.

A substantial effort was made to optimize the CMversion of
the code and in single precision on an 8K CM200 it runs at 1.3
GFlop/s. This has been achieved by using the stencil compiler
which imposes some rules on the code syntax meaning that around
25% redundant FLOPs must be introduced. FLOP-rates are taken
from calculations with 2048 × 2048 cells which is the maximum
problem size that fits into the 1Gbyte primary memory of the
CM200. For every test case so far single precision has proven to
be sufficient.

Computational Fluid Dynamics 35

In the MasPar version of the code an artificial far-field non-
reflecting boundary is included. This makes it possible to treat
open problems, i.e. where the physical domain is unlimited. The
performance of the absorbing boundary condition is critical. Oth-
erwise reflections may occur which can destroy the solution. The
absorbing boundary condition used is described in [Gradin and
Ledfelt, 1993]. This was implemented in such a way that the main
calculations are done the same way throughout the whole com-
putational domain with a minimum of special treatment at the
boundary. For a problem-size of 1024 × 128 the MasPar version
runs at 370 MFlop/s in single precision.

Figure 2.1 on page 2.1 shows an electromagnetic wave that
passes a infinitely long, perfectly conducting cylinder. The calcula-
tions have been made on the MasPar using a O-grid with 1024×128
cells. It is clear that the absorbing boundary condition works well.

4.4 Simulation of Turbulent Couette Flow on the CM200
Jukka Helin
C2M2, KTH
Anders Lundbladh
FFA, Bromma
Arne Johansson
Department of Mechanics, KTH

We have simulated turbulent plane Couette flow at low Reynolds
number, using the CM200. The code used in this simulation was
originally developed to run on vector machines [Lundbladh et al.,
1992]. It was ported to the CM200 during the autumn of 1993.

The code uses a spectral integration method, with FFTs in x
and z directions, and a Chebyshev transform in the inhomoge-
nous y direction. For the FFTs we use the CMSSL library while
the Chebyshev transform is coded in CM Fortran. At each itera-
tion of the main loop of the program there are a number of FFTs
and Chebyshev transforms, making it a very communication inten-
sive code. Despite this we have managed to get a performance of
about 240 MFlop/s in double precision arithmetic on an 8K CM200.
Compared with the vector version of the program run on one head
of a CRAY X-MP, the parallel version is about 3 times as fast, and
compared to one head of a CRAY Y-MP it is 30% faster.

36 Computational Fluid Dynamics

Figure 4.6. The mean velocity
profile in plane Couette flow for
laminar (dashed line) and turbulent
(solid line) flow.

x

y

uwall

-uwall

In Figure 4.6 the dashed line is the laminar velocity profile, and
the solid line is the turbulent velocity profile. In laminar Couette
flow, both the instantaneous and the time averaged velocity at
the center line is zero. In the turbulent case the time averaged
velocity is zero, but the instantaneous velocity is not zero. A pic-
ture of the streamwise velocity field in the x-z plane, can be seen
in Figure 2.10 on page 2.10. It shows the instantaneous velocity
field at the center line with the deviation from zero velocity color
coded in read and blue, for positive and negative deviations re-
spectively. Note the large-scale structures in the flow, which have
long length-scales in the streamwise direction.

The main objective for this project is to study these large-scale
structures, and we have therefore used a large computational do-
main, about 88 × 2 × 25 measured in half channel heights. One
important conclusion drawn from this study is that the large scales
do not have infinitely large length-scales in the streamwise direc-
tion as some previous investigations indicated [Lee and Kim, 1991].

In these simulations it is an advantage to have a large primary
memory because of the large number of grid points necessary to
resolve the flow. The present low Reynolds number simulation
has over 7 million grid points making use of almost all the avail-
able memory of 1 GByte. Simulations of flows at higher Reynolds
number, or larger computational domain, would require even more
grid points, and thus more memory.

Computational Fluid Dynamics 37

4.5 Data-parallel Multi-block Flow Computations

Mark Sawley, Jon Tegnér
IMHEF, EPFL, Switzerland

To compute flows in complex geometries, block structured meshes
provide an alternative to the use of unstructured meshes. Parallel
computations using block structured meshes can exploit either a
coarse-grain parallelism at the block level or a fine-grain paral-
lelism at the mesh point level. For efficient parallel computation,
the granularity of the problem needs to be matched to that of the
parallel computer employed.

Coarse-grain parallelism has been exploited in CFD calcula-
tions by a number of researchers, using either shared-memory
multi-processor computers or distributed-memory massively par-
allel MIMD computers. These implementations have employed a
control parallel methodology, for which different blocks are com-
puted in an independent manner on different processors with infor-
mation transferred between blocks whenever appropriate [Sawley,
1993]. While control parallel multi-block methods are straightfor-
ward to employ if the mesh is comprised of blocks having equal
computational work, in general the problem of load balancing be-
tween processors can become a major concern.

The fine-grain parallelism exhibited at the mesh point level of
a structured mesh is well suited to the data-parallel programming
model, for which different processors undertake the necessary com-
putations of different mesh points in a synchronous manner. To
date, the application of the data-parallel programming model to
CFD appears to have been limited to computations based on single-
block structured meshes and unstructured meshes [Sawley, 1993,
Sawley and Bergman, 1994].

The present study investigates a serial data-parallel multi-block
method that retains much of the simplicity of the data-parallel
approach. Individual blocks are treated in a sequentially, the solu-
tion in each block being computed using a data-parallel approach.
Such a method can be directly applied, for example, to both the
CM200 and MP-1 computer systems.

The serial data-parallel multi-block method has been imple-
mented in a code, originally developed by Magnus Bergman, that
solves the time-dependent Euler equations for inviscid, compress-
ible flow in 2D geometries. The equations are discretized in space

38 Computational Fluid Dynamics

using a finite volume formulation, using central differencing with
added artificial dissipation. An explicit five-stage Runge-Kutta
scheme is used to perform the time integration. To enhance con-
vergence to the required steady state, a local time stepping tech-
nique is employed. The values of the flow quantities throughout
the flow domain are stored in global arrays. For the serial data-
parallel multi-block method, the global values for one block are
copied to corresponding local arrays, which contain an additional
exterior layer of ghost cells to provide data locality and facili-
tate the application of boundary conditions. The computation is
performed using the local arrays in a manner similar to that for a
single block mesh [Sawley and Bergman, 1994]. The updated local
array values are then returned to the global arrays. The transfer
of data between different blocks (block connectivity) is achieved
via the global arrays in an implicit fashion using the globally ad-
dressable memory. After the global array elements for one block
are updated, the other blocks are treated in a sequential manner.
See [Sawley et al., 1993a] for more details.

As an application, we consider here the flow in a supersonic air
intake. A freestream Mach number of 1.865 and a back pressure
(static pressure at diffuser exit / freestream total pressure) equal to
0.83 has been imposed. The resulting flow, as shown in Figure 2.2
on page 2.2, is characterized by an oblique shock that impinges on
the cowl lip, followed by a series of reflected shocks in the diffuser
section. This flow case has been studied by the French aircraft
engine manufacturer Snecma in the development of a power-plant
for the replacement of the Concorde supersonic aircraft.

To compute the flow field in the air intake, a block structured
mesh of eight blocks has been employed. (See Figure 2.2 on
page 2.2.) Note that this mesh has been constructed from geomet-
ric considerations alone. Smaller blocks are allocated to regions of
greater interest, the total number being chosen as suitable to cover
the flow domain. The number of mesh cells in each block is the
same (125 × 125). This choice has not been based on paralleliza-
tion considerations, but solely on convenience, since the algorithm
employed in the code is restricted to directly-connected blocks.
While a control-parallel method could be efficiently used for such
a mesh on a computer system comprised of eight processors of
equal performance, additional artificial sub-division of the mesh
would be required for more general parallel systems.

Computational Fluid Dynamics 39

Since the blocks are treated in a sequential manner, a rather
simple dynamic block management strategy has been employed.
Every tenth iteration, the values of the residuals in each block
(based on the local density) are calculated. The residual values
are used to determine which of the blocks are to be considered (i.e.
“switched on”) for the next ten iterations. The criterion for a block
to be switched on is that the maximum residual in the block, or at
the appropriate ghost cells in neighboring blocks, is greater than
the pre-determined convergence value. In this manner, the com-
putation is performed only in blocks where there is useful work
to be done. Not only are blocks switched off to avoid unneces-
sary computations, but they are also switched back on should the
development of the solution in a neighboring block produce an in-
fluence. After the maximum residual in all blocks has fallen below
the desired value, further iterations are performed on all blocks
to avoid accumulative effects. For the present problem and for
the majority of iterations, it has been necessary to compute on
at most four of the eight blocks. The use of the above-described
dynamic block management, has therefore been found to diminish
the work undertaken – and thus the CPU time – by a factor of two.

Code portability and performance are also being investigated in
the present study. Adhering to the Fortran 90 standard has en-
abled the code to be run on serial, vector/parallel and massively
parallel systems [Sawley et al., 1993b]. However, it does not guar-
antee that the performance obtained on each of these platforms
will be acceptable. Indeed, detailed information regarding the
target computer hardware and compiler implementation is neces-
sary to optimize code performance. On distributed memory par-
allel systems, the communication time required for imposing the
boundary conditions and the transfer of data between different
blocks is critical in determining code performance. Such commu-
nication must be performed using the fastest possible means. The
MasPar Fortran compiler interprets the array statements associ-
ated with these communication tasks to be performed using the
fast X-Net of the MP-1. Since the CM Fortran compiler does not
recognize that these statements can be performed using NEWS
communications, recoding with the explicit use of CSHIFT intrin-
sic functions was necessary in order to optimize performance using
the CM200. The above described flow problem has been com-
puted, using 64-bit precision, on both the MP-1 and CM200 sys-

40 Computational Fluid Dynamics

tems at PDC. A total CPU time of 5600 seconds was required on the
16K MP-1 (171.7 MFlop/s) and 14,170 seconds on the 8K CM200
(67.8 MFlop/s). Since a substantial amount of communication
is required for the flow computation, these performance figures
reflect the significantly higher ratio of communication to compu-
tational speed of the MP-1 system. Higher performance could be
expected from both computer systems by using library routines,
but at the expense of portability.

4.6 High Resolution Numerical Weather Prediction

Nils Gustafsson
SMHI, Norrköping
Tomas Wilhelmsson
NADA, KTH

More than 70 years ago, Lewis Fry Richardson calculated the first
numerical weather forecast. It took him six years of hand calcu-
lations to do a three hour forecast. The forecast predicted winds
with speeds of more than one hundred meters per second blow-
ing in the wrong direction! In spite of this initial failure, due to
inaccuracy of his initial data, Richardson was correct in his basic
approach. He envisioned a massively parallel human computer,
with 64,000 people doing the calculations of operational weather
forecasting. Today massively parallel computers with 16,000 pro-
cessors are available, bringing Richardson’s vision to reality in a
way he probably never imagined. The metereological community
should try to use these new machines.

The HIRLAM weather forecasting system has been developed
within a common research project among the the Nordic coun-
tries, Ireland and the Netherlands. Present operational versions
can describe scales of motion of the order of 100 km while there
is a need to move toward scales of the order of a few kilometers.
The computer power for such resolutions, besides the general par-
allel structure of the problem, makes it interesting to try HIRLAM
on massively parallel architectures. Two versions of HIRLAM are
available, a gridpoint version and a spectral version [Gustafsson,
1991] based on the spectral transform technique [Orzag, 1970].
Both versions have been implemented and tested on the MasPar
MP-1 at PDC as well as on the MasPar MP-2 in Bergen.

Computational Fluid Dynamics 41

The MasPar version of the spectral HIRLAM

The spectral HIRLAM was originally coded in Fortran 77 and hadFor most of the code it was
possible to use the VAST-2
source code translator for
an automatic conversion.

to be converted to High Performance Fortran in order to run on
the MasPar. For most of the code it was possible to use the VAST-
2 source code translator for an automatic conversion. With regard
to the core of the spectral dynamics, code conversion was carried
out in a semi-automatic way by simple editing commands.

An efficient FFT package is a prerequisite for the application
of the spectral transform technique. Two different FFT packages
were investigated – the FFT package in the MasPar Math Library
and an FFT package developed by Hans Munthe-Kaas [Munthe-Kaas,
1993] at the University of Bergen. The first trials with the Munthe-
Kaas package resulted in a two-fold speedup of the complete model
as compared to the use of the single transform MasPar Math Li-
brary routine.

Benchmark Results

Operational data sets from the SMHI were used for the bench-
marking. The integration domain consists of 110× 100 horizontal
gridpoints and 16 vertical levels. In order to have periodic varia-
tions in both horizontal directions, this domain was extended in
the horizontal to 128× 128 gridpoints. The total elapsed comput-
ing times for HIRLAM spectral model runs are given in the table
below.

Computer Configuration Time (s)

MasPar MP-1 16K processors (32 bits) 106.9
MasPar MP-2 16K processors (32 bits) 48.7
MasPar MP-2 4K processors (32 bits) 200.6
Cray YMP C90 1 processor (64 bits) 61.9
Cray YMP C90 8 processors (64 bits) 8.5
CONVEX C3840 4 processors (64 bits) 197.0
CONVEX C3840 4 processors (32 bits) 123.0

Only the elapsed computing time for the pure forecast model
integration was measured since the initial data handling and post-
processing was not converted to HPF at the time of the measure-
ment. Elapsed times for the MasPar are all for 32 bits arithmetic.
Benchmark results for the HIRLAM spectral model on CRAY C90

42 Computational Fluid Dynamics

and Convex C3840 have also been included in the table. The follow-
ing of more general interest can be noted about the results: (1) The
speedup factor to run the same forecast on 4 times as many MasPar The MasPar MP-2 in

32 bits arithmetic runs
1.3 times faster than
one CRAY C90 processor
in 64 bits arithmetic.

processors is slightly greater than 4; (2) The MasPar MP-2 with
16K processors is about 2.5 times faster than the Convex C3840 in
32 bits arithmetic; (3) The MasPar MP-2 with 16K processors in
32 bits arithmetic runs 1.3 times faster than one CRAY C90 pro-
cessor in 64 bits arithmetic. The measured average MFlop/s for
the spectral HIRLAM on one CRAY C90 processor is 425. Thus,
as a rough estimate, the MasPar MP-2 with 16K processors runs
the spectral HIRLAM in 550 MFlop/s. This corresponds to 9%
utlization of the peak performance. The corresponding figures for
the MasPar MP-1 with 16K processors are 250 MFlop/s and 21%
utilization of the peak performance.

Recently also the pre- and post-processing parts of the HIRLAM
forecast model have been converted into HPF. For a full 48 hour op-
erational forecast run, pre- and post-processing accounts for 9% of
the elapsed run time on the MP-1 and 17% on the MP-2. While the
MP-2 runs the model integration about twice as fast as the MP-1,
both machines have the same front-end. The front-end packs and
unpacks the description sections of the metereological GRIB file
format which causes the difference between the two MasPar mod-
els.

The Figure 2.12 on page 17 show a 48 hour forecast at 12 hour
intervals. This forecast was done on MasPar MP-1 with 110× 100
horizontal gridpoints (55 km grid distance) and with 16 vertical
levels. The complete forecast runs in 20 minutes on the MP-1 and
in 10 minutes on the MP-2. A low pressure system over South-
ern Scandinavia moves north, while decreasing in intensity, and
another low pressure system is approaching western Europe from
the Eastern Atlantic. The Figure 2.11 on page 16 show color coded
jet winds from the same forecast.

Concluding Remarks

The HIRLAM spectral model including the complete physical pa-
rameterization package has been implemented successfully on the
MasPar computer system. The model runs 2.5 faster on the 16K
MasPar MP-2 system than on the 4 processor Convex C3840 cur-
rently in operation at SMHI (32 bits arithmetic). Considering the
costs of the two computer systems, the MasPar system certainly

Computational Fluid Dynamics 43

has proven to have a very competitive price-performance relation
for this particular but very complex software package.

Contrary to what is generally believed and contrary to the
present main stream of developments, this successful application
of the complete and spectral HIRLAM model on the MasPar sys-
tem has also proved that Massively Parallel Processing systems
based on the SIMD concept are still very interesting alternatives
to systems based on the MIMD concept. Also contrary to what is
generally believed, the experiments indicate that spectral meth-
ods are competitive also on MPP platforms. Finally, the MasPar
system has also proven to be capable of handling the I/O needed
for a full operational forecast run.

44 Computational Fluid Dynamics

5 Applications in Physics

The number of projects in this area is large; both those doing pro-
duction runs and those that are in a development phase. Some of
the projects study field problems by numerical solution of conser-
vation laws such as the Poisson, Schrödinger or wave equations, for
which the CM200 is ideal. It is interesting to note the many differ-
ent types of studies, such as a model for 2D-turbulent flow made
up of particle-like vortices in a quad-tree structure, and Monte
Carlo (MC) simulations of spin glasses.

The ongoing projects come from a variety of fields: hierarchi-
cal models of turbulence (Section 5.2), quantum phenomena (Sec-
tion 5.5, 5.3), disordered magnetic systems (Section 5.7), galactic
and stellar evolution (Section 5.1, 5.4), Cellular Automata (Sec-
tion 5.6), and Ising models (Section 5.8, 5.9).

5.1 Colliding Galaxies on the Connection Machine

Stefan Engström
Department of Astronomy, CTH

One popular explanation invoked to explain the spiral structure
of disk galaxies is the gravitational tide incurred by a passing
companion galaxy. Numerical simulations have substantiated this
idea since the early sixties. Serious effort has been put into model-
ing actual observed systems with numerical models in which 10k–
1M particles sample the collisionless system of approximately 1012

stars that constitute a disk galaxy. One particular famous exam-
ple is that of M51 which was one of three models by the Toomre
brothers [Toomre and Toomre, 1972]. This is one of the crucial
papers on this subject which convinced many of the tidal pertur-
bation scenario.

Toomre & Toomre’s model was based on the optical image of
M51 (Figure 5.1). It reproduces several independent features of
the observations and has been the starting point for most sub-
sequent attempts at refining the model. Prompted by later ob-
servational evidence in the form of observations of neutral hydro-
gen [Rots, 1990], in collaboration with Professor Athanassoula of

Applications in Physics 45

Figure 5.1. M51 column density
in neutral hydrogen (HI) and in the
optical waveband (inset). Note that
the images have the same scale.
The HI traces an entirely different
set of scales.

the Observatoire de Marseille, I have opted for a different approach
to the modeling procedure [Engström, 1993] .

The HI-data trace much larger scales than the optical frequency
bands and constitute in a sense an independent observation of the
same system, see Figure 5.1. Now we can see that the Toomre &
Toomre model needs to be modified because the proposed orbital
parameters do not reproduce the structures in the outer parts of
the disk.

Making the minimal assumptions that: (a) the structure is
mainly due to the passage of the companion galaxy, and (b) the
disk was initially axisymmetric, we have investigated a reason-
ably complete orbital space in a model where the disk material
is non-self gravitating. This last assumption is very reasonable
for the HI-disk and streamlines the problem for attack by mas-
sively parallel computing. This project became possible due to a
generous amount of time at the Connection Machines located at

46 Applications in Physics

Figure 5.2. Examples of density
morphology seen in the numerical
simulations. The density is traced
by particles which originally move
on circular orbits which are per-
turbed by the passing companion.

INRIA (Sophia-Antipolis, France) and at PDC. On the order of
10,000 simulations with 8K particles integrated for several thou-
sand timesteps have been calculated and the results have been
compared to observations with respect to density and velocity
fields.

It is possible to find families of solutions (Figures 5.2 and 5.3)
that reproduce the gross structure seen in observations, however –
none of these reproduce the velocity field. In fact, selecting so-
lutions based solely on the velocity field of the large outer arm
in Figure 5.1 produces no convincing solutions to the modeling
problem. To fully specify a two-body interaction demands knowl-
edge about three relative positions and three velocities in addition
to the relative mass of the objects. Of these quantities, we can
determine observationally only four (two positions in the plane
of the sky, one velocity component along the line of sight and
the relative mass of the systems). Three entirely free parame-

Applications in Physics 47

Figure 5.3. Extensive parameter
surveys and automatic analysis of
the data enable us to identify fam-
ilies of orbits which produce densi-
ties and velocity fields which have
a certain level of correlation to the
observed quantities.

0 1 2 3 4 5 6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6
-3000

-2500

-2000

-1500

-1000

-500

0

ters remain. By physical arguments we have bounded these into
intervals which we have carefully searched for matching density
and velocity responses. Had we not been able to cover the en-
tire three-dimensional parameter space, we would not be in the
position to seriously cast doubt on the fundamental assumptions
which is where we have to turn next to unravel the secrets of this
particular galaxy.

5.2 Hierarchical Model of 2D Turbulence
Peter Frick, Vladislav Shaidurov
ICMM, Perm, Russia

The number of excited degrees of freedom in fully developed tur-
bulence is so large that numerical investigations demand, and will
continue to demand, more and more powerful computers. This
motivates the construction of special models to investigate partic-
ular properties.

A model for 2D-turbulence has been constructed as a hierarchi-
cal tree of vortices of different sizes. In contrast to shell models,
the number of degrees of freedom grows with wave number, as in
real turbulence: modeling comes in only in the connections and
interactions of the vortices. The functional form of the vortices
are taken from a discrete, hierarchical basis, well localized in both
real-space and Fourier-space. The vortices are connected along
the back-bone of the tree, but not horizontally on a given level.
The inertial forces conserve both energy and enstrophy. Statistical
properties of the cascade are investigated, both integral and local.
For details of the model see [Aurell et al., 1994].

48 Applications in Physics

We have studied in detail the direct cascade of enstrophy in
forced 2D-turbulence. Most simulations were done for 11 levels
of scales (from N = 0 to N = 10, the total number of vortices
being 1398101). The integration time per step was then around
30 seconds using the 8K CM200 at PDC. The maximal size of tree,
that was run on the CM after very strong optimization was 12
levels (5592405 vortices). To do this we used the embedding of a
hierarchical tree into a hypercube described in [Johnsson and Ho,
1989].

We have checked that different resolutions of the dissipative
range does not change the results in the inertial range. The tests
were performed by keeping the Reynolds number based on viscos-
ity constant, but adding or subtracting one more level in the dissi-
pative range. The add of one level for the same Reynolds number
does not give any essential changes in the spectral distributions.

5.3 Scattering in Electron Waveguides

Thomas Palm, Jan-Olof Wesström
Microwave Engineering, KTH

One-dimensional electron waveguides have great potential for mak-
ing fast electronic devices. Here electrons travel ballistically, i.e.
without scattering in narrow channels, which increases the speed
of the device. The small size also means that quantum mechanics
is important, which leads to new possibilities such as interference
effects. Given idealized models we have earlier shown good per-
formance in modulation-doped, split-gate structures [Palm, 1993].
In particular we have studied a Y-branch switch.

The small size of these devices implies that individual impurity
atoms can affect the performance. It is therefore only during the
last couple of years that samples with enough purity have been
fabricated to allow ballistic transport.

All impurities cannot be removed; the conduction electrons must
be compensated by positively charged donors to maintain charge
neutrality. Although one keeps these donors separated from the
electrons by using modulation-doping, the scattering can be ex-
pected to be significant.

Our earlier model has been enhanced to include the effects of
the donor atoms. Using analytical methods this would have been
a major challenge. With a numerical simulation this merely re-

Applications in Physics 49

quired adding one subroutine. A random distribution of atoms is
created and, using Fourier transforms, their contribution to the
electrostatic potential at the plane of the electrons is calculated.

It was shown that with this effect added, device performance
was drastically reduced. (See Figure 2.9 on page 2.9.) The device
shown here, although interesting for basic science, would not be
practically useful. Work is currently in progress to improve the
models and find better device parameters to solve this problem.

In a parallel effort the effects of phonon scattering is studied.
This type of scattering is caused by the thermal vibrations of the
semiconductor lattice. This effect is important to understand in
order to predict the performance at temperatures higher than 4 K.
These higher temperatures are of course preferred in practical ap-
plications.

Phonons interact with electrons by changing the potential ex-
perienced by the electrons. Phonon scattering is included in the
model by adding a time varying perturbation to the electrostatic
potential. To be practical this method requires that the potential
is calculated in advance and stored in a long sequence of matrices.
This is simple due to the large primary memory of the CM.

5.4 Smooth Particle Hydrodynamics

Magnus Selhammar
Uppsala Astronomical Observatory, Uppsala University

Smooth Particle Hydrodynamics (SPH), is a gridless Lagrangian
hydrodynamic method. Instead of a grid one uses particles to rep-
resent the density distribution of the model. This representation
is often efficient in astrophysical applications because it is easily
implemented in three dimensions. It is also easy to include differ-
ent physical phenomena such as gravitation, cooling or magnetic
fields. Another advantage over the usual grid methods is the pos-
sibility to work with great density differences in the evolution of
the model.

This work has mainly been focused on making an efficient gen-
eral parallel SPH code for studies of accretion disks in star for-
mation modeling. Gravitation using the Barnes-Hut method has
been implemented to structure the calculation. The tree is also
used to find the neighbour particles for the hydrodynamic inter-
action. Work has also been done on the use of artificial viscosity

50 Applications in Physics

in SPH, and its use in models with varying length scales.

5.5 Quantum Wavepacket Studies

Mats Persson
Department of Applied Physics, CTH

The detailed mechanisms behind a wide variety of important sur-
face phenomena like catalysis, surface chemical reactions, plasma-
wall interactions, and growth of materials, are most convincingly
revealed by dynamical studies of elementary processes on an atomic
scale. Examples of such processes are sticking, tunneling through
and climbing over reaction barriers, and gas-surface energy trans-
fer. The rapid advances and developments in experimental meth-
ods for the study of such processes like, for instance, state-to-state
molecular beam scattering makes this field a timely subject for
theoretical studies.

In many cases a quantum mechanical description is needed and
the associated complexity often makes computer simulations of de-
tailed models necessary. We study elementary dynamical processes
at surfaces using pseudospectral methods for time-dependent prop-
agation of multi-dimensional wavepackets on the CM. In these
methods the multi-dimensional wavefunction is represented on a
grid and in each timestep the action of the kinetic part of the
Hamiltonian on the wavefunction is handled by an FFT of the
wave-function [Per, 1991]. The limiting factors in the computa-
tions are the primary memory needed to represent the wave func-
tion and the speed of the FFT subroutines. A parallel machine
like CM200 is found to be very well suited to handle these factors.

In collaboration with Bret Jackson at Department of Chemistry,
University of Massachusetts, I have just completed a study of a
prototype catalytic surface reaction; the formation of hydrogen
molecules by the direct reaction of an incoming hydrogen atom
with an adsorbed hydrogen atom on a copper surface [Persson
and Jackson, 1993]. This study is motivated by recent dynamic
measurements of such the Eley-Rideal mechanism for reactions
involving hydrogen atoms on metal surfaces. The dynamics of this
reaction mechanism is of interest in understanding the formation
of hydrogen molecules in interstellar space and also for plasma-wall
interactions in fusion reactors.

Earlier two-dimensional wavepacket studies using restricted col-

Applications in Physics 51

inear configurations show that this kind of a reaction can produce
the observed high vibrational excitations of the formed molecules
[Jackson and Persson, 1992]. However, this study was done on
SPARC workstations and a CRAY vectorcomputer and cannot be
extended to a more realistic model that can give full rovibrational
distributions and reactive cross-sections due to the limited primary
memory on these machines whereas such a study is feasible on a
CM200 with its large primary memory and also its high speed. In
this model all six degrees of freedom of the two atoms are included
with a flat surface approximation for the model potential energy
surface. This effectively reduces the six-dimensional problem to a
tractable three-dimensional problem in curvilinear coordinates by
introducing three conserved quantities. We have developed a new
and efficient method to handle the kinetic part in these coordi-
nates.

Our extensive computational study of the Eley-Rideal dynamics
includes the dependence of the reactive cross-section, translational
energy distribution and rovibrational distributions on the shape of
the model potential energy surface and on the kinetic energy and
angle of the incident H-atom and the vibrational state of the ad-
sorbed H-atom. For instance, the result for the rovibrational dis-
tribution displayed in Figure 5.5 demonstrates that the product H2

molecule ends up in highly vibrationally and rotationally excited
states with a characteristic bimodality of the rotational distribu-
tion. In Figure 5.5, we show a snap-shot of the reduced two-
dimensional probability density of the three-dimensional wave-
packet in the reaction zone.

The code is written in CM Fortran and we use a versatile CMSSL
subroutine for the time-consuming discrete fast fourier transform
(FFT). The grid size is 128× 128× 256 (single precision) and one
time step takes about 6.0 seconds where 2.7 seconds is spent in the
time propagation which includes two calls to the FFT subroutine.
A full calculation involves about 4000 time steps and a run takes
about 6 hours. So it has been possible to do rather extensive
studies for different initial conditions and model potential energy
surfaces.

At the moment we have extended our study to the Eley-Rideal
reaction of the different isotopic combinations of hydrogen in order
to investigate, as suggested by our earlier colinear studies and also
by recent molecular beam experiments, the interesting dynamics

52 Applications in Physics

Figure 5.4. A three-dimensional
barchart of the internal rovibra-
tional state distributions of a hy-
drogen molecule formed in a Eley-
Rideal reaction at a surface. The
height of a bar gives the relative
probability to find a molecule in a
rotational state j and vibrational
state ν.

0
5

10
15j 0

1

2

3

4

ν0
5

10
15j

associated with the large mass differences for the isotopes of hy-
drogen. The heavier mass of deuterium requires a grid of the size
256× 256× 256 and cannot be run on the present configuration of
the CM200. In collaboration with Diane Lynch of Thinking Ma-
chines Corporation, this calculation is presently performed on a
64-node CM-5 machine.

In summary, the computational study of dynamical processes
at surfaces using multi-dimensional quantum wave packets is well-
suited for a data parallel machine like the CM200 and is typically
very computationally demanding. The availability of the CM200
and other CM machines have made it possible for us to go beyond
restricted two-dimensional models for quantum dynamics to more
realistic models.

5.6 Global Effects in Cellular Automata
Jan Hemmingsson
Physics and Measurement Technology, LiTH
Gongwen Peng
HLRZ, Forschungszentrum Jülich, Germany

A cellular automaton is a spatially extended system consisting of
many connected cells or sites. Each cell contains a variable which

Applications in Physics 53

Figure 5.5. Contour plot of the re-
duced two-dimensional probability
density of the 3D wavepacket de-
scribing the formation of a molecule
by a Eley-Rideal reaction of two hy-
drogen atoms at a surface. It gives
the probability to find the atoms in
a relative position b perpendicular
to the surface and with a relative
distance a parallel to the surface.
Note that the wavepacket has been
defined for negative a by a reflec-
tion in the a = 0 axis.

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

takes discrete values. The time is discrete, and at each time step,
the whole system is updated due to some local rule, i.e. the value
σ(t+1) of the site i at time t+1 depends on value at time t of the
sites in some neighborhood around i. All cells are thus updated
synchronously, normally according to one fixed rule.

In the very simple class of binary cellular automata, where each
site can take the values zero or one, it has been found that for
certain rules, the magnetization, defined as the average number
of cells containing a one, may show a periodic or quasiperiodic
behavior with time [Chaté and Manneville, 1991]. This behavior
is very stable to external noise, and the time series contain intrinsic
noise due to randomness in the local configurations.

One way to visualize such a behavior is to make a return plot.
Along the x-axis is the magnetization at time t, and along the
y-axis is the magnetization of time t+ 1.

Despite the effort put forth by several groups [Hemmingsson and
Herrmann, 1993, Pomeau, 1993, Grinstein et al., 1993, Binder and
Privman, 1992] these systems have not been completely under-
stood yet; so far, there has not been found a periodic behavior in
three dimensions, and there are even arguments that such a system
cannot be stable under generic conditions. We have investigated a
mixture of two of the rules in four dimensions [Hemmingsson and

54 Applications in Physics

Figure 5.6. Return maps for dif-
ferent values of mixing parameter
p. At p ≈ 0.79 the behavior changes
from quasiperiodical to periodical.

0

0.5

1.0
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

Peng, 1994]. One rule shows quasiperiodic behavior, the other pe-
riodic behavior. In our simulation, a fraction p of the sites were
randomly chosen to be updated according to the periodic rule,
and the remaining sites were updated according to the quasiperi-
odic one. In Figure 5.6, the return map for different values of p
are shown. In order to investigate this change more qualitatively,
we fourier-transformed the time series, and extracted the period
three component Θ. By plotting Θ against p for different system
sizes, we found a phase transition at pc ≈ 0.79, this means that
at this critical mixing of rules, the behavior changes from being
quasiperiodic to periodic. We also found the values of the critical
exponents normally used for describing critical phenomena.

5.7 Monte Carlo Studies of the Dynamics of Random
Anisotropy Dipolar Models

Jan-Olov Andersson, Tomas Jonsson
Solid State Department, Uppsala University

Experimental studies have shown frozen ferrofluids, i.e. solutions
of magnetic particles suspended in a nonmagnetic solvent [Rosensweig,
1985], to exhibit glassy behaviour: hysteresis, irreversibility, a
peak in the zero-field magnetisation and nonexponential relax-
ation [Luo et al., 1991]. Similar behaviour has been found in both
experimental and theoretical studies of spin glasses [Fischer and
Hertz, 1991].

Applications in Physics 55

The glassy behaviour of the ferrofluids can be discussed in terms
of dipolar interactions between the magnetic particles combined
with a random anisotropy, the latter feature being due to the
freezing. In a recent simulation study [Za luska-Kotur and Cieplak,
1993], some of the experimental behaviour could be reproduced in
a local-mean-field study of the random anisotropy dipolar (RAD)
model. Using this approach, the hysteresis, irreversibility and the
peak in the zero-field magnetisation found in experiments can be
reproduced.

Due to the intrinsically non-dynamical nature of the model, it is
not possible to determine any dynamical properties. To get access
to dynamical properties, it is necessary to use the MC method,
which has previously been found to reproduce both the crossover
from quasi-equilibrium to non-equilibrium, normally denoted ag-
ing, that is evident in spin-glasses [Andersson et al., 1992], as
well as reproducing the effects of temperature cyclings [Andersson
et al., 1994] giving evidence for the concept of overlap length [Fisher
and Huse, 1988] in spin glasses.

We have been able to verify that the non-exponentional, nearly
logarithmic, relaxation found in experiments is also evident in MC
simulations.

5.8 Excitation Morphology of Ising Spin-glasses

Jan-Olov Andersson
Solid State Department, Uppsala University
Paolo Sibani
Fysisk Institut. Odense Universitet

Spin-glasses are magnetic materials with two essential features:
disorder and frustration. One type of spin-glasses are metallic
alloys of small concentrations of randomly distributed magnetic
impurities, e.g. Mn, in a non-magnetic host such as Cu. Another
type of spin-glasses are alloys of two different isolating magnetic
materials, such as FeT iO3 and MnTiO3. The complex physics of
spin glasses has been intensively studied in the past two decades
by experimental, theoretical and numerical methods [Fischer and
Hertz, 1991]

For the purpose of numerical simulations, the systems are often
modeled by a set of Ising spin variables Si = ±1, which are placed
on a regular grid in two or three dimensions. Let x be any of the

56 Applications in Physics

2N configurations of a system of N spins. Its energy is defined in
the model as

E(x) = −
∑
i,j

JijSi(x)Sj(x). (5.1)

For i < j the couplings Jij are independent gaussian variables,
with zero average and variance 1; the remaining couplings are fixed
by symmetry requirements. Only nearest-neighbour couplings are
considered, i.e. Ji,j 6= 0 only for indices i and j representing neigh-
boring grid points. Lattice sizes up to 323 in 3D and 2562 in 2D
have been considered in this study.

As a first step, several local minima Ψ of the energy are found
by a careful annealing procedure and then stored for subsequent
use. Their energy per spin is comparable to published estimates
of the ground state energy per spin for the relevant models. The
excitation morphology and phase-space of the system close to each
local minimum is then sampled by first generating an excited state
with a well defined energy b relative to the energy of the reference
state Ψ. After this the system is quenched to a new local energy
minimum Ψ′. Connected clusters of spins which differs in the two
configurations are finally identified, and their number, size and
energy dependence is studied as a function of b. The parallel algo-
rithm used for identifying the spin-clusters can be found in [Hillis
and Boghosian, 1993]

In a complementary approach we have replaced the excitation
step above by a conventional MC simulation. After completing
the simulation we quench the system and analyze the excitation
as described above. For more details see [Sibani and Andersson,
1993, Andersson and Sibani, 1993].

5.9 Mapping the Spinodal Region

William Klein
Boston University, Boston, USA
Lawrence Thomas
Theoretical Physics, KTH

Our current work centers around completely mapping the spinodal
curve of the modeled system. The spinodal curve represents the
separation of the stable region from that of the metastable and
unstable regions within a system consisting of two constituents.

Applications in Physics 57

Figure 5.7. Diagram of a critical
quench through the spinodal region
in a Klein-Conniglio diagram.

critical quench

unstable region

stable region metastable region

Density
T

em
pe

ra
tu

re

Above this curve, the two components are miscible in all pro-
portions, homogeneous and considered a stable system. Below
this curve, there exists the meta-stable and unstable regions. The
metastable region is similar to that of the stable region in most
respects, i.e. the mixture is in a homogeneous state. They differ
with respect to the Gibbs free energy (at constant pressure and
temperature) which is higher for the homogeneous mixture than
for a system formed by two co-existing phases. In the unstable re-
gion, there exists a separation of the material into its constituent
phases. [Glansdorff and Prigogine, 1975]

In order to map this spinodal curve, we have used the Connection
Machine to set up an Ising model system in a 128 x 128 square
lattice configuration. The system is initially set up with a random
distribution of constituents which are opposite in nature, i.e. half
the sites contain up spins and half the sites contain down spins.
The system is then subjected to a magnetic field. Because the
Ising model is magnetic in nature, some of the spins will reverse
their characteristics, causing an imbalance in the ratio of particles
represented in the system.

The system is then allowed to evolve in a heat bath, which is sim-
ulated via a Metropolis algorithm [Gould and Tobochnik, 1988].
The overall temperature is then lowered and each site within the
system has the probability of bonding with any neighboring ’like-

58 Applications in Physics

site’ within its interaction range. The temperature continues to
decrease until a transition from a paramagnetic state to a mag-
netic state occurs. This transition is marked by an infinite cluster
(which is defined as a cluster of like sites that spans the entire
lattice unbroken) appearing within the system. This infinite clus-
ter is found by taking advantage of the CM’s parallel architecture
through the utilization of a multi-grid cluster finding algorithm on
the system [Bower et al., 1990].

The simulation is then repeated for varying strengths of the
magnetic field with results plotted in order to reveal the spinodal
curve of the simulated field.

Applications in Physics 59

6 Biocomputing

Scientific computing done by researchers in medicine and biology
can be viewed as a new branch of science. This branch is often
called biocomputing. It is transforming many parts of medicine
and biology from an informational science into a computational
and analytical science [Lander et al., 1991]. For several years now
PDC has had people working on protein sequence matching. A pro-
tein sequence matching server is currently available on the CM and
researchers connect to this server with a client program running
on their local workstation and match protein sequences against
the database on the CM (Section 6.1). This project has now taken
a step further by automating the process all the way from DNA
samples to reports based on a data base scan of the sequences
found in the laboratory samples (Section 6.2). A new application
using recurrent Neural Networks to do DNA sequence analysis is
reported Section 6.3. This work has close connections to the work
in Section 3.1. In Section 6.4 a project where the size of the data
sets are a computational challenge, namely the area of PET scan
image analysis is described.

6.1 Gene Sequence Database Scanning

Erik Wallin
PDC, KTH
Gunnar von Heijne
Center for Structural Biochemistry, Karolinska Institutet

The client-server system that was developed during 1991 and 1992
has been further refined and the functionality increased during
1993. The engine of the system is still the parallel implementa-
tion of the Smith and Waterman sequence similarity measure al-
gorithm. Thanks to the speed of the supercomputer this sensitive
method can be used to scan the entire protein sequence database.Several improvements have

been made to the system. Several improvements have been made to the system. The mem-
ory use on the CM200 has been minimized and instead it makes
more intensive use of the DataVault. This means that larger
databases can be handled without interfering with other users.

60 Biocomputing

Another improvement is the ability to run searches using batch
queues during nights and weekends. This is particularly impor-
tant for large sequencing projects that involve tens of sequences
every day.

In order to be able to search the DNA databases, which are much
larger than the protein databases, it was necessary to develop
new algorithms for the search. These are under evaluation and
will be incorporated in the search program during the summer of
1994. With DNA databases it is also interesting to receive regular
updates for new sequences every day. This is performed by running
a script every night to fetch the sequence updates.

To facilitate for the user to search also the descriptive texts
associated with each sequence we have loaded these on to the
DataVault. It is now possible to do a free text search through all
the records in less than ten seconds. This simplifies the use of the
database as the users do not have to worry about how the data is
stored and how to write a database query. They simply enter the
keywords that they are interested in and the result is returned as
a set of sequences that contain the specified keyword. This way
the system can also be used as a fast retrieval system for sequence
records.

The only real drawback with the system today is that the user
interface is still text based. To alleviate this we are planning to
release a client program for the Apple Macintosh during the spring
of 1994. This should hopefully simplify for the infrequent user.

6.2 Large Sequencing Projects

Erik Wallin
PDC, KTH
Gunnar von Heijne, Rhiannon Sanders, Khalid Islam, Edvard Smith
Center for Structural Biochemistry, Karolinska Institutet

In large scale sequencing projects the number of sequences that
have to be analyzed soon become too many to handle manually.
Normally the user has to enter the sequence into the system manu-
ally. This takes a lot of time and is also a source of errors. We have
tried to automate the process as much as possible. The computer
takes care of all the steps from sample to report which details
whether the sequence had any similarity or not. (See Figure 6.1.)

In the process of sequencing new genes, the material (a sample

Biocomputing 61

Figure 6.1. Simplifying massive
DNA sequenceing. The samples
containing the material to be se-
quenced are submitted to the lab.
The lab personnel loads them on
the sequencing machine which runs
over night. After scanning the gel a
lab computer is used to analyze the
image and extract the sequences.
These are saved on a common
server area. The automated search
system fetches the sequence and
sends it off to the supercomputer
for database search. The result is
then sent back to the workstation
and further processed to produce a
summary of the results.

Scanned
gel image

Processed
DNA sequence

Protein sequence
(6 reading frames)

Supercomputer CM-200
at PDC-KTH

Result from
SWISS-PROT scan

Thinking
Machines
Corp

Lab computer

ð
Sequencing machine

Samples

Unix
workstation

SGI

File server

ð

in a test tube) is first sent off to a sequencing lab. The sample is
run on a sequencing gel and the gel is analyzed by lab personnel
on their lab computer. After that the DNA sequence is stored on a
common file server. The normal procedure is then for the scientist
to pick up the sequence file and post-process it locally. With our
automated setup the sequence is instead fetched and sent off to the
search system described in Section 6.1. When the result from the
search is finished it is processed into a report and a summary. By
looking at them the person submitting the sequence can quickly
determine if there is anything similar in the database.

Until today we have run over 300 sequences through this auto-
mated search system. This would have taken a substantial amount
of time to do manually.

6.3 Recognition of Human mRNA using Recurrent ANN

Hans H.H. Hansen
Department of Physical Chemistry, DTH

Recurrent neural networks and in particular fully recurrent net-
works have not earlier been applied to identification in DNA se-
quence analysis. In this project the Real Time Recurrent Learning

62 Biocomputing

(RTRL) algorithm [Williams and Zipser, 1989, Smith and Zipser,
1989] was applied to training of a fully recurrent neural network
for splice site identification in human precursor messenger RNA
(mRNA).

The massive parallel architecture of the CM200 was exploited
by allocating an array of RTRL-networks and simultaneously train
these on a rotating queue of input sequences. The CMSSL library Built-in communication

mechanisms and the
CMSSL library simplified
construction and control
of the replica system.

and the built-in communication mechanisms of the CM simplified
construction and control of the replica system.

The results of training and testing the networks were compared
to similar experiments involving conventional feed-forward neural
networks [Brunak et al., 1991]. It turned out that a fully recurrent
network is a powerful tool for extracting the sequential structure of
human DNA sequence defining the splice site locations. When gen-
eralizing the extracted structures to classification of “unknown”
data, the method successfully identified the splice sites locations.
More precisely, a peak prediction rate was reached at 87% (corre-
lation 0.83) for donor sites and 83% (correlation 0.79) for acceptor
sites.

Furthermore, it was indicated that the sequence patterns learn-
able by a fully recurrent network represent neither a subset nor a
superset of the patterns learnable by a feed-forward network. This
conclusion was reached by comparing the order in which RTRL net-
work and the feed-forward networks of Brunak et al. learned to
recognize the splice sites of the data set.

6.4 Analysis of 3D Brain Data

Per Roland
Karolinska Institutet, Stockholm
Björn Levin
SANS, KTH

New brain-imaging methods, such as measurements of the regional
cerebral metabolism or the regional cerebral blood flow in combi-
nation with Positron Emission Tomography (PET), sample the Because of the 3D structure

and the large amount of data,
analysis using a traditional
sequential computer would be
extremely time consuming

activity in more than 50,000 parts of the brain into one 3D image.
These images can be used as clues in solving the puzzle of which
different parts of the human brain contribute to the thought pro-
cess. We have performed a series of simulations to study the effects
of noise on different detection schemes for analysis of these images.

Biocomputing 63

By generating 100 or 1000 re-runs of the same experiment using
distribution data from sampled images of subjects in the control
state, i.e. a state in which the brain is not engaged in a particular
task, it was possible to generate empirical distributions of false
positive activation events when using the detection schemes.

The simulations were done in several steps. First the CM was
used to investigate the spatial 3D autocorrelation function in a
sample of regional cerebral blood-flow pictures. This function was
then used to generate a 3D filter that imposes the found auto-
correlation in subsequent simulations. Finally, to get the desired
accuracy in the estimations, tens of thousands of randomly gen-
erated images having the correct statistical properties were ana-
lyzed using the mentioned methods, at the same time as false pos-
itive events were recorded. In each such generated image around
200,000 values mimicking measurements of biochemical and phys-
iological variables in the brain are generated simultaneously, mak-
ing the task very well suited for analysis by massively parallel com-
puting. A detailed report of this work can be found in [Roland
et al., 1993].

64 Biocomputing

7 Applications in Chemistry

Computer simulations of chemical systems is a complement to the-
oretical and experimental chemistry, made possible by the rapid
growth of computer capabilities. These simulations can be re-
garded as computer experiments at a molecular level, and they
require large amounts of computing power measured both as raw
CPU power and as volume of stored and transferred data. By sim-
ulating a sufficiently large system one can compare experimental
results with simulation results, thereby simplifying the fundamen-
tally important interaction between experiment and theory.

In many systems studied, it is crucial to be able to perform as
large simulations as possible to ensure that the results are phys-
ically relevant. These large simulations are often naturally mas- Large simulations are often

naturally massively parallel.sively parallel and require both very large memories and fast cal-
culations. Typical examples are classical and quantum-mechanical
many-particle calculations of structural features and dynamic be-
havior. The present projects running on the CM are examples
from molecular dynamics (Section 7.1) and quantum chemistry
(Section 7.2).

7.1 Molecular Dynamics for Liquids with Coulombic
Interactions
Fredrik Hedman
PDC, KTH
Aatto Laaksonen
Department of Physical Chemistry, Stockholm University

We have investigated an approach for large-scale data-parallel
molecular dynamics of systems with Coulombic interactions. Short-
range interactions are calculated with a method based on coarse-
grained cells. In this method the simulation cell is decomposed into
equally sized subcells, with the shortest side being larger than the
cut-off radius of the short-range interaction. Electrostatic inter-
actions are calculated using a data-parallel version of the Ewald
summation method. Calculations of long- and short-range inter-
actions are merged by a suitable choice of the size of the subcells
and the Ewald sum convergence parameter.

Applications in Chemistry 65

The computational effort of the Ewald summation method scales
with the number of particles N as O(N3/2) when one chooses
method parameters optimally. [Kolafa and Perram, 1992, Fincham,
1993] For appropriate choices of system size we find that a full
CM200 would require between 10 and 15 seconds for a time-step
with of 256 thousand particles. The conclusion is that for very
large simulations the Ewald summation technique and the coarse-
grained cell method do not match very well. However, if one could
neglect the Fourier-space part of the calculation at only a small
loss of accuracy then the method may still turn out to be an in-
teresting alternative. [Hedman and Laaksonen, 1993]

7.2 A Direct Recursive Residue Generation Method
Hans O Karlsson, Osvaldo Goscinski
Department of Quantum Chemistry, Uppsala University

A major bottleneck in large scale matrix eigenvalues problems is
the need to construct and save the Hamiltonian matrix in com-
puter auxiliary memory. The idea of direct methods is to avoid
the use of secondary storage by representing the Hamiltonian ma-
trix in terms of integrals and coupling coefficients. The only way
the matrix enters the eigenvalue calculation is via a matrix-vector
product.

A proven and useful method for Rydberg atoms in strong exter-
nal fields is the Recursive Residue Generation Method (RRGM).
It is based on a partial tridiagonalization of the Hamiltonian ma-
trix via the Lanczos algorithm (LA). In the LA a Krylov space is
built, spanned by a starting vector and successive applications of
the matrix. The CPU time of the process is solely determined by
the matrix-vector product.

To study the simplest Rydberg atom, Hydrogen, a basis set
built up by spherical harmonics for the angular part and Laguerre
functions for the radial part was used. Within this basis, pertur-
bations result in sparse matrices. The Hydrogenic Hamiltonian,
on the other hand, is block diagonal in angular blocks leading to a
memory need of N2/2 where N is the number of radial functions.
For large perturbations and/or high excitations large basis set are
needed leading to storage problems. To bypass this problem a
direct method was developed.

66 Applications in Chemistry

Figure 7.1. Photoionization cross
section of the Hydrogen atom in an
static electric field calculated with
the RRGM method.

For the Laguerre basis used, we noted that via a factorization,
the Hamiltonian matrix times a Lanczos vector, could be written
as a sum of three vectors which can be constructed in a recursive
way within each angular block. The direct method leads to a
storage reduction from N2/2 to 4N per angular block. Further,
the recursive procedure can be done in parallel for all angular
blocks. For details see [Karlsson and Goscinski, 1994].

To fully exploit the parallelism the direct version of the RRGM
the program was implemented on the CM200. The high level of
parallelism led to the result that the computational time for the
Hydrogenic matrix-vector product is independent of the number
of angular blocks and scales linearly with the number of radial
functions. The CPU time is in fact determined by the CMSSL
routine used for the sparse perturbation matrix-vector product.

The CPU speedup due to the parallelization of the code and the
large memory of the CM200 has made it possible to study systems,
such as the photoionization of Hydrogen in strong electric fields.
(See Figure 7.1.)

Applications in Chemistry 67

8 Geophysics

Parallel computers have in recent years found many applications in
the field of computational geophysics. These applications include
2D and 3D solutions of the elastic anisotropic wave equation by
finite-differences, modeling fractured rocks, lattice-gas modeling of
wave propagation and solution of the seismic travel-time inversion
problem. In particular, access to GBytes of fast data storage,
as well as calculation speeds on the order of GFlop/s, allows the
simulation of 3D transient wavepropagation.

Numerous rocks and materials exhibit anisotropic behavior. The
first step in understanding the effects of anisotropy in the seismic
data we collect is to model seismic wave propagation in anisotropic
media. (Section 8.2)

8.1 Simulation of Ground Vibration on the CM200
Marcus Berglund
C2M2, KTH

During the Bruce Springsteen concert held at the football stadium
“Nya Ullevi” (Göteborg, Sweden) in 1985, the rhythmic motion
of the crowd lead to violent structural vibrations of the stadium
and surrounding buildings with resulting structural damage. This
incident has motivated intensified research into elastic wave prop-
agation in the kind of soil materials found in the foundations of
the arena.

Wave propagation in soil can be approximated by a three dimen-
sional linearly elastic model in which the modulus of elasticity in-
creases with depth, the density and Poisson ratio are constant and
the material damping is assumed to follow the common Rayleigh
model.

Earlier studies have been restricted to 2D models by the com-
puting resources. The 2D approximation is very crude since the
decay of wave amplitude with distance is 1/r in 2D, rather then
the correct 1/r2. Also the fact that the bedrock under the stadium
is very irregular (See Figure 8.1.) makes the 3D effects important.

These kinds of problems are of general interest in soil dynam-

68 Geophysics

Figure 8.1. Geometry under
sports arena “Nya Ullevi” where
bedrock is approximated with
splines. Length scale in meters.

50100150200250

50
100
150
200
250

-60

-50

-40

-30

-20

-10

0

ics with applications in e.g. analysis of effects of earthquakes and
effects of moving loads, like trains and trucks, where the three
dimensional geometry is of great importance.

The choice of algorithm is guided by the demand for high ac-
curacy and a realistic computation time. This is achieved by a
compromise between the computational stencil and the data struc-
tures. Both have to be simple enough to allow for a high FLOP
rate on a parallel computer, but also general enough for sufficient
numerical accuracy.

The computational domains we have in mind can be transformed
by a smooth mapping to a box. This means we can use a struc-
tured regular grid for the unknown displacements and an explicit
computational stencil, i.e. the new value of an unknown displace-
ment in a time-step is given by a linear combination of the old
value and old values from neighbor coordinates. (See Figure 8.2.)
Interior and boundary points are treated in the same way by using
appropriate stencil weights.

Second order finite differences are used on transformed equa-
tions in the interior of the domain. The absorbing boundary con-
ditions are of first order numerical accuracy which is enough for
overall second order accuracy [Gustafsson, 1981].

Geophysics 69

Figure 8.2. Communication pat-
tern for the stencil operation at an
inner node.

(i,j,k)

i

j

k

Figure 8.3. The nine-point stencil
in the left figure is decomposed into
two communication and computa-
tion steps. The cost of the naive
way of calculating our stencil is
28 CSHIFT operations and 37 float-
ing point operations, which should
be compared with 8 CSHIFT op-
erations and the same number of
floating point operations for the
sub-stencil decomposition. Implementation on the 8K CM200

The program ELWA has been implemented using CM Fortran. The
current performance is 872 MFlop/s in single precision using an
8K CM200 [Berglund, 1994].

The program has been validated by comparing results with an
analytic solution of a one dimensional problem and with results
obtained from the finite element package ABAQUS [Hib, 198] on a
2D problem. ELWA has also been used by Erlingsson in his thesis
[Erlingsson, 1993].

The most important thing when programming a massively par-
allel computer is to distribute the data in an appropriate way onto
the processors so as to minimize communications and maximize
local computations. It is also important to avoid operating on a
subset of the data, otherwise the operation is performed on the
whole data set using a mask operation.

Since nearest neighbor communication is fast on the CM200,
the default distribution is natural for our case. However, in our
algorithm the stencil operation for the nodes belonging to the pre-
scribed surface tractions boundary condition has to be evaluated
separately. Fortunately we have this boundary condition on only

70 Geophysics

Figure 8.4. In the first three fig-
ures the total displacement field at
the surface is plotted together with
the bedrock at times t = 0.5 sec-
onds, 5 seconds and 9.75 seconds.
All displacements are multiplied by
a factor 7000. In the last figure the
vertical displacement component w
is plotted versus time at an obser-
vation point at the surface. Every
second point is plotted.

0
50

100
150

200
250

300

0
50

100
150

200
250

300

-80

-60

-40

-20

0

20

0
50

100
150

200
250

300

0
50

100
150

200
250

300

-80

-60

-40

-20

0

20

0
50

100
150

200
250

300

0
50

100
150

200
250

300

-80

-60

-40

-20

0

20

1 2 3 4 5 6 7 8 9
-6

-4

-2

0

2

4

6

8
x 10

-4

time, (seconds)

w
, (

m
et

er
)

one face which suggest another data layout than the default. By
keeping the data of grid points on lines orthogonal to the surface in
the same node, the surface boundary conditions can be done about
ten times faster compared to using the default data distribution.
In CM Fortran parlance a layout of (:serial,:news,:news) is
used instead of (:news,:news,:news). We can do yet another
optimization; complicated stencil operations can be decomposed
into sub-stencil operations. This is illustrated in Figure 8.3 on a
2D stencil.

Ullevi simulation

A crowd consisting of thirty thousand people, jumping up and
down in front of the stage, with approximately 4–5 persons/m2

leads to a load amplitude of 3.0 kPa. Pernica has found that
audiences can easily produce rhythmic forces with a frequency
of 1–3 Hz [Pernica, 1988]. Sahlin has estimated the frequency
range to between 2.2 and 2.5 Hz for the “Nya Ullevi” concerts
[Sahlin, 1989]. Figure 8.4 shows the result from a simulation with
ν = 0.47, force frequency 2.0 Hz and damping constants γ = 0.241
and κ = 0.0016. To solve this transient problem 5 seconds forward

Geophysics 71

in time with 643 nodes and 3 · 643 ≈ 785000 degrees of freedom
takes about 6.5 hours on an 8K CM200.

8.2 Elastic Wave Propagation in 3D Heterogeneous
Media
Christopher Juhlin
Solid Earth Physics, Uppsala University

In 1992 a program was implemented on the CM200 at PDC to solve
elastic wave propagation problems in 2D hexagonally anisotropic
media. The velocity-stress formulation of the problem [Levander,
1988] was used, where only first order equations are treated. A
finite difference scheme on staggered grids was used with fourth
order operators in space and second order operators in time.

The ultimate purpose of this research is to compare physical
model data collected over 3D anisotropic solids with numerical
modeling results using finite difference methods. Current limita-
tions of memory do not allow a complete comparison at this time.
A realistic model of elastic wave propagation in 3D anisotropic
media will require about 16 GByte of core memory.

While looking into alternative methods for modeling and wait-
ing for an upgrade of the capacity at PDC, other programs were
implemented on the CM200 dealing with elastic wave propagation.
Of these, one was a code for elastic wave propagation in 3D het-
erogeneous isotropic media, and another was a code for radially
symmetric isotropic media using the same formulation as for the
2D anisotropic program. The former is being used to study the
effects of surface topography on the waveforms recorded in seis-
mic experiments. The latter is being used to model the seismic
wavefield produced by a mechanical source in a borehole.

In addition, cooperation has been initiated with the Institute
of Earth Sciences at Uppsala University to compare seismic sec-
tions generated by modeling on the CM200 with real data from
petroleum exploration. An example is shown in Figures 2.5–2.8
on page 14 where synthetic seismic data are generated over a salt
dome using the exploding reflector principle [Loewenthal et al.,
1991]. A zero-offset section, where the source and receiver are
located at the same point on the surface, may be simulated by
letting the reflectors explode (Figure 2.6). These synthetic data
(Figure 2.7) are then migrated to provide an image (Figure 2.8)

72 Geophysics

which can be compared with real data. The goal of the modeling
is to constrain the spatial location of the bottom of the salt dome
in the vicinity of its neck. Ideally, Figures 2.5 and 2.8 should be
equivalent, however, since the model is 2D and the synthetics were
migrated using a 1D velocity function, the original model is not
recovered.

8.3 Groundwater Transport Modeling

Roger Thunvik
Civil and Environmental Engineering, KTH

A numerical model for saturated-unsaturated water flow in porous
media coupled with solute mass and heat transport is under de-
velopment at the division of Land and Water Resources. As the
model evolves it is also being implemented on the CM200 at PDC.
The intention is to develop a tool for studying problems in e.g.
groundwater flow, contamination, artificial recharge, saltwater in-
trusion in coastal aquifers, heat convection, analysis of field tests
and unsaturated flow. The model code was tested on a problem
concerned with the modeling of the average hydraulic gradient in a
coastal aquifer [Soldal et al., 1993], conceptualized as a 2D vertical
profile, whose boundary conditions were fixed in time. The paral-
lel version of the model could for example be used for a 3D analysis
of the above problem with transient boundary conditions, such as
the tidal effects in a fjord, and also account for time dependent
changes in the elevation of the river through the flow domain.

The code is written in Fortran 90 and solves the governing equa-
tions for coupled water, heat and solute transport in a porous
medium in 1D, 2D, or 3D. The solution method is based on a
Galerkin finite element method for the spatial discretization of
the flow domain. Time integration is performed using a backward
Euler (or trapezoidal) time stepping scheme. The parallel im-
plementation integrates over all the elements in parallel. This is
achieved by keeping all the values and physical properties as well
as basis functions and their derivatives, at the integration points
for all elements at all times in core.

The original version of the model uses a frontal method (Har-
well’s MA32-solver) for solving the algebraic equations resulting
from the integration. This algorithm does not mix well with the
parallelization used, so the parallel version uses an iterative solver

Geophysics 73

based on the so-called TFQMR algorithm.

74 Geophysics

9 Numerical Analysis

Massively parallel machines present a large challenge to numeri-
cal analysts, since many old and established serial algorithms and
methods turn out to perform very poorly on these machines. How-
ever, those algorithms that are well adapted to these machines are
worth optimizing. This has been done in the FFT project (Sec-
tion 9.1). It is also interesting to investigate how well some al-
gorithms can be implemented directly in Fortran 90 (Section 9.6).
New opportunities in using new parallel algorithms have been ex-
plored in the areas of: Legendre transforms (Section 9.3), paral-
lelizable preconditioning methods (Section 9.5) and optimization
(Section 9.7).

9.1 Mingle and Un-mingle for Real-to-Complex
Transforms
Lars Malinowsky
PDC, KTH

The fact that Fourier Transforms of real data result in conjugate-
symmetric sequences is traditionally used to store only half of the
conjugate-symmetric sequence, with proportional savings in both
memory usage and compute time. The elements of the conjugate-
symmetric sequence are also known as wave-numbers. The rela-
tionship X(k) = X(N − k) can be used to obtain the data that
are not stored, so that only N/2 + 1 wave-numbers are needed. In
CMSSL, the two wave-numbers X(0) and X(N/2) are packed into
one complex number. Thus, in fact, N real numbers are sufficient
to store both the real sequence, and the conjugate-symmetric se-
quence. In principle, the real and the conjugate-symmetric arrays
can be equivalenced into a single array of real length N . How-
ever, CM Fortran does currently not support such equivalencing.
The real and complex data must be represented as separate ar-
rays. Nevertheless, for the purpose of load balance on parallel ma-
chines, it is beneficial to store data in arrays of length N rather
than length N + 1.

Numerical Analysis 75

CMSSL conserves storage and enhances load balance by storing
each conjugate-symmetric sequence in N/2 complex numbers. In
the case of multidimensional transforms, the fact that two real
sequences are stored in one complex number after the transform
along the first axis results in some interesting alternatives for the
storage of data for subsequent transforms.

In short, each new dimension transformed generates two new
mingled conjugate-symmetric sequences, mingled since they have
been transformed with ordinary complex sequences. A method
has to be found that, in a manageable way and in-place, unmin-
gles and stores these two new sequences of wave-numbers in the
same amount of space as any of the wave-numbers of their com-
panion complex sequences require. The following method has been
implemented: for each transform after the first, store elements of
the two conjugate-symmetric sequences in a fashion such that the
position in the array gives the wave-number for one or the other
sequence. [Thi, 1993]

9.2 Parallelizing the Fast Wavelet Transform

Mats Holmström
TDB, Uppsala University

The interest for wavelets and wavelet techniques has grown enor-
mously over the last few years, both in theoretical and applied
areas. In image compression wavelets are used as an alternative
to Fourier techniques. In numerical analysis wavelets are used for
solving integral equations and partial differential equations. To
understand the basic properties of wavelets it is of value to make
a comparison of similarities and differences between wavelets and
the more familiar Fourier basis.

If we have a time dependent signal and want to gain informa-
tion about its frequency content, the standard solution is to use
the Fourier transform. One drawback of the Fourier transform
is that we do not get any information about where in time these
frequencies are located. A short pulse cannot be located in time
by examining the Fourier spectrum of the signal. In signal anal-
ysis one usually solves this problem by using a windowed Fourier
transform.

Wavelet analysis provides another approach to this localization
problem by using basic building blocks that are smaller for higher

76 Numerical Analysis

Figure 9.1. Comparison of ex-
ecution times for some two-
dimensional FWT algorithms. The
FWT is done in three stages on
a square with N2 points. Legend:
’◦’ a sequential algorithm on a Sun
SPARC-10; ’∗’ Algorithm 1; ’×’
Algorithm 2; ’+’ Algorithm 3. All
three algorithms were executed on a
CM200, configured with 128 FPUs.

3 4 5 6 7 8 9 10 11
10

-3

10
-2

10
-1

10
0

10
1

10
2

log2(N)

tim
e

 [
s]

frequencies. These building blocks, or basis functions, obey a re-
lation of the following type

ψj,k(x) = 2−j/2ψ(2−jx− k).

All basis functions are scaled and translated versions of a single
mother wavelet, ψ(x). The scaling corresponds to index j and the
translations to index k. We can then represent a function as a lin-
ear combination of these basis functions, f(x) ≈ ∑

j,k bj,kψj,k(x).
Since we usually deal with sampled values of functions, i.e. we

know a functions values f(x) at certain points xi, i = 1, 2, . . . , N,
we need an efficient way of calculating these wavelet coefficients
bj,k, given the function values f(xi). The algorithm for doing
this is called the Fast Wavelet Transform (FWT). The time for
executing the FWT on N points is proportional to N . This can be
compared to the Fast Fourier Transform which has an execution
time that is proportional to N log(N).

When using wavelet methods on large scale problems the time
to execute the FWTs can be prohibitively long, although the FWT
has a linear time complexity on sequential computers, as noted
above. One solution is to use massively parallel computers, but

Numerical Analysis 77

we are then faced with the problem of constructing an efficient
FWT algorithm for such computers.

The reason for the need of different algorithms for parallel com-
puters is that new considerations, such as communication time has
to be taken into account when constructing parallel algorithms. In
CM Fortran the elements of an array are distributed on the pro-
cessors according to a virtual grid. It is desirable to reduce the
amount of communication between the processors by trying to
make the computations local. When we need communication we
prefer NEWS-communication (shifting the whole array on the vir-
tual grid) since it is fast on the CM.

Taking the above communication considerations into account,
two new algorithms for doing the FWT on a CM were constructed,
and compared in execution time with a previously published al-
gorithm. The first new algorithm provided a speedup by a factor
of two and is suited for parallel computers in general (actually it
is also suited for sequential computation). The second new algo-
rithm uses a feature of the CMs hypercube topology: the ability
to quickly shift arrays by a distance that is an even power of two
and achieved a speedup by a factor of four compared to the previ-
ously published algorithm. In Figure 9.1 the execution times for
the three algorithms are presented. Note that the test problem
is two-dimensional. This does not present a problem, since when
we have an algorithm for the one-dimensional FWT it is easy to
extend it to two or more dimensions.

A great help when programming on the CM200 is the debugger
Prism. By using Prism one can, in addition to debugging facili-
ties, get timing information on a per-line basis, thus allowing the
programmer to evaluate the communication and computation cost
of each individual CM Fortran statement as well as statistics for
the whole program.

The two new algorithms for the FWT on the CM shows that it
is possible to implement an efficient FWT on the CM200. There
still remains a lot of work to be done in terms of testing and fine-
tuning, and the ultimate goal should be to provide an efficient and
robust “black-box” FWT algorithm on the CM200, much like the
FFT algorithm that is provided in the CMSSL library.

78 Numerical Analysis

9.3 Fast Parallel Legendre Transforms

Erik Aurell
Department of Mathematics, Stockholm University
Igor Wertgeim
ICMM, Perm, Russia

Legendre transforms and their generalizations are common-place
in mathematics and in the Physical Sciences. They play a promi-
nent place in Lax’ construction of the maximum entropy (weak)
solutions of hyperbolic conservation laws.

We consider here the inviscid Burgers’ equation, for which the
solution is essentially determined by a standard Legendre trans-
form, and show that a Fast Parallel Legendre transform (in 1D)
may be constructed. The leading term in the operations count
of a serial Fast Legendre Transform is N logN in one dimen-
sion [She et al., 1992], and (N logN)d in d dimensions [Noullez,
1992, Noullez and Vergassola, 1993]. The Parallel Fast Legendre
Transform is based on the Connection Machine “send”, and “seg-
mented scan” operations. The operation count on a hypothetical
machine with N processors, each one holding one data element,
arranged in a hypercube for send operations, and on a line for
segmented scan operations, is O((log2N)2). On a real Connection
Machine, with a finite number Nphys of physical processors, the
operation count is O((N/Nphys)(log2N)2).

The initial motivation for constructing a fast parallel Legendre
transform was to extend the numerical investigations of Burgers’
equation with random initial data reported in [She et al., 1992].
A 1D version of the algorithm was implemented on a Connection
Machine CM200 and used to study a model problem in [Aurell
et al., 1993].

9.4 Solvers for Systems of Equations Arising from PDE
Problems
Sverker Holmgren, Kurt Otto, Lina Hemmingsson
TDB, Uppsala University

Solution methods for flow problems, e.g. the Euler, Navier–Stokes
or Maxwell equations are studied. Both time-dependent and steady-
state problems are of interest. Finite difference discretizations are
used in space. For flow problems, explicit time-marching is nor-
mally used both for steady-state and time-dependent problems.

Numerical Analysis 79

This means that the time-step must be of the same order of mag-
nitude as the space-step. For some problems, this stability crite-
rion is unrealistically strict. The aim here is to try to avoid these
problems by using solution methods based on solving large, sparse
systems of equations. For time-dependent problems, implicit time-
marching is employed, and for steady-state problems the system of
equations arising from the original problem is solved. In the solu-
tion process, large linear systems of equations are solved using con-
jugate gradient-like iterative methods combined with semicircu-
lant (SC) and semitoeplitz (ST) preconditioners. It has previously
been shown that preconditioners of these types yield good con-
vergence properties for flow problems [Holmgren and Otto, 1992,
Holmgren and Otto, 1994, Hemmingsson, 1993, Hemmingsson and
Otto, 1994].

Explicit time-marching methods are highly parallelizable, while
preconditioned iterative methods often are more difficult to im-
plement on parallel computers. Normally, it is vital to perform
the preconditioner solve efficiently. The work presented here is
part of a project in progress, where we want to prove that exploit-
ing iterative methods combined with SC and ST preconditioners
yield solution methods that are competitive with standard explicit
time-marching methods on different parallel architectures.

The SC and ST preconditioners are formed by discretizing a
system of nc partial differential equations (PDE) closely related
to the original one. The boundary conditions in one space di-
rection are modified, and variable coefficients in this direction are
replaced by their averages. The modifications are chosen such that
the resulting system of equations can be solved by utilizing fast
trigonometric transforms.

On the CM200, only a preliminary version of the SC precondi-
tioner solve has been implemented so far. The CMSSL-routines for
FFT are exploited for the fast trigonometric transforms, and the
block-tridiagonal systems of equations are solved using an algo-
rithm of cyclic reduction-type. For a system of 4 PDEs, solved on
a 256×256 grid, the performance using 4K processors is 90 MFlop/s
in double precision. The conclusion is that it is possible to imple-
ment SC and ST preconditioners efficiently on massively parallel
SIMD computers.

80 Numerical Analysis

9.5 Implementation of an Approximate SSOR
Preconditioner
Ivar Gustafsson, Gunhild Lindskog
Department of Computing Science, CTH

We consider completely parallel solution of finite element dis-
cretized elliptic second-order boundary value problems. The prob-
lems are solved by an approximate Symmetric Succesive Over-
Relaxation (SSOR) preconditioned conjugate gradient method. The
preconditioner is constructed from approximate inverses of vari-
ous degree of accuracy of the SSOR approximate factorization of
the matrix of the linear system. The solution of the precondi-
tioning system is then performed by matrix-vector multiplications
which may be performed in parallel over the total number of un-
knowns. [Gustafsson and Lindskog, 1992]

In order to perform an efficient implementation on the CM200,
the data has to be distributed onto the processors such that the
computations can be done locally in every floating point unit.
Also, the communications needed for doing these computations
have to be minimized. A natural way of distributing the data
in our discretized version of the problem is in a logical grid of
processors of the same size and shape as the grid used for the
discretization. The only communications needed for the sparse
matrix- vector multiplication are then nearest neighbour shifts,
which may be performed by the fast NEWS communication.

In CM Fortranthese shifts may be implemented by the cshift or
eoshift functions. A faster code is obtained by the parallel shift
routine pshift from the library CMSSL. In Figure 9.2 we give the
CM200 computing busy-time for the matrix-vector multiplication
with different strategies and problem size m, where the number of
unknowns is m2. We use 128 floating point processors.

As we can see, the cshift and pshift functions are efficient for
certain sizes of the problem with the number of unknowns equal
to a multiple of 512 and inefficient for others. For numbers of
unknowns equal to a multiple of 512, the cshift operations are
nearest neighbour communications for all processors. The eoshift
is less efficient for these numbers of unknowns since it requires
assignments of zeros to elements associated with the boundary.
The best strategy for a general size is to use extended pshift, where
arrays are dimensioned in order to meet the nearest upper efficient
array size. All arrays are extended by zeros and the calculations

Numerical Analysis 81

Figure 9.2. CM200 busy times
for matrix-vector multiplication for
various problem sizes m, solid line
for pshift, dashed line for cshift,
dotted line for eoshift and dashed-
dotted line for extended pshift.

10
2

10
3

10
-3

10
-2

10
-1

10
0

problem size

C
M

-2
00

 b
uz

y
tim

e

in the algorithms are performed also for these zeros.
The total busy-time for the solution of a model Dirichlet prob-

lem shows an improvement of 39 % for the most efficient approx-
imate SSOR method compared to diagonal scaling. Then the ex-
tended pshift method is used. The number of MFlop/s in double
precision for the diagonal scaling method and the most efficient ap-
proximate SSOR method is about 195 and 165 respectively. The
problem size is then m = 1024. [Lindskog and Gustafsson, 1993]

9.6 Matrix Computations on the Connection Machine

Göran Svensson Helmersson
Department of Mathematics, LiTH

The purpose of the project is to investigate if certain matrix com-
putations can be executed efficiently on the CM when programmed
in a data-parallel programming style using CM Fortran, s subset of
Fortran 90. Since Fortran 90 is a standardized language available
for many different platforms, Fortran 90 programs will be easy to
port. However, it has not been clear if it is possible to program
the CM on a sufficiently low level from CM Fortran, i.e. if effi-

82 Numerical Analysis

cient assignment of data to processors and load balancing can be
achieved.

In particular we have studied the implementation of an algo-
rithm for QR decomposition of a matrix based on Householder
transformations. The QR decomposition is one of the most impor-
tant matrix decompositions in numerical linear algebra. It is used
in numerous applications, e.g. when solving linear least squares
problems. By applying a sequence of Householder transforma-
tions, the matrix is step by step reduced to upper triangular form,
which is the R matrix in the QR decomposition. This reduction
starts at the top left corner of the matrix and proceeds down along
the diagonal. If the Householder transformations are multiplied
together, then the Q matrix in the decomposition is obtained.

Loosely speaking, an algorithm for a parallel computer is said
to have a good load balance if most of the processors are busy do-
ing useful work most of the time. For the computation of matrix
decompositions, load balancing is usually achieved by performing
the reduction in the standard way, and assigning matrix elements
to processors in a clever way, or, alternatively, by performing the
reduction in a clever way and assigning matrix elements to pro-
cessors in the standard way.

The standard way of assigning matrix elements to processors
on the CM is based on virtual processors: if the matrix has more
elements than there are physical processors, then each matrix el-
ement is assigned to a virtual processor. However, each virtual
processor is assigned to a physical processor in such a way that a
block of matrix elements are stored in the same physical processor.

It is obvious that load balancing cannot be done by using the
standard virtual processor assignment, since after some steps in
the Householder procedure, more and more of the processors would
become idle. We avoid this problem by storing the matrix in a
rank-4 array, with two dimensions parallel and two serial. This
corresponds to a block cyclic assignment of matrix elements to
processors, and using this we can design a block matrix algorithm,
where the computations are parallel within the blocks (to a large
extent matrix-vector operations), and serial over the blocks. Fur-
ther, this algorithm can be coded completely in CM Fortran, with
data-parallel operations within the blocks. Since the algorithm is
serial over the blocks, all processors will be active almost all the
time, and the algorithm is load balanced.

Numerical Analysis 83

This is the kind of parallelisation that also works well on MIMD
parallel computers of hypercube type, e.g. iPSC/2.

One temporary setback in the work was caused by a odd effect
in the compiler: if the serial dimensions were chosen to be the last
two in the rank-4 array, then the execution times were about ten
times longer than if the serial dimensions were taken to be the
first two dimensions. This difficulty was not well presented in the
system documentation.

Our results indicate that at present matrix algorithms written in
CM Fortran cannot compete in speed with low-level codes, such as
the ones in CMSSL. However, using knowledge about the architec-
ture and the compiler, it is possible to get much higher efficiency,
than that which would have been obtained by straight forward
translation of a serial algorithm into CM Fortran. For more de-
tails see [Svensson, 1992, Svensson, 1993].

9.7 Concentrator Location
Olof Damberg
Department of Mathematics, LiTH

We apply an algorithm of N. Z. Shor – space dilation along the
difference of two successive subgradients, to a capacitated simple
plant location problem – the concentrator location problem. This
problem could be described as follows:

A number of terminals are to be connected, via concentrators,
to a CPU. It is assumed that the CPU and the terminal locations
are known. It is also assumed that the cost of connecting a ter-
minal to a concentrator and the cost of concentrators are known.
The concentrator location problem is the problem of determining
the number and location of concentrators and allocating terminals
among these concentrators without violating capacities of concen-
trators, at minimum cost. This problem is known to be NP-hard
and several solution procedures have been proposed in the litera-
ture.

We consider a Lagrangian relaxation approach to the problem,
where the subproblems will be essentially semi-assignment prob-
lems, which are easily solved in a data parallel fashion. As a
dual updating procedure we apply a space dilation subgradient
algorithm, which has better convergence properties than ordinary
subgradient methods. The drawback, however, is that a dilation

84 Numerical Analysis

matrix of order n×n, where n is the number of elements in the sub-
gradient, has to be stored and updated. This drawback is much
less accentuated on a massively parallel machine where matrix-
vector operations are performed very efficiently.

Numerical comparisons between the sequential and parallel al-
gorithm are performed on a Sun SPARC IPX and a 8K CM200
respectively. The largest problem that could be solved on both
machines was of size 1024 terminals and 1024 possible concentrator
locations. Each main iteration took about 23 seconds (SPARC) and
0.1 seconds (CM200). The largest problem solved on the CM200
was a 4096×4096 problem, and each iteration took about 0.7 sec-
onds. For details see [Damberg and Migdalas, 1994].

Numerical Analysis 85

10 Computer Science

In 1989, when the CM2 was installed at PDC, many regarded its
architecture as strange and predicted that most of its users would
come from computer science related research areas. This predic-
tion has turned out not to be true; the bulk of users come from
areas that are not computer science related. In fact, rather few of
the large number of projects at the center are strictly computer
science related.

The four current computer science related projects representThree different areas:
data-parallel programming

languages, parallel
logic programming, and
architecture simulations

three different areas: data-parallel programming languages, par-
allel logic programming, and architecture simulations. In the lan-
guage projects (Sections 10.1 and 10.2) a new language model,
and analysis techniques, suitable for describing data-parallel com-
putations are presented. This model can act as a guideline for
implementing new data-parallel programming languages suitable
for scientific computing; the logic project (Section 10.3) presents
possible extensions to the logic programming language Prolog,
and also their implementation; and finally the architecture project
(Section 10.4) presents some aspects of low-level process synchro-
nization primitives of interconnection networks, which are being
studied for a future hardware realization.

10.1 Analysis Techniques for Lazy Data-Parallel
Functional Programming Languages

Björn Lisper
IT, KTH
Jean-Francois Collard
LIP, France

In order to implement lazy functional data-parallel languages effi-
ciently, it is absolutely necessary to employ state-of-the-art tech-
niques for program analysis, parallelization, and code optimiza-
tion. New techniques that are specific for this class of languages
must also be developed and applied.

We have proposed a technique called Extent Analysis [Lisper
and Collard, 1994] and it is currently under investigation. The

86 Computer Science

aim of this analysis is to estimate the “size and shape” (i.e. extent)
of a data-parallel entity from its functional specification. Extent
Analysis is formulated as a kind of abstract interpretation. Ac-
tually, two instances of Extent Analysis can be formulated: the
input-output analysis seeks to estimate the maximal extent of a
data-parallel entity from the extent of the inputs defining the data
field. A simple example is matrix multiplication: given a recursive
definition of matrix product (i.e. a functional program), the size
of a product matrix AB can be inferred from the sizes of A and
B, respectively. The output-input analysis, on the other hand,
tries to find what parts of a data-parallel entity will possibly be
requested (and thus may possibly need to be computed), given a
request for some part of some (possibly other) data-parallel entity.
So for instance, if only a small part of the matrix product AB is
requested, this analysis can sometimes find what parts of A and
B, respectively, are actually needed.

When Extent Analysis succeeds, the result can be used for
compile-time allocation of distributed memory and static schedul-
ing of operations on parallel processors. The potential benefit is
thus very large.

10.2 Data-Parallel Functional Programming Languages

Per Hammarlund
SANS, NADA, KTH
Björn Lisper
IT, KTH

Data-parallel programming is becoming an increasingly important
tool for exploiting parallelism in data-intensive applications, espe-
cially on SIMD and vector computers. Many algorithms appearing
in such applications can be succinctly expressed in data-parallel
languages: this indicates that data-parallel programming can be a Data-parallel programming,

a powerful abstract
programming paradigm

powerful abstract programming paradigm rather than just a high-
level syntax for explicit programming of SIMD computers. The
data-parallel languages in practical use today are, however, expo-
nents of exactly the latter point of view: even though they incor-
porate some elements of abstraction, their semantics is in every
case to some extent based on a SIMD execution model. There-
fore it is hard to use these languages to express algorithms in the
problem domain in an abstract, machine-independent way. This is

Computer Science 87

likely to make programming in these languages more error-prone
and programs less portable than if they had been designed with a
more clean-cut abstract semantics.

We have analyzed and evaluated existing data-parallel program-
ming languages and parallel execution techniques [Hammarlund
and Lisper, 1992]. Existing data-parallel programming languages
are mainly extensions of existing sequential languages, e.g. C* and
*LISP are extensions of ANSI C and Common Lisp respectively
[TMC, 1991a, TMC, 1991b]. This makes them very specific to
the target machine hardware architecture and therefore difficult
to port.

In order to capture the more machine-independent aspects of
data-parallel programming we have made mathematical definitionsCapture the machine-

independent aspects of
data-parallel programming

of some data-parallel primitives. These can be used to guide the
design of data-parallel languages with a higher level of abstrac-
tion [Hammarlund and Lisper, 1993]. The key idea is to view
data-parallel entities as tabulated functions, where the tables are
stored in a distributed fashion. Operations on data-parallel enti-
ties are then simply operations on functions, just as operations in
pure functional languages. Thus, from a programming perspec-
tive there is no difference between the function that generates a
data-parallel entity and the data-parallel entity as such. This im-
plies that transformation techniques for functions can be applied
to data-parallel entities. An interesting observation is that tra-
ditional data structures, like lists and arrays, are also covered by
our definitions. This illustrates the level of abstraction achieved.An especially interesting

possibility is to integrate
data-parallel and lazy higher

order functional languages

An especially interesting possibility is to integrate data-parallel
and lazy higher order functional languages. “Lazy data-fields”, i.e.
data-parallel entities whose entries are computed on demand, are
the result. With such fields, many data-parallel algorithms can
be succinctly expressed. This is especially true when the domain
of computation is irregular and varies strongly with the input.
We thus believe that such languages are eminently suitable as
specification languages for data-parallel algorithms.

88 Computer Science

10.3 Massively Parallel Logic Computation

Jonas Barklund, Henrik Arro, Johan Bevemyr
Computing Science Department, Uppsala University

Unlike most other projects carried out on PDC’s Connection Ma-
chine, our work is research within parallel computation itself, rather
than on using parallel computation for doing research in an appli-
cation domain.

Advocates of logic programming languages have always claimed
that these languages are good for computation on parallel comput-
ers, because their semantics is not based on a sequence of changes
to a store. Still, imperative languages, such as Fortran 77, have so
far been more successful for parallel computation than logic pro-
gramming languages, even taking into account the results of the
Japanese project for Fifth Generation Computer Systems.

The reason for this is that the Single Program Multiple Data
(SPMD) model of computation has been successfully applied in
these languages, by exploiting parallelism when running definite
iterations (so-called for or do loops). Logic programming lan-
guages have mainly attempted to implement more general methods
for achieving parallelism; so far these methods have unfortunately
had quite significant overheads.

Computer programming languages based on logic usually have
recursion as their only means for repetition. Theoretically this
is sufficient, and in practice it often works fine. However, for
essentially the same reasons that parallelizing so-called while loops
is difficult, recursion is not easy to run in parallel.

We have therefore turned our attention to an iterative construct
for repetition in logic, namely bounded quantification [Barklund,
1994], an example of which is the expression

∀i : 0 ≤ i < n→ a[i] = b[i] + c[i].

That a quantification is bounded means that we know a priori
that we only need to evaluate the body, a[i] = b[i]+c[i] for a finite
number of values of the bound variable i, here the values 0 to n−1.
Seen as a truth-valued statement in a programming language, this
expression says that the first n elements of the vector a are the
sums of the corresponding elements of the vectors b and c, provided
that they are all vectors whose indices go from 0 and upwards.
This clearly corresponds to a do loop in Fortran 77. An extension of Prolog

Computer Science 89

We have designed an extension of the logic programming lan-
guage Prolog that contains bounded quantifications [Barklund and
Bevemyr, 1993]. For example, a goal can be a universal bounded
quantification all(ρ, β[ι]) where ρ is a range formula that restricts
some locally scoped variable ι to a finite number of values, and
β is a goal, presumably containing ι. A goal can also be an
arithmetic bounded quantification κ(ρ, β[ι], τ) where κ is sum
or product (or any other supported quantifier), ρ is as above,
β is an arithmetic expression and τ is a variable, which is uni-
fied with the sum or product of the values of β. For example,
sum(I index ofA,A[I] ∗ A[I], R) unifies R with the sum of the
square of every element of the array A.

Our work on PDC’s CM has been to add this construct to anAn implementation of a
data-parallel version of Prolog implementation of the logic programming language Prolog that

has previously been developed at our department [Bevemyr, 1992].
This gives us a data-parallel version of Prolog where ordinary Pro-
log expressions are run sequentially, but bounded quantifications
are run on the parallel processors of the Connection Machine [Arro
et al., 1993].

The implementation is based on a compiler that translates the
Prolog programs to sequences of instructions for an abstract ma-
chine [Warren, 1983]; the abstract machine is then realized by an
emulator. This sequential emulator was written in C; therefore we
could extend the machine with parallel instructions for bounded
quantifications by adding some data-parallel C* code to the ex-
isting C code. This was a relatively modest effort in terms of
programmer time. We must conclude that the idea of having a
data-parallel language as a conservative extension of a sequential
programming language has worked very well.

The work in 1993 has focused on design and implementation of
conditional expressions in bounded quantifications, and on imple-
mentation of previously designed constructs such as vectors and
various range formulas. We have also looked at implementation of
bounded quantifications on other data-parallel machines, e.g. the
CM5. Most considerations remain the same, because C* provides
an execution model that generalizes also to theses machines.

90 Computer Science

10.4 Barrier Synchronization for Multicomputers

Abdel-Halim Smai, Lars-Erik Thorelli
IT, KTH

Barrier synchronization is an important mechanism for coordinat-
ing parallel processes. In shared-memory multiprocessors common
memory space is used to implement barrier synchronization. In a
distributed memory parallel machine, however, synchronization is
accomplished by passing messages between processors.

In most existing multicomputers, wormhole routing is adopted
to support the underlying interprocessor communication. Apart
from deadlock, a notable source of problem with this technique
is congestion. Because a packet is not removed from the network
when it is blocked, it can rapidly lead to more blocked packets and
therefore to more congestion, especially with large message lengths
and network sizes. This situation can be difficult to manage, and
system performance can be significantly affected. In particular,
this occurs with non-uniform traffic patterns, for instance in the
realization of software barriers. There are readily apparent draw-
backs in such a case: not only is the delay for a barrier operation
increased but it can also affect the communication delay of the
other types of messages in the network.

A physical communication channel may be split into multiple
virtual channels. A virtual channel is a logical channel which
has its own buffer, data- and control-paths. A network can thus
provide better node connectivity, and multiple paths and routes
for packet transmission are made available. Our first goal is to test
and compare different scheduling methods for virtual channels in
order to optimize the delay for barrier synchronization operations
and to limit the network congestion.

This work is part of the EDA (Extended Dataflow Architecture)
project at the IT department. In this study, we are considering
some aspects of interconnection networks for a future hardware
realization of an architecture supporting the EDA execution mod-
els.

We are using C* as our programming language. Its parallel The parallel features of C*
suit quite well the natural
parallelism present in the
model being simulated

features suit quite well the natural parallelism present in the model
being simulated. From the design point of view, C* has been very
helpful; performance is still somewhat of a handicap though. A
few hours’ execution time for a simulation run is common.

Computer Science 91

Glossary

Amdahl’s law When using specialized hardware to gain better per-
formance only the part of the computation that can make use of this
hardware will show an increase in computing speed. Two examples: for
vector architectures only the parts of the code that vectorize will run
faster and scalar performance will remain important for the remaining
part; for parallel computers only the parts of the computation that par-
allelizes will gain from using a parallel computer, serial performance will
remain important for the rest of the program. [Amdahl, 1967, Gustafson,
1988]

Clusters A clusters is a group of loosely interconnected computers.
A typical cluster is a set of “off the shelf” workstations connected via
a communication network. A driving force behind developing cluster
technology are claims that cheap workstations already on the desks in
a typical office can be used as a supercomputer when they are arranged
in a cluster and set to work on a problem in parallel. There is free soft-
ware, e.g. PVM, that allows experimentation with cluster technology
today. Software for faster communication, fault tolerance, and proces-
sor allocation within the group of “available” workstations are research
topics.

HIRLAM, High Resolution Limited Area Model This program
is a state-of-the-art analysis and forecast system for numerical weather
prediction. The HIRLAM system is being developed within a common
research project among the weather services in the Nordic countries, Ire-
land and the Netherlands. Currently the system is used operationally in
Denmark, Finland, the Netherlands, and Sweden. Present implementa-
tions of the HIRLAM system can describe scales of motion of the order
of 50 km. In order to accurately describe many important weather phe-
nomena it is necessary to describe scales of motion of the order of 1 to
5 km. This would require sustained 10 to 1000 GFlop/s performance.
Today vector supercomputers (CRAY, Convex) are used operationally
with a moderate degree of parallelization (2–8 processors). In order to
achieve the needed performance several initiatives were taken to port
HIRLAM to massively parallel computers. Today HIRLAM is running
on, among others, MasPar MP-1, CRAY T3D and Intel Paragon.
The HIRLAM forecast model is based on the so called primitive equa-
tions. A combination of a terrain-following and a pressure coordinate
system is used in the vertical and the forecast model equations are ap-
plied on a latitude longitude projection with a shift of the geometrical
North pole to minimize the convergence of longitude lines. Finite differ-

92 Glossary

ences are used to represent vertical derivatives while in the horizontal
direction, finite difference as well as a spectral transform versions are
available. A semi-implicit time stepping scheme is utilized for both ver-
sions of the model, the linear parts of the adjustment terms are treated
implicitly. Schemes for a semi-Lagrangian treatment of the advection
terms are being developed for both versions.

CFD, Computational Fluid Dynamics CFD is the study of flow
phenomena by computational methods. In fluid dynamics, like in many
other branches of natural science, the traditional physical methods of
theoretical analysis and experimental observations can now be comple-
mented by computational experiments. Present advances in computer
performance and algorithm design allow serious efforts both in basic sci-
ence, such as the understanding of the properties of the Navier–Stokes
equations, and in practical applications to aerospace engineering.

FLOPS, Floating Point Operations Per Second A measure of nu-
merical performance of a computer. It is not uncommon to see people
using MFlop/s/s when they mean MFlop/s. The former expression is
not formally correct, but will usually not cause any misunderstandings.

FFT, Fast Fourier Transform Any signal can be seen as the su-
perposition of harmonics with different frequencies. The set of ampli-
tudes of the different frequencies is the Fourier Transform of the signal.
Multiple-variable functions can be decomposed by treating one variable
after the other, and we then speak of multi-dimensional Fourier Trans-
forms. When the decomposition is performed on a sampled signal we call
it a Discrete Fourier Transform (DFT). The actual computation of the
DFT can be seen as a complex matrix-vector multiplication where the
matrix elements are roots of unity and the vector is the set of N sam-
ples. The many symmetry properties of the matrix allows one to perform
the calculation in only O(N logN) arithmetic operations as compared
to O(N2) required for a general matrix-vector multiply, and these algo-
rithms are therefore called Fast Fourier Transforms (FFT). FFTs are
used extensively in scientific computations. They perform filtering oper-
ations in image and signal processing applications, such as speech recog-
nition and synthesis and computed tomography, and they make spectral
methods for solving differential equations computationally tractable.

HUGO, Human Genome Project The Human Genome Project aims
at creating a database of the human genome, the DNA. This database
will be an aid research in medicine. Collecting this information is a
formidable task that includes work and development in many different
areas – from biotechnology to computer science. As a first step the labo-
ratory has to find the sequences; much of this work has been automated.
The sequences are stored in a database. When the information on the
sequences has been collected, researchers can start using it. New tech-
niques have to be created for maintaining and using this data.

Glossary 93

Load Balancing Good utilization and performance of a parallel com-
puter requires that its processors have nearly the same amount of work.
Processors with little work will spend much of their time waiting for the
ones with more work. The load balancing problem has both static and
dynamical aspects. The static aspect is that one must, already when
writing the program or when starting the application, divide the work
evenly between processors. The dynamical aspect is that during the
computation the problem in itself may cause a situation where the work
is unevenly spread on the processors, e.g. galaxy simulations using par-
ticle in cell techniques; it may become necessary to redistribute the work
during the computation.

MIMD, Multiple Instruction Multiple Data Computer A term
describing a specific parallel computer architecture. In a MIMD com-
puter the processing elements (PEs) have their own code and can all per-
form different instructions on their local data. The MIMD programming
model is more general than the SIMD model. Recently there has been
a revival of the MIMD computer as the microprocessors have become
more powerful – this can be seen in the CM5 from Thinking Machines
Corporation, the Intel Paragon, and the CRAY T3D.

NN, Neural Networks Neural Networks is a large field of research
where one searches for inspiration in how the nervous system of animals
works, i.e. many small simple connected units perform tasks together.
What the neural network performs is decided by the simple actions the
units perform and how they are connected; all computations are in this
sense local. The PDC computers are used for research on both artificial
NNs and biologically realistic NNs. Artificial NNs have simplified units
and are used to perform, e.g. , multispectral image classification. Bio-
logically realistic NNs use more complex models of the neural network.
The models try to capture the precise biological behaviour of the neural
system and the programs are used to study possible circuits and their
behaviour as accurately as possible.

SHPCNet, Swedish High-Performance Computing Network The
intention of the project is to connect the Swedish supercomputer cen-
ters in Linköping (CRAY), Stockholm (CM200) and Skellefte̊a (IBM
3090) with higher speed, 34 Mbit/s, links. This is a first step towards
realistic distributed supercomputing. Apart from a number of projects
that aim directly at the distributed possibilities, it is also reasonable to
foresee a more efficient sharing of existing computer resources among
high-performance users in Sweden.

SIMD, Single Instruction Multiple Data Computer The acronym
SIMD describes a specific parallel computer architecture. In a SIMD
computer instructions are broadcast to all processing elements (PEs)
from the control processor. The PEs all perform the same instruction
on their own local data, but may optionally decide to skip one based

94 Glossary

on local data. One reason for building computers like this is that the
architecture reduces the complexity of the PEs – they do not have to have
local program code and hardware for parsing this code. The fact that
all PEs perform the same instruction is a restriction in the programming
model; a SIMD computer can however perform any operation a MIMD
computer can, it only increases computing time by a constant factor. A
SIMD computer will usually have more PEs than a MIMD computer.

Speedup and Scaled Speedup Parallel computers enables us to ex-
ecute problems faster or to execute larger problems within reasonable
time. Sometimes we can run larger problems faster. It is not obvious
how we should compare this performance increase. Two measures have
emerged that capture different aspects: speedup, how much faster does
the problem run if we throw additional processor at it; scaled speedup,
how does the computer perform if we increase both problem and ma-
chine size. Speedup can be defined as the time for running a problem of
a certain size on a single processor divided by the time for running the
same problem size on many processors. Scaled Speedup can be defined
as the time it would take, if it was possible, to execute a large prob-
lem on a single processor of parallel machine divided by the time to run
that problem on many processors. Speedup, loosely speaking, captures
how much overhead the machine adds when we use more processors and
scaled speedup measures if all the parts of the machine’s architecture
scales with increased machine size. [Worley, 1990, Nussbaum and Agar-
wal, 1991, Singh et al., 1993]

SPMD, Single Program Multiple Data One can loosely define
SPMD as the programming model where one has a single program that
operates in parallel on several sets of data, e.g. a CFD code communi-
cating with message passing. This programming model can be used on
many different architectures.

Glossary 95

Bibliography

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single-processor ap-
proach to achieving large scale computing capabiliites. In: AFIPS Con-
ference Proceedings, volume 30, 1967, p. 483–485. 92

[Andersson et al., 1992] Andersson, J.-O., Mattsson, J., and

Svedlindh, P. (1992). Physical review. B. Solid state 46: 8297.
56

[Andersson et al., 1994] Andersson, J.-O., Mattsson, J., and

Svedlindh, P., (1994). appeared in the January 1, issue of Phys. Rev.
B. 56

[Andersson and Sibani, 1993] Andersson, J.-O. and Sibani, P., (1993).
Monte Carlo studies of domain growth in short range Ising spin-glasses.
In preparation. 57

[Arro et al., 1993] Arro, H., Barklund, J., and Bevemyr, J. (1993). Par-
allel Bounded Quantifications—Preliminary Results. ACM SIGPLAN
Notices 28: 117–124. 90

[Aurell et al., 1994] Aurell, E., Frick, P., and Shaidurov, V. (1994).
Hierachical tree-model of 2D-turbulence. Physica D D72: 95–109. 48

[Aurell et al., 1993] Aurell, E., Gurbatov, S., and Wertgeim, I., (1993).
79

[Barklund, 1994] Barklund, J. (1994). Bounded Quantifications for Iteration
and Concurrency in Logic Programming. New Generation Computing
12: 161–182. 89

[Barklund and Bevemyr, 1993] Barklund, J. and Bevemyr, J. (1993).
Prolog with Arrays and Bounded Quantifications. In: Proceedings of
the 4th Intl. Conf. on Logic Programming and Automated Reasoning,
edited by V. Andrei, LNCS, Berlin. Springer-Verlag. 90

[Berglund, 1994] Berglund, M. (1994). Parallel Computer Simulation of
Ground Vibrations. Technical Report TRITA-NA-9408, Department of
Numerical Analysis and Computing Science, Royal Institute of Technol-
ogy, S-100 44 Stockholm, Sweden. 70

[Bevemyr, 1992] Bevemyr, J. (1992). The Luther WAM Emulator. UP-
MAIL Technical Report 72, Computing Science Department, Uppsala
University. 90

[Binder and Privman, 1992] Binder, P. and Privman, V. (1992). Mod.
Phys. Lett. B 6: 1835. 54

96 Bibliography

[Bower et al., 1990] Bower, R., Tamayo, P., and York, B., (1990). A
Parallel Multigrid Clustering Algorithm for Percolation Clusters. 59

[Brunak et al., 1991] Brunak, S., Engelbrecth, J., and Knudsen, S.

(1991). Prediction of human mRNA donor and acceptor sites from the
DNA sequence. Journal of Molecular Biology 220: 49–65. 63

[Chaté and Manneville, 1991] Chaté, H. and Manneville, P. (1991). Eu-
rophys. Lett. 14: 409. 54

[Damberg and Migdalas, 1994] Damberg, O. and Migdalas, A. (1994). A
Massively Parallel Space Dilation Algorithm for the Concentrator Loca-
tion Problem. Working paper, Department of Mathematics, Linköping
Institute of Technology, S-581 83 Linköping. 85

[Ekeberg et al., 1993] Ekeberg, Ö., Hammarlund, P., Levin, B., and

Lansner, A. (1993). SWIM — A Simulation Environment for Re-
alistic Neural Network Modeling. In: Neural Network Simulation Envi-
ronments, edited by J. Skrzypek. Kluwer. (In press). 22

[Engström, 1993] Engström, S. (1993). Studies of spiral structure in disk
galaxies. PhD thesis, Chalmers University of Technology, Göteborg,
Sweden. 46

[Erlingsson, 1993] Erlingsson, S. (1993). Dynamic Soil Analysis with an
Application to Rock Music Induced Vibrations in Ullevi Stadium. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden. 70

[Fincham, 1993] Fincham, D. (1993). CCP5 Information Quarterly 17–24.
66

[Fischer and Hertz, 1991] Fischer, K. and Hertz, J. (1991). Spin Glasses.
Cambridge University Press. 55, 56

[Fisher and Huse, 1988] Fisher, D. S. and Huse, D. A. (1988). Physical
review. B. Solid state 38: 373. 56

[Fransén and Lansner, 1994] Fransén, E. and Lansner, A., (1994). Low
Spiking Rates in a Population of Mutually Exciting Pyramidal Cells.
(Submitted). 23, 23

[Fransén et al., 1993] Fransén, E., Lansner, A., and Liljenström, H.

(1993). A Model of Cortical Associative Memory based on Hebbian
Cell Assemblies. In: Computation and Neural Systems, edited by F. H.
Eeckman and J. M. Bower, Boston, MA. Kluwer, p. 431–435. 23

[Glansdorff and Prigogine, 1975] Glansdorff, P. and Prigogine, I.

(1975). Thermal Theory of Structure Stability and Fluctuations. Wiley-
Interscience Publishers. 58

[Gould and Tobochnik, 1988] Gould, H. and Tobochnik, J. (1988). An
Introduction to Computer Simulation Methods, Part 2. Addison-Wesley
Publishing Company. 58

Bibliography 97

[Gradin and Ledfelt, 1993] Gradin, U. and Ledfelt, G. (1993). Compu-
tational Electromagnetics in 2D. Technical Report TRITA-NA-E9338,
NADA, KTH, Stockholm, Sweden. 35, 36

[Grinstein et al., 1993] Grinstein, G., Mukamel, D., Seidin, and Ben-

nett, C. (1993). Phys. Rev. Lett. 70: 3607. 54

[Gustafson, 1988] Gustafson, J. L. (1988). Reevaluating Amdahls’s Law.
Communications of the ACM 31: 532–533. 92

[Gustafsson, 1981] Gustafsson, B. (1981). The convergence rate for differ-
ence approximations to general mixed initial boundary value problems.
SIAM Journal on Numerical Analysis 18: 179–190. 69

[Gustafsson and Lindskog, 1992] Gustafsson, I. and Lindskog, G. (1992).
Complete parallelizable preconditioning methods. Report 19, De-
partment of Computing Science, Chalmers University of Technology,
Göteborg, Sweden. To appear in Numerical Linear Algebra with Ap-
plications. 81

[Gustafsson, 1991] Gustafsson, N. (1991). The HIRLAM model. In: Semi-
nar on Numerical Methods in Atmospheric Models. ECMWF, Reading,
UK, 1991. 41

[Hammarlund et al., 1991] Hammarlund, P., Levin, B., and Lansner, A.

(1991). BIOSIM—A Program for Biologically Realistic Neural Network
Simulations on the Connection Machine. In: Proceedings of ICANN-
91, edited by T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas,
Amsterdam. North-Holland, p. 1477–1480. Espoo, Finland, June 24-28,
1991. 21

[Hammarlund et al., 1992a] Hammarlund, P., Levin, B., and

Lansner, A. (1992a). Biologically Realistic and Artificial Neu-
ral Network Simulators on the Connection Machine. In: Science
on the Connection Machine, edited by T. Lippert, K. Schilling, and
P. Ueberholz. World Scientific, 1992, p. 49–63. (Proceedings of the First
European CM Users Meeting, June 16–17). 21

[Hammarlund et al., 1992b] Hammarlund, P., Levin, B., and

Lansner, A. (1992b). BIOSIM—A SIMD Parallel Simulator for
Biologically Realistic Simulations of Neural Networks. (Submitted.).
21

[Hammarlund and Lisper, 1992] Hammarlund, P. and Lisper, B. (1992).
Data Parallel Programming—A Survey and a Proposal for a New Model.
Technical report, TDS—Department of Telecommunication and Com-
puter Systems, Royal Institute of Technology, S–100 44 Stockholm, Swe-
den. 88

98 Bibliography

[Hammarlund and Lisper, 1993] Hammarlund, P. and Lisper, B. (1993).
On the Relation between Functional and Data Parallel Programming
Languages. Accepted for publication at the Sixth Conference on Func-
tional Programming Languages and Computer Architecture. 88

[Hedman and Laaksonen, 1993] Hedman, F. and Laaksonen, A. (1993). A
Data-parallel Molecular Dynamics Method for Liquids with Coulombic
Interactions. Molecular Simulation , Accepted for publication. 66

[Hemmingsson and Herrmann, 1993] Hemmingsson, J. and Herrmann, H.

(1993). Europhys. Lett. 23: 15. 54

[Hemmingsson and Peng, 1994] Hemmingsson, J. and Peng, G. (1994). J.
Phys. A: Math. Gen. 27: 2735. 55

[Hemmingsson, 1993] Hemmingsson, L. (1993). Toeplitz preconditioners
with block structure for first-order PDEs. Report 156, Dept. of Scientific
Computing, Uppsala University, Sweden. 80

[Hemmingsson and Otto, 1994] Hemmingsson, L. and Otto, K., (1994).
Analysis of semi-Toeplitz preconditioners for first-order PDE. Submitted
to SIAM J. Sci. Comput. 80

[Hib, 198] Hibbitt Karlson & Sorensen Inc. (198?). ABAQUS User Manual.
Version 4.8., 198? 70

[Hillis and Boghosian, 1993] Hillis, W. and Boghosian, B. (1993). Science
261: 856–863. 57

[Holmgren and Otto, 1992] Holmgren, S. and Otto, K. (1992). Iterative
solution methods and preconditioners for block-tridiagonal systems of
equations. SIAM J. Matrix Anal. Appl 13: 863–886. 80

[Holmgren and Otto, 1994] Holmgren, S. and Otto, K. (1994). Semi-
circulant preconditioners for first-order PDE. SIAM J. Sci. Comput
15: 385–407. 80

[Holst and Lansner, 1993] Holst, A. and Lansner, A. (1993). A Bayesian
neural Network Model with Extensions. Technical Report TRITA-NA-
P9325, NADA, Royal Institute of Technology, Stockholm, Sweden. 20

[Jackson and Persson, 1992] Jackson, B. and Persson, M. (1992). A quan-
tum mechanical study of recombinative desorption of atomic hydrogen
on a metal surface. J. Chem. Phys. 96: 2378. 52

[Johnsson and Ho, 1989] Johnsson, S. and Ho, C. (1989). Embedding
Hyper-Pyramids into Hypercubes. SIAM J. Sci. Stat. Comput. 10: 607–
630. 49

[Karlsson and Goscinski, 1994] Karlsson, H. and Goscinski, O. (1994).
A Direct Recursive Residue Generation Method. Application to Pho-
toionization of Hydrogen in Static Electric Fields. Journal of Physics B
27: 1061–1072. 67

Bibliography 99

[Kolafa and Perram, 1992] Kolafa, J. and Perram, J. W. (1992). Cutoff
Errors in the Ewald Summation Formulae for Point Charge Systems.
Molecular Simulation 9: 351–368. 66

[Lander et al., 1991] Lander, E. S., Langridge, R., and Saccocio, D. M.

(1991). Mapping and Interpreting Biological Information. Communica-
tions of the ACM 34: 32–39. 60

[Lansner and Ekeberg, 1989a] Lansner, A. and Ekeberg, Ö. (1989a). A
One-Layer Feedback Artificial Neural Network with a Bayesian Learning
Rule. International Journal of Neural Systems 1:1: 77–87. 20

[Lansner and Ekeberg, 1989b] Lansner, A. and Ekeberg, Ö. (1989b). A
One-layer Feedback, Artificial Neural Network with a Bayesian Learning
Rule. Int. J. Neural Systems 1: 77–87. 23

[Lansner and Fransén, 1994] Lansner, A. and Fransén, E. (1994). Im-
proving the Realism of Attractor Models by Using Cortical Columns as
Functional Units. In: Computation and Neural Systems, edited by F. H.
Eeckman and J. M. Bower, Boston, MA. Kluwer. (to appear). 23

[Lee and Kim, 1991] Lee, M. and Kim, J. (1991). The structure of turbu-
lence in a simulated plane Couette flow. In: 8th Symposium on Turbulent
Shear Flow, Münich, 1991. 37

[Levander, 1988] Levander, A. (1988). Fourth order finite difference P-SV
seismograms. Geophysics 53: 1425–1436. 72

[Levin et al., 1990] Levin, B., Hammarlund, P., and Lansner, A. (1990).
BIOSIM—A Program for Biologically Realistic Neural Network Simula-
tions on the Connection Machine. Tech. Rep. TRITA-NA-9021, Dept.
of Numerical Analysis and Computing Science, Royal Institute of Tech-
nology, Stockholm, Sweden. 21

[Levin and Lansner, 1992] Levin, B. and Lansner, A. (1992). Document
Retrieval, Protein Sequence Matching and Sensor Selection Methods us-
ing a Neural Network. Technical Report TRITA-NA-P9238, NADA,
Royal Institute of Technology, Stockholm, Sweden. 20

[Liljenström, 1991] Liljenström, H. (1991). Modelling the Dynamics of
Olfactory Cortex Using Simplified Network Units and Realistic Archi-
tecture. International Journal for Neural Systems 2: 1–15. 26

[Lindskog and Gustafsson, 1993] Lindskog, G. and Gustafsson, I. (1993).
Some experiences on the CM-200 in the solution of a numerical linear al-
gebra problem. Report 26, Department of Computing Science, Chalmers
University of Technology, Göteborg, Sweden. Talk at Second European
CM Users meeting at Observatoire de Paris-Meudon, Oct 11-14, 1993.
82

100 Bibliography

[Lisper and Collard, 1994] Lisper, B. and Collard, J.-F. (1994). Extent
Analysis of Data Fields. Accepted for presentation at the International
Symposium on Static Analysis, September 28–30 1994, Namur, Belgium.
86

[Loewenthal et al., 1991] Loewenthal, D., Wang, C., Johnson, O., and

Juhlin, C. (1991). High order finite difference modeling and reverse
time migration. Exploration Geophysics 22: 533–545. 72

[Lundbladh et al., 1992] Lundbladh, A., Henningson, D., and Johans-

son, A. (1992). An efficient spectral integration method for the solu-
tion of the Navier-Stokes equation. Technical Report FFA-TN 1992-28,
Aeronautical Research Institute of Sweden, Bromma. 36

[Luo et al., 1991] Luo, W., Nagel, S. R., Rosenbaum, T. F., and

Rosensweig, R. E. (1991). Physical review letters 67: 2721. 55

[Munthe-Kaas, 1993] Munthe-Kaas, H., (1993). Super Parallel FFTs. (to
appear in SIAM J. on Scientific and Stat. Comput.). 42

[Noullez, 1992] Noullez, A. (1992). A Fast Algorithm for discrete Legendre
transforms. Technical report, Observatoire de Nice. 79

[Noullez and Vergassola, 1993] Noullez, A. and Vergassola, M. (1993).
A Fast Legendre Transform algorithm and applications to the adhesion
model. Technical report, Observatoire de Nice. Submitted to Journal of
Scientific Computing. 79

[Nussbaum and Agarwal, 1991] Nussbaum, D. and Agarwal, A. (1991).
Scalability of Parallel Machines. Communications of the ACM 34: 57–
61. 95

[Orzag, 1970] Orzag, S. (1970). Transform method for calculation of vector-
coupled sums. Application to the spectral form of the vorticity equatio.
J. Atmos. Sci. 27: 890–895. 41

[Palm, 1993] Palm, T. (1993). Self-consistent calculations of an electron-wave
Y-branch switch. J. Appl. Phys. 74: 3551–3557. 49

[Pernica, 1988] Pernica, G. (1988). Dynamic live loads at a rock concerts.
Canadian Journal of Civil Engineering 10: 185–191. 71

[Per, 1991] (1991). Time-Dependent Methods for Quantum Dynamics. Comp.
Phys. Comm. See articles in volume 63. 51

[Persson and Jackson, 1993] Persson, M. and Jackson, B., (1993). A flat
surface model study of Eley-Rideal dynamics of recombinative desorption
of hydrogen on a metal surface. Submitted to J. Chem. Phys. 51

[Pomeau, 1993] Pomeau, Y. (1993). J. Stat. Phys. 70: 3607. 54

Bibliography 101

[Roland et al., 1993] Roland, P., Levin, B., Kawashima, R., and

Åkerman, S. (1993). Three Dimensional Analysis of Clustered Voxels
in 15O-Butanol Brain Activation Images. Human Brain Mapping 1: 3–19.
64

[Rosensweig, 1985] Rosensweig, R. (1985). Ferrohydrodynamics. Cambridge
University Press. 55

[Rots, 1990] Rots. (1990). Astrophysical Journal 178: 623. 45

[Sahlin, 1989] Sahlin, S. (1989). On Site Measurements of Soil and Struc-
ture Response of the Soccer Stadium ”Nya Ullevi” in Göteborg. In: A
course in Fundamentals of Earthquake Engineering 1989. Statens Provn-
ingsanstalt, 1989. 71

[Sawley, 1993] Sawley, M. (1993). Control- and Data-Parallel Methodolo-
gies for Flow Calculations. In: Supercomputing Europe ’93, edited by
R. Tucker, Utrecht. Royal Dutch Fairs, p. 169–187. 38, 38

[Sawley and Bergman, 1994] Sawley, M. and Bergman, C. (1994). A Com-
parative Study of the Use of the Data-Parallel Approach for Compress-
ible Flow Calculations. Parallel Computing 20: 363–373. 38, 39

[Sawley et al., 1993a] Sawley, M., Tegnér, J., and Bergman, C. (1993a).
A serial data-parallel multi-block method for compressible flow compu-
tations. Technical Report T-93-22, IMHEF, EPFL. To appear in Pro-
ceedings of Parallel CFD ’93 (Paris, May 1993). 39

[Sawley et al., 1993b] Sawley, M., Tegnér, J., Leyland, P., and

Bomholt, L. (1993b). Computational Fluid Dynamics: parallelism,
portability and performance. Speedup Journal 7: 64–71. 40

[She et al., 1992] She, Z., Aurell, E., and Frisch, U. (1992). The Inviscid
Burgers Equation with Initial data of Brownian type. Communications
in Mathematical Physics 148: 623–641. 79, 79

[Sibani and Andersson, 1993] Sibani, P. and Andersson, J.-O., (1993). Ex-
citation morphology of short range Ising spin-glasses. Preprint. 57

[Singh et al., 1993] Singh, J. P., Hennessy, J. L., and Gupta, A. (1993).
Scaling Parallel Programs for Multiprocessors: Methodology and Exam-
ples. IEEE Computer 42–50. 95

[Smith and Zipser, 1989] Smith, C. and Zipser, D. (1989). Learning Se-
quential Structure with the Real-time Recurrent Learning Algorithm.
International Journal of Neural Systems 1: 125–131. 63

[Soldal et al., 1993] Soldal, O., Rye, N., Thunvik, R., and

Halvorsen, E. (1993). Field investigations and modeling of av-
erage hydraulic gradient in a coastal aquifer, Sunndalsøra, Norway.
NHP Report 35, Nordic Hydrological Programme. 73

102 Bibliography

[Svensson, 1992] Svensson, G. (1992). Matrix computations on the CM-200.
Technical report, Department of Mathematics, Linköping University. 84

[Svensson, 1993] Svensson, G. (1993). Matrix Computations on Parallel
Computers. Licentiat Avhandling LiU-TEK-LIC-1993:26, Department
of Mathematics, Linköping University. ISBN: 91-7871-128-2, ISSN: 0280-
7971. 84

[Thi, 1993] Thinking Machines Corporation. (1993). CMSSL for CM Fortran.
Version 2.2, 1993. 76

[TMC, 1991a] TMC, Thinking Machines Corporation, 245 First Street, Cam-
bridge, Massachusetts 02142–1264. (1991a). Connection Machine: Pro-
gramming in C*, 6.1 edition, 1991. 88

[TMC, 1991b] TMC, Thinking Machines Corporation, 245 First Street, Cam-
bridge, Massachusetts 02142–1264. (1991b). Connection Machine: Pro-
gramming in *Lisp, 6.1 edition, 1991. 88

[Toomre and Toomre, 1972] Toomre and Toomre. (1972). Astrophysical
Journal 100: 387. 45

[Wallin, 1992] Wallin, E. (1992). Optimized Sequence Matching on the CM-
2. Master’s thesis, Royal Institute of Technology, Stockholm, Sweden.
20

[Warren, 1983] Warren, D. H. D. (1983). An Abstract Prolog Instruction
Set. SRI Technical Note 309, SRI International, Menlo Park. 90

[Wilhelmsson, 1994] Wilhelmsson, T. (1994). Simulating the Dynamics of
Olfactory Cortex on the Connection Machine. Master’s thesis, Linköping
Institute of Technology, Linköping, Sweden. In preparation. 24

[Williams and Zipser, 1989] Williams, R. and Zipser, D. (1989). Experi-
mental Analysis of the Real-time Recurrent Learning Algorithm. Con-
nection Science. 1: 87–111. 63

[Worley, 1990] Worley, P. H. (1990). The Effect of Time Constraints on
Scaled Speedup. SIAM Journal on Scientific and Statistical Computing
11: 838–858. 95

[Za luska-Kotur and Cieplak, 1993] Za luska-Kotur, M. A. and

Cieplak, M. (1993). Europhysics letters 23: 85. 56

Bibliography 103

Index
ABAQUS, 70
Abstract interpretation, 87
Algorithm

Lanczos, 66
QR, 83
RRGM, 66, 67
TFQMR, 74

Amdahl’s Law, 92
Andersson, Jan-Olov, 55, 56
Andersson, Ulf, 34
Anisotropy, 68
ANN, see Neural Networks
Apple Macintosh, 61
Arro, Henrik, 89
Aurell, Erik, 79
Autocorrelation function, 64

Barklund, Jonas, 89
Barrier synchronization, 91
Berglund, Marcus, 68
Bevemyr, Johan, 89
Biochemical variable, 64
Biocomputing, 59–64

Brain data analysis, 63
Human mRNA, 62
Large sequence projects, 61
Recurrent ANN, 62
Sequence alignment, 60

BIOSIM, 21
Boston University, 57

C, 88
C++, 21
C2M2, 34, 36, 68
CEM, see Computational

Electromagnetics
Center for Structural

Biochemistry, 60, 61
Cerebral blood-flow, 63
Cerebral metabolism, 63
CERFACS, 10, 29
CFD, see Computational Fluid

Dynamics
Chalmers University of

Technology, 9, 32, 45, 51, 81
Chemistry, 64–67

Molecular Dynamics, 65
Residue Generation, 66

CM5, 90, 94
CMSSL, 28, 33, 34, 36, 52, 63, 67,

75, 76, 78, 80, 81, 84
Code optimization, 86
Collard, Jean-Francois, 86
Computational Electromagnetics,

8, 35
Computational Fluid Dynamics,

29, 29, 35, 38, 28–44, 93, 95
Adaptive Finite-Element, 32
Computational

electromagnetics, 34
Couette flow, 36
Detonation Waves, 30
HIRLAM, 41
Multi-Block Methods, 38

Computational Neuroscience, 21
Computer Science, 85–91

Barrier synchronization, 91
Functional languages, 86, 87
Logic computation, 89

Convex, 43, 92
Coordinating parallel processes,

91
Cortical Associative Memory, 21
CRAY, 1, 21, 52, 92, 94

CRAY C90, 42, 43
CRAY T3D, 92, 94
CRAY X-MP, 36
CRAY Y-MP, 36

CSB, see Center for Structural
Biochemistry

CSHIFT, 28, 40, 70
Cstar, see C*
C*, 88, 90, 91
CTH, see Chalmers University of

Technology

Damberg, Olof, 84
DataVault, 8, 60, 61
DFT, see Discrete Fourier

Transform
Discrete Fourier Transform, 93
DNA, 60–63, 93

104 Index

DTH, see Technical University of
Denmark

Ecole Polytechnique Fédéral de
Lausanne, 29, 38

EDA, see Extended Dataflow
Architecture

EEG, 28
Engquist, Björn, 7
Engström, Stefan, 45
Eriksson, Kenneth, 32
Extended Dataflow Architecture,

91
Extent analysis, 87

Fast Fourier Transform, 36, 42,
51, 52, 75, 78, 80, 93

Fast Wavelet Transform, 77, 78
FFA, 36
FFT, see Fast Fourier Transform
Fifth Generation Computer

Systems, 89
Fortran

CM Fortran, 28, 32, 36, 40, 52,
70, 71, 75, 78, 81–84

Fortran 77, 89
Fortran 90, 40, 73, 75, 82
HPF, 10, 42, 43
MasPar Fortran, 40

Fransén, Erik, 21
Frick, Peter, 48
FRN, 6, 7, 9
Functional languages, 88

Lazy higher order, 88
Transformation techniques, 88

FWT, see Fast Wavelet
Transform

Geophysics, 67–74
Anisotropic wave propagation,

72
Groundwater Transport, 73

Goscinski, Osvaldo, 66
Gustafsson, Ivar, 81
Gustafsson, Nils, 41

Hammarlund, Per, 6, 21, 87
Hansbo, Peter, 32
Hansen, Hans H.H., 62
Hedman, Fredrik, 6, 7, 65

Heijne, von, Gunnar, see von
Heijne, Gunnar

Helin, Jukka, 36
Helmersson, Göran Svensson, 82
Hemmingsson, Jan, 53
Hemmingsson, Lina, 79
HIRLAM, 41–44, 92
Holmgren, Sverker, 79
Holmström, Mats, 76
HPF, see Fortran
HUGO, see Human Genome

Project
Human brain, 63
Human Genome Project, 93

IBM, 1
IBM 3090, 94
IBM SP-2, 1

ICMM, see Institute of
Continuous Media
Mechanics, Perm

Ihrén, Johan, 6
IMHEF, 38
Institute of Continuous Media

Mechanics, Perm, 48, 79
Intel, 84, 92, 94
Interconnection networks, 86, 91
iPSC/2, 84
Islam, Khalid, 61
IT, 86, 87, 91

Johansson, Arne, 36
Johnson, Claes, 32
Jonsson, Tomas, 55
Juhlin, Christopher, 72

Karlsson, Hans O, 66
Karolinska Institutet, 60, 61
KI, see Karolinska Institutet
Klein, William, 57
KTH, see Royal Institute of

Technology

Laaksonen, Aatto, 65
Laboratoire de l’Informatique du

Parallélism, 86
Lanczos algorithm, 66
Lansner, Anders, 7, 19, 21
Ledfelt, Gunnar, 34
Levin, Björn, 19, 63

Index 105

Liljenström, Hans, 24
Lindskog, Gunhild, 81
Linköping Institute of Technology,

53, 82, 84
LIP, 86
Lisp

*Lisp, 88
Common Lisp, 88

Lisper, Björn, 86, 87
LiTH, see Linköping Institute of

Technology
Load Balance, 94
Logic programming, 89
Lundbladh, Anders, 36

Malinowsky, Lars, 6, 75
MasPar, 1, 8, 35, 36, 38, 40–44, 92
Matrix multiplication, 87
MC, see Monte Carlo simulation
MIMD, 1, 7, 9, 38, 44, 84, 94, 95
Monte Carlo simulation, 45, 56,

57
MP-1, 1, 8, 35, 38, 40, 41, 43, 92
MP-2, 41, 43
mRNA, 62, 63

NADA, 7, 9, 41, 87
Navier–Stokes, 29, 33, 79, 93
von Neuman Machines, 19
Neural Networks, 19, 19, 22,

18–28, 62
Cortical Associative Memory,

21
Olfactory Cortex, 24
Protein Sequence Matching, 19

NFR, 7
NN, see Neural Networks
NP-complete, 84
Numerical Analysis, 74–85

Fast Legendre Transform, 79
FFT library routines, 75
Matrix computations, 82
Optimization, 84
Parallel Fast Wavelet

Transform, 76
PDE Solvers, 79
Preconditioning Methods, 81

NUTEK, 2, 6, 7

Oppelstrup, Jesper, 7

Otto, Kurt, 79

Palm, Thomas, 49
PDC, 1, 2, 5–9, 41, 47, 49, 60, 61,

65, 72, 73, 75, 86, 89, 90, 94
Peng, Gongwen, 53
Persson, Mats, 51
PET, see Positron Emission

Tomography
Physics, 44–59

Cellular automata, 53
Condensed matter, 57
Ground Vibration, 68
Hierarchical Turbulence Model,

48
Ising spin-glasses, 56
Monte Carlo, 55
Quantum Electronics, 49
Quantum Wavepackets, 51
Smooth Particle

Hydrodynamics, 50
Physiological variable, 64
Poisson equation, 45
Positron Emission Tomography,

28, 60, 63
Prism, 28, 78
Prolog, 90

Data-parallel, 90
Protein Sequence Matching, 19
PSHIFT, 28
PSI, 2
PVM, 92

QR algorithm, 83
Quantification

Syntax, 90

Real Time Recurrent Learning, 63
Recursive Residue Generation

Method, 66, 67
Research Institute for Advanced

Computer Science, 10
RIACS, see Research Institute for

Advanced Computer Science
RNA, 63
Roland, Per, 63
Royal Institute of Technology, 1,

5–7, 9, 10, 19, 21, 24, 34, 36,
41, 49, 57, 60, 61, 63, 65, 68,
73, 75, 86, 87, 91

106 Index

RTRL, see Real Time Recurrent
Learning

Russia, 48, 79

Salt dome, 72, 73
Sanders, Rhiannon, 61
SANS, 19, 21, 24, 63, 87
Sawley, Mark, 38
Scaled Speedup, 95
Schrödinger equation, 45
Selhammar, Magnus, 50
SGI, see Silicon Graphics Inc
Shaidurov, Vladislav, 48
Shared-memory multiprocessors,

91
SHPCNet, see Swedish

High-Performance
Computing Network

Sibani, Paolo, 56
Silicon Graphics Inc, 8, 9
SIMD, 8, 21, 24, 44, 80, 87, 94, 95
Sjögreen, Björn, 30
Skandinaviska Enskilda Banken, 7
Smai, Abdel-Halim, 91
SMHI, see Swedish Meteorological

and Hydrological Institute
Smith, Edvard, 61
Smooth Particle Hydrodynamics,

50, 51
SPARC, 27, 52, 77, 85
Speedup, 95
SPH, see Smooth Particle

Hydrodynamics
SPLIT, 21, 23
SPMD, 89, 95
SSOR, see Symmetric Successive

Over-Relaxation
Stockholm University, 65, 79
Sundblad, Yngve, 7
Svensson, Britta, 6
Svensson, Gert, 6, 7
Swedish High-Performance

Computing Network, 8, 94
Swedish Meteorological and

Hydrological Institute, 41–43
SWIM, 22
SWIM, 21
Symmetric Successive

Over-Relaxation, 81, 82

TDB, 30, 76, 79
TDS, 7
Technical University of Denmark,

62
Tegnér, Jon, 38
TFQMR algorithm, 74
TFR, 7
Thinking Machines Corporation,

34, 53, 94
Thomas, Lawrence, 57
Thorelli, Lars-Erik, 7, 91
Thunvik, Roger, 73

UCLA, see University of
California, Los Angeles

University of California, Los
Angeles, 10

UNIX, 6
Uppsala Astronomical

Observatory, 50
Uppsala University, 30, 50, 55, 56,

66, 72, 76, 79, 89
USA, 57

von Heijne, Gunnar, 60, 61

Wallin, Erik, 60, 61
Wave Equation, 45
Wertgeim, Igor, 79
Wesström, Jan-Olof, 49
Wilhelmsson, Tomas, 24, 41
Wormhole routing, 91

Index 107

	Foreword
	Contents
	PDC -- Parallelldatorcentrum
	Background
	Organization of PDC
	Funding
	Hardware Resources
	Educational Activities
	The Conference and Tutorial

	Color Plates
	Neural Modeling and Computation
	Document Retrieval Protein Sequence Matching
	Developments of the SWIM Simulator Environment
	Modeling Cortical Associative Memory
	Simulating the Complex Dynamics of a Brain Structure

	Computational Fluid Dynamics
	Numerical Computation of Detonation Waves
	Adaptive Finite-Element Methods
	Computational Electromagnetics in 2D
	Simulation of Turbulent Couette Flow on the upkap CM200
	Data-parallel Multi-block Flow Computations
	High Resolution Numerical Weather Prediction

	Applications in Physics
	Colliding Galaxies on the Connection Machine
	Hierarchical Model of 2D Turbulence
	Scattering in Electron Waveguides
	Smooth Particle Hydrodynamics
	Quantum Wavepacket Studies
	Global Effects in Cellular Automata
	Monte Carlo Studies of the Dynamics of Random Anisotropy Dipolar Models
	Excitation Morphology of Ising Spin-glasses
	Mapping the Spinodal Region

	Biocomputing
	Gene Sequence Database Scanning
	Large Sequencing Projects
	Recognition of Human mRNA using Recurrent ANN
	Analysis of 3D Brain Data

	Applications in Chemistry
	Molecular Dynamics for Liquids with Coulombic Interactions
	A Direct Recursive Residue Generation Method

	Geophysics
	Simulation of Ground Vibration on the CM200
	Elastic Wave Propagation in 3D Heterogeneous Media
	Groundwater Transport Modeling

	Numerical Analysis
	Mingle and Un-mingle for Real-to-Complex Transforms
	Parallelizing the Fast Wavelet Transform
	Fast Parallel Legendre Transforms
	Solvers for Systems of Equations Arising from PDE Problems
	Implementation of an Approximate SSOR Preconditioner
	Matrix Computations on the Connection Machine
	Concentrator Location

	Computer Science
	Analysis Techniques for Lazy Data-Parallel Functional Programming Languages
	Data-Parallel Functional Programming Languages
	Massively Parallel Logic Computation
	Barrier Synchronization for Multicomputers

	Glossary
	Bibliography
	Index

