
1

Introduction to MPI Programming

Erwin Laure

Director Max Planck Computing and Data Facility
& Technical University Munich

What does MPI stand for?

Message Passing Interface

2

Why message passing?

n OpenMP does not know the concept of message passing
…

n Distributed memory architectures don’t offer shared
memory/address space

3

Contents

n Fundamentals of Distributed Memory Computing
n Programming models
n Issues and techniques

n MPI Concepts

n Basic MPI Programming
n MPI program structure
n Point-to-point communication
n Collective operations

n Intermediate MPI
n Datatypes
n Communicators
n Improving performance

4

Material

n This course is mainly based on

n Using MPI – Portable Parallel Programming with the
Message-Passing Interface, W. Gropp, E. Lusk and A.
Skjellum, MIT Press, 1994

n Several online tutorials:
n http://www.mcs.anl.gov/research/projects/mpi/tutorial/
n https://computing.llnl.gov/tutorials/mpi/
n http://www.nccs.nasa.gov/tutorials/mpi1.pdf.gz
n http://www.citutor.org/index.php

n Lecture notes by Michael Hanke, CSC, KTH
5

http://www.mcs.anl.gov/research/projects/mpi/tutorial/
https://computing.llnl.gov/tutorials/mpi/
http://www.nccs.nasa.gov/tutorials/mpi1.pdf.gz
http://www.citutor.org/index.php

6

Recap: Computer Architecture

7

Shared Memory

8

Shared Memory Multiprocessor

n Hardware provides single physical address space for all
processors

n Global physical address space and symmetric access to
all of main memory (symmetric multiprocessor - SMP)

n All processors and memory modules are attached to the
same interconnect (bus or switched network)

9

Differences in Memory Access

n Uniform Memory Access (UMA)
Memory access takes about the same time independent of data

location and requesting processor

n Nonuniform memory access (NUMA)
Memory access can differ depending on where the data is located and

which processor requests the data

10

Cache coherence

n While main memory is shared, caches are local to
individual processors

n Client B’s cache might have old data since updates in
client A’s cache are not yet propagated

n Different cache coherency protocols to avoid this problem

11

Synchronization

n Access to shared data needs to be protected
n Mutual exclusion (mutex)
n Point-to-point events
n Global event synchronization (barrier)

n Generic three steps:
1. Wait for lock
2. Acquire lock
3. Release lock

12

SMP Pros and Cons

n Advantages:
n Global address space provides a user-friendly programming

perspective to memory
n Data sharing between tasks is both fast and uniform due to the

proximity of memory to CPUs
n Disadvantages:

n Primary disadvantage is the lack of scalability between memory
and CPUs. Adding more CPUs can geometrically increases traffic
on the shared memory-CPU path, and for cache coherent
systems, geometrically increase traffic associated with
cache/memory management.

n Programmer responsibility for synchronization constructs that
insure "correct" access of global memory.

n Expense: it becomes increasingly difficult and expensive to design
and produce shared memory machines with ever increasing
numbers of processors.

Fugaku 7,630,848 cores

13

Distributed Memory Multiprocessors

14

DMMPs

n Each processor has private physical address space
n No cache coherence problem

n Hardware sends/receives messages between processors
n Message passing

15

Synchronization

n Synchronization via exchange of messages

n Synchronous communication
n Sender/receiver wait until data has been sent/received

n Asynchronous communication
n Sender/receiver can proceed after sending/receiving has been

initiated

n Higher level concepts
(barriers, semaphores, …)
can be constructed using
send/recv primitives
n Message passing libraries

typically provide them

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)

16

DMMPs Pros and Cons

n Advantages:
n Memory is scalable with number of processors. Increase the

number of processors and the size of memory increases
proportionately.

n Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

n Cost effectiveness: can use commodity, off-the-shelf processors
and networking.

n Disadvantages:
n The programmer is responsible for many of the details associated

with data communication between processors.
n It may be difficult to map existing data structures, based on global

memory, to this memory organization.
n Very different access times for local/non-local memory
n Administration and software overhead (essentially N systems vs. 1

SMP)

17

Hybrid Approaches

18

Combining SMPs and DMMPs
n Today, DMMPs are typically built with SMPs as building

blocks
n E.g. Dardel has two AMD CPUs with 64 cores each per DMMP

node
n Soon systems with more CPUs and many more cores will appear

• upcoming AMD CPUS ~200 cores

n Combine advantages and disadvantages from both
categories
n Programming is more complicated due to the combination of

several different memory organizations that require different
treatment

19

Programming DMMPs

20

Single Program Multiple Data (SPMD)

n DMMPs are typically programmed following the SPMD
model

n A single program is executed by all tasks simultaneously.
n At any moment in time, tasks can be executing the same

or different instructions within the same program. All tasks
may use different data. (MIMD)

n SPMD programs usually have the necessary logic
programmed into them to allow different tasks to branch
or conditionally execute only those parts of the program
they are designed to execute. That is, tasks do not
necessarily have to execute the entire program - perhaps
only a portion of it.

21

Multiple Program Multiple Data (MPMD)

n MPMD applications typically have multiple executable
object files (programs). While the application is being run
in parallel, each task can be executing the same or
different program as other tasks.

n All tasks may use different data
n Workflow applications, multidisciplinary optimization,

combination of different models

22

How to decompose a problem in
SPMD?

23

Functional Decomposition

n The problem is decomposed according to the work that
must be done. Each task then performs a portion of the
overall work.

n Also called “Task Parallelism”

Proc. 0 Proc. 1 Proc. 2 Proc. 3

24

Task Parallelism Examples

Signal filtering

Climate modeling

Ecosystem modeling

25

Task Parallelism Summary

n Often pipelined approaches or Master/Worker
n Master assigns work items to its workers

n “Natural” approach to parallelism

n Typically good efficiency
n Tasks proceed without interactions
n Synchronization/communication needed at the end

n In practice scalability is limited
n Problem can by split only into a finite set of different tasks

26

Domain Decomposition

n The data associated with a problem is decomposed. Each
parallel task then works on a portion of of the data.

n Also called “Data Parallelism”

Proc. 0 Proc. 1 Proc. 2 Proc. 3

27

How to Partition Data
n Distribution Function:

n f(N)->P; N denotes the data index and P the target processor

n Typical strategies are

n Block
• Distribute data in equal blocks over available processors

n Cyclic
• Distribute individual data items in round robin fashion over available

processors

n “*”
• Replicate along a dimension

n Irregular
• Distribute data in over the processors using any kind of distribution function

28

Typical Data Distributions

29

Access Patterns

n Stencils are a typical access pattern
… = … a[i-1]+a[i]+a[i+1]

n Replicate overlap area or communicate it early on to avoid
excessive communication inside loop

P0 P1 P2 P3

Overlap area

30

2D Overlap Area

Ghost
cells

31

Programming
Distributed Memory Systems

n Different processes execute in different address space
n In most cases on different cores or nodes

n Inter process communication by exchange of messages
over the interconnection network

n Typically facilitated by library calls from within user
program

Node 2

32

Message Passing

Node 1

Process 0

User Code

MP Library

Process 1

User Code

MP Library

Process 2

User Code

MP Library

Network

33

Drawback of Threads and MP

n Threads and message passing are low level programming
models

n It’s the responsibility of the programmer to parallelize,
synchronize, exchange messages

n Rather difficult to use

n Ideally we would like to have a parallelizing compiler that
takes a standard sequential program and transforms it
automatically into an efficient parallel program
n In practice static compiler analysis cannot detect enough

parallelism due to conservative treatment of dependencies

34

Parallel Languages

n Explicit parallel constructs
n Parallel loops, array operations, …
n Fortran >90, DPC/Sycl

n Compiler directives
n “Hints” to the compiler on how to parallelize a program
n OpenMP

n Directives are typically interpreted as comments by
sequential compilers
n Allows to compile parallel program with sequential compiler
n Eases parallelization of legacy applications

n Partitioned Global Address Space (PGAS)

35

Attention

n Distributed Memory programming models can often also
be applied to shared memory
n Parallel languages:

• Runtime system based on message passing or threads
• Compiler support

n Message passing
• Use shared memory to do message passing - typically involves extra

copies due to distributed address space of different processes

36

MPI – Basic Concepts

Erwin Laure

Director Max Planck Computing and Data Facility
& Technical University Munich

What is MPI

n M P I = Message Passing Interface
n MPI is not an implementation – it is a specification

n Specifies the interface of the library
n Interface specifications have been defined for C (C++)

and Fortran programs.

n Commonly used implementations of MPI:
n MPICH (Argonne)
n MVAPICH
n OpenMPI
n Vendor specific

• Cray/HPE
• Intel
• IBM

37

A basic MP library

send(address, length, destination, tag)

n address: memory location signifying the beginning of the
buffer containing the data to be sent,

n length: is the length in bytes of the message,
n destination: is the receiving process identifier
n tag: arbitrary integer to restrict receipt of message

recv (address, maxlen, source, tag, actlen)

38

Process 0

Message Buffer

Process 1

Recv Buffer
tag

Message Buffers

n (address, length) is insufficient in case of non-contiguous
data and the need of data conversion

n MPI introduces datatypes
n Basic datatypes predefined (MPI_INT, MPI_DOUBLE, …)
n User can define own (non-contiguous) data types

n A message buffer in MPI is described as

(buf, count, datatype)

39

MPI Basic Datatypes (Fortran)

MPI Datatype Fortran Datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

40

Note: the names of the MPI C datatypes are slightly different

Processes and Communicators

n Processes belong to groups
n Processes within a group are identified with their rank

n A group of n processes has ranks 0 … n-1

n MPI uses objects called communicators and groups to
define which collection of processes may communicate with
each other
n MPI_COMM_WORLD

is the default
communicator
covering all of the
original MPI
processes

41

Why Communicators?

n How to chose safe (unique) tags when writing a library?
I.e. how to avoid a message being picked up by the wrong
receiver?

n Collective operations (broadcast, reductions) can be
easily defined over subgroups by using communicators

n Basis for advanced functionalities (mesh & graph
topologies, neighbor communications, …)

42

Note: Processes vs. Processors

n MPI defines processes, it does not specify how these
processes are mapped to physical processors/cores

n The mapping of processes to processors/cores is done at
program start and dependent on the startup mechanism
available on a certain resource – more about that later on.

n In principle, a MPI process does not necessarily
correspond to an OS process – in practice it very often
does.

43

Send/Receive in MPI

n (buf, count, datatype) describes the data to be
sent

n Dest is the rank of the destination in the group
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received,
including source, tag, and count

44

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag,
 comm, status)

Recap: Basic MPI Concepts

n Message buffers described by address, data type, and
count

n Processes identified by their ranks

n Communicators identifying communication
contexts/groups

45

MPI 4 Standard has over 1000 pages with
several hundred functions …
n How many years do I have to study before I can use it?

n In fact, you will hardly ever use most of the MPI functions

n 6 functions are sufficient for simple programs:
n MPI_Init – to initialize the MPI environment
n MPI_Comm_Size – to know the number of processes
n MPI_Comm_Rank – to know the rank of the calling process
n MPI_Send – to send a message
n MPI_Recv – to receive a message
n MPI_Finalize – to exit in a clean way

46

What is not specified

n Certain aspects are not specified in the MPI standard but
left as implementation detail:
n Process startup (how to start an MPI program)

• All what happens before MPI_Init is executed
n Richer error codes are allowed
n Message

buffering

47

A first MPI Program

48

MPI Program Structure

49

#include "mpi.h"

rc = MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&
numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&
rank);

MPI_Finalize();

Format of MPI Routines

n C Binding:
n rc = MPI_Xxxxx(parameter, ...)
n Example: rc = MPI_Send(&buf,count,type,dest,tag,comm)
n Error code: Returned as "rc". MPI_SUCCESS if successful

n Fortran Binding
n call mpi_xxxxx(parameter,..., ierr)

n Example: CALL
MPI_SEND(buf,count,type,dest,tag,comm,ierr)

n Error code: Returned as "ierr" parameter. MPI_SUCCESS if
successful

50

Example: Hello, World (C)
#include "mpi.h"

 #include <stdio.h>

 int main(argc,argv)
 int argc;

char *argv[]; {

int numtasks, rank, rc;

rc = MPI_Init(&argc,&argv);

 if (rc != MPI_SUCCESS) {
 printf ("Error starting MPI program. Terminating.\n");
 MPI_Abort(MPI_COMM_WORLD, rc);
 }

 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 printf ("Hello, World from rank %d out of %d\n", rank, numtasks);
 MPI_Finalize();
 }

51

Example: Hello, World (Fortran)
program simple

 include 'mpif.h'

 integer numtasks, rank, ierr, rc

 call MPI_INIT(ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *,'Error starting MPI program. Terminating.'
 call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)

end if

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr)
print *, 'Hello, World from rank ',rank, ' out of=',numtasks

 call MPI_FINALIZE(ierr)

 end

 52

Sample Output (24 processes)
Hello, World from rank 9 out of 24
Hello, World from rank 17 out of 24

Hello, World from rank 13 out of 24
Hello, World from rank 7 out of 24
Hello, World from rank 11 out of 24
Hello, World from rank 14 out of 24

Hello, World from rank 16 out of 24
Hello, World from rank 4 out of 24
Hello, World from rank 15 out of 24
Hello, World from rank 3 out of 24

Hello, World from rank 23 out of 24
Hello, World from rank 10 out of 24
Hello, World from rank 5 out of 24
Hello, World from rank 12 out of 24

Hello, World from rank 2 out of 24
Hello, World from rank 19 out of 24
Hello, World from rank 21 out of 24
Hello, World from rank 8 out of 24
Hello, World from rank 18 out of 24

Hello, World from rank 1 out of 24
Hello, World from rank 6 out of 24
Hello, World from rank 22 out of 24
Hello, World from rank 20 out of 24

Hello, World from rank 0 out of 24

53

Note the
random order!

How to launch MPI Programs?

n Not specified by MPI standard

n Many implementations use mpirun –np X
n Hostfile used to specify processes/hardware mapping

n MPI standard proposes, but does not mandate, a common
mpiexec syntax/semantics, similar to mpirun

n Dardel uses srun –n x

54

Hands on

n Compile and run the hello world example

n Compiler:
n cc
n ftn

n Request interactive resources
n salloc -N 1 -A edu24.summer -t 0:10:00 –p lab-08-22 (23)

n Run
n srun -n 16 a.out

n Code
n hello_mpi.c/f90 55

Summary

n MPI Basics
n Message buffers
n Processes and communicators
n Structure of MPI programs
n Implementation specific features

n To find out the exact syntax of certain commands:
n On Dardel use > man MPI_xxx
n Look up Web resources

56

57

Basic MPI
Point-to-Point Communication

Erwin Laure

Director Max Planck Computing and Data Facility
& Technical University Munich

Contents

n Sending data from A to B
n Message format
n Buffers and semantics
n Communication modes

n Deadlocks

n Blocking and non-blocking communication

58

Sending Data from A to B …

n The basic function of any message passing library
n Typically a SEND/RECEIVE pair

n Needed when process X needs data from process Y

n Two main incarnations
n Blocking: stops the program until it is safe to continue
n Non-blocking: separates communication from computation

59

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)

Send/Receive in MPI

n (buf, count, datatype) describes the data to be
sent

n Dest is the rank of the destination in the group
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received,
including source, tag, and count

60

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag,
 comm, status)

Basic MPI Message Syntax

n An MPI message consists of an envelope and message
body – think of it like a letter in the mail:

n The envelope of an MPI message has four parts:
n Source — the sending process
n Destination — the receiving process
n Communicator — specifies a group of processes to which both

source and destination belong
n Tag — used to classify messages

n The message body has three parts:
n Buffer — the message data
n Datatype — the type of the message data
n Count — the number of items of type datatype in buffer

61

Basic Send/Receive Commands

int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm, MPI_Status
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

62

Body
Destination
Tag
Communicator

Envelope
Buffer
Count
Datatype

Example
double a[100],b[100];

 if(myrank == 0) /* Send a message */
 {

for (i=0;i<100;++i)
a[i]=sqrt(i);

MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
}
else if(myrank == 1) /* Receive a message */

MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

63

What happens
on P0 if b is
replaced with a?

Wildcards

n Instead of specifying everything in the envelope explicitly,
wildcards can be used for sender and tag:

MPI_ANY_SOURCE and MPI_ANY_TAG
n Actual source and tag are stored in STATUS variable

C:
MPI_Status status;

MPI_Recv(b, 100, MPI_DOUBLE,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

source = status.MPI_SOURCE;

tag = status.MPI_TAG;
64

Wildcards cont’d

n Fortran:

integer status(MPI_STATUS_SIZE)

call MPI_RECV(b, 100, MPI_DOUBLE_PRECISON,
MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, status, ierr);

tag = status(MPI_TAG)

source = status(MPI_SOURCE)

65

Message Size

n Semantics of receiving buffer is that it has to be at least
as large as the message to be received – the actual data
received might be smaller!

n Again, actual information is stored in STATUS variable:

int MPI_Get_count(MPI_Status *status,
 MPI_Datatype dtype, int *count);

66

A Word on Buffering

n MPI implementations typically use (internal) message
buffers
n Sending process can safely modify the sent data once it is copied

into the buffer, irrespectively of status of receiving process
n Receiving process can buffer incoming messages even if no (user

space) receiving buffer is provided, yet
n Buffers can be on both sides

67

P1 P2

send(x)

recv(y)
buffer

P1 P2

send(x)

recv(y)

buffer

Note

This system buffer is DIFFERENT to the message buffer you
specify in the MPI_Send or MPI_Recv calls!

68

A Word on Buffering Cont’d
n The efficiency of MPI implementations critically depends

on how buffers are being handled
n A great source for optimization
n Out of scope for this lecture

n Different handling of buffers can show different effects –
hard to debug!
n E.g. while in general no handshake between sending and

receiving process is needed (i.e sending process may continue
after data is copied into buffer even if no matching receive has
been posted, yet) large messages or lack of buffering space may
require synchronization with receiving process

n No handshake is often called “eager protocol”, handshake
“rendezvous protocol”

n Sometimes explicit buffers are required (see later) and lack of
sufficient buffer space will cause the communication to fail. 69

Blocking and Completion

n Both MPI_Send and MPI_Recv are blocking
n They program only continues after they are completed

n The command is completed once it is safe to (re)use the
data
n MPI_Recv: data has been fully received

n MPI_Send: can be completed even if no non-local action has
been taking place. WHY?

n Once data is copied into a send buffer MPI_Send can complete

70

Hands on

n Propagate data through all processes
n process 0 sends to process 1
n process n receives from process n-1 and sends to n+1

n Modify the code such that process 0 sends data to all
others

n Code: send_recv.c/f90

71

Hands on – Approximate Pi

n The given PI program calculates PI using an integral approximation. Take the serial version of
the program and modify it to run in parallel.

n First familiarize yourself with the way the serial program works. How does it calculate PI?

n Hint: look at the program comments. How does the precision of the calculation depend on
DARTS and ROUNDS, the number of approximation steps?

n Hint: edit DARTS to have various input values from 10 to 10000. What do you think will
happen to the precision with which we calculate PI when we split up the work among the
nodes?

n Now parallelize the serial PI program. Use only the six basic MPI calls.

n Hint: As the number of darts and rounds is hard coded then all workers already know it, but
each worker should calculate how many are in its share of the DARTS so it does its share of
the work. When done, each worker sends its partial sum back to the master, which receives
them and calculates the final sum.

n Code: pi_serial.c/f90

n What are the differences between receiving from a specified worker (i.e. loop index) and using
MPI_ANY_SOURCE?

72

Message Order

n MPI messages are non-overtaking
n If the sender sends two messages (with the same envelope) to

the same destination they have to be received in the same order

IF (rank.EQ.0) THEN
 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag1, comm, ierr)

ELSE ! Rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag1, comm,
 status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,
 status, ierr)
END IF

73

Fairness

n MPI makes no guarantees about fairness
n If there are two matching sends (from different sources) for a

receive any of these can be successful
n MPI does not prevent operation starvation (e.g. sends that will

never be picked up)

74

What have we learned?

n The semantics of MPI_Send/MPI_Recv are quite
implementation dependent

n How can we get more control on what is actually
happening?
n MPI provides different communication modes with different

semantics

75

MPI Communication Modes

n Synchronous mode
n Syntax: MPI_Ssend(…)
n Semantics: handshake required, send will block until matching

receive has been posted and receiving has started

n Ready mode
n Syntax: MPI_Rsend(…)
n Semantics: user guarantees that matching receive has already

been posted; similar to synchronous but no need for handshake

n Buffered mode
n Syntax: MPI_Bsend(…)
n Semantics: send buffer will be used and command returns once

data is locally copied; send buffer needs to be provided by user

76

Discussion

n Standard MPI_Send(…) behaves like MPI_Bsend or
MPI_Ssend depending on message size and internal
buffer space

n For portability and safety reasons you should always
assume MPI_Ssend semantics
n Don’t assume MPI_Send(…) will return irrespectively of

matching receive status

77

Discussion Cont’d

n MPI_Bsend will fail if not enough buffer space is available
n You must provide sufficient buffer space in user space to an MPI

process:

int MPI_Buffer_attach(void* buffer, int size)

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

n This buffer is only used for buffered send and detach will
block until all data is actually sent.

78

Pros and Cons of different modes

Advantages Disadvantages
Synchronous Mode

Safest, most portable Can occur substantial
synchronization overhead

Ready Mode
Lowest total overhead Difficult to guarantee that receive

precedes send
Buffered Mode

Decouples send from receive Potentially substantial overhead
through buffering

Standard Mode
Most flexible, general purpose Implementation dependent

79

Deadlocks

n Deadlocks are common (and hard to debug) errors in
message passing programs

n A deadlock occurs when two (or more) processes wait on
the progress of each other:

if(myrank == 0) {

/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);

}
else if(myrank == 1) {
/* Receive, then send a message */

MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,
&status);

MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);80

Deadlock or not?

IF (rank.EQ.0) THEN

 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm,
 ierr)

 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm,
 ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm,
 status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,
 status, ierr)

END IF

81

How to avoid Deadlocks?

n Careful organize the communication in your program
n Make sure sends are always paired with receives in the correct

order
n A difficult task in large programs!

n Don’t depend on how specific implementations handle
their internal buffers
n A program may work well with certain problem sizes but deadlock

once you increase the problem size or move to a different
architecture or MPI implementation because of internal buffer
limitations

82

Communication modes revisited
IF (rank.EQ.0) THEN
 CALL MPI_SSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

IF (rank.EQ.0) THEN

 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)
END IF

IF (rank.EQ.0) THEN
 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)
END IF 83

D
EA

D
LO

C
K

SY
S

D
EP

.
O

K
(If

 …
)

Help to avoid Deadlock

n Careful ordering of send/receives is facilitated by a
combined send/receive command:

int MPI_Sendrecv(void *sendbuf, int sendcount,
 MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount,
MPI_Datatype recvtype,

int source, int recvtag, MPI_Comm
comm, MPI_Status *status)

n Advantage: order of send/receive irrelevant; receive will
not be blocked by potentially blocking send

n Very useful for shift operations
84

Sendrcv Example
if (myid == 0) then

 call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)

 call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,
 status,ierr)

elseif (myid == 1) then

 call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)

 call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,
 status,ierr)

end if

if (myid == 0) then
 call mpi_sendrecv(a,1,mpi_real,1,tag1,

 b,1,mpi_real,1,tag2,

 MPI_COMM_WORLD, status,ierr)

elseif (myid == 1) then

 call mpi_sendrecv(b,1,mpi_real,0,tag2,

 a,1,mpi_real,0,tag1,
 MPI_COMM_WORLD, status,ierr)

end if 85

Help to avoid Deadlocks Cont’d

n Careful message ordering
n Always a good idea!

n Buffered communication
n But comes with (quite substantial) overhead

n Non-blocking calls

86

Non-blocking Communication

n For all send/receive calls there is a non-blocking
equivalent named I(x)send/Irecv

n Non-blocking calls will return immediately irrespectively of
the send/receive status
n They actually only initiate the action
n Actual sending/receiving of messages will be handled internally in

the MPI implementation
n Calls return a handle that allows to check the progress of

sending/receiving

n Blocking and non-blocking calls can be intermixed
n A blocking receive can match a non-blocking send and vice-versa.

87

Non-blocking Syntax
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int
dest, int tag, MPI_Comm comm, MPI_Request *request);
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int
source, int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)

MPI_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, REQ, IERR)

n Request is the handle to the request

n Important: None of the arguments passed to a non-
blocking send/recv must be written or read until the
send/recv operation is completed.

88

Completion of non-blocking send/receives

int MPI_Wait(MPI_Request *request, MPI_Status
*status);

MPI_WAIT(REQUEST, STATUS, IERR)

n MPI_Wait is blocking and will only return when the
message has been sent/received
n After MPI_Wait returns it is safe to access the data again

int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status);

MPI_TEST(REQUEST, FLAG, STATUS, IERR)

n MPI_Test returns immediately
n Status of request is returned in flag (true for done, false when still

ongoing) 89

Deadlock Example revisited

if(myrank == 0) {
/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&status);

MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
}
else if(myrank == 1) {

/* Receive, then send a message */
MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&status);
MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);

90

Example
if(myrank == 0) {
/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,

&request);

MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}

else if(myrank == 1) {
/* Post a receive, send a message, then wait */
MPI_Irecv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,

&request);

MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
MPI_Wait(&request, &status);

}

n No deadlock because non-blocking receive is posted before send
91

Discussion

n Non-blocking communication has two main benefits:

n Helps avoid deadlocks
n Allows to overlap communication with computation (latency hiding)

• More about that later on

n Disadvantage:
n Makes code more complex to read/understand and thus debug

and maintain.
n Limitations of internal data structures to keep track of outstanding

requests

92

Summary

n MPI provides blocking and non-blocking communication
n 4 communication modes

n You should now be able to program message passing
applications

n Everything you want to do can be done with the (6) basic
commands you know now.
n But many tasks would be awkward and inefficient – hence the

lecture continues

n Beware deadlocks!

93

94

Basic MPI
Collective Communication

Erwin Laure

Director Max Planck Computing and Data Facility
& Technical University Munich

What we know already

n Everything to write MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication

95

Collective Communication

n Often more than 2 processes are involved in
communication
n Send input data to all processes
n Collect results from all processes
n Synchronize all processes
n Update all processes with partial results
n …

n All this can be implemented with the commands you
already know
n But it is tedious, error-prone, and difficult to implement efficiently

n Hence MPI provides ready-made commands for this

96

Collective Communication Cont’d
n Communication involving all processes in a group (i.e. a

communicator)
n MPI-3 defines “neighborhood collectives”

n All processes in a group MUST participate to the
collective operation

n No tag mechanism, only order of program execution
n Remember that MPI messages cannot overtake another one

n Until MPI-2 all collective routines were only blocking
n With the standard completion semantics of blocking

communication – thus no guarantee there is a full synchronization
n MPI-3 introduced non-blocking collectives

• Important difference to non-blocking p2p: no matching with non-
blocking collectives! 97

List of Collective Routines

n Barrier synchronization across all processes.
n Broadcast from one process to all other processes
n Global reduction operations such as sum, min, max or

user-defined reductions
n Gather data from all processes to one process
n Scatter data from one process to all processes
n All-to-all exchange of data
n Scan across all processes

98

Barrier Synchronization

n Sometimes there is a need to synchronize all processes before them
continuing independently
n E.g. read in input data

n MPI_Barrier blocks the calling process until all processes in the
group have also called MPI_Barrier

int MPI_Barrier (MPI_comm comm)

MPI_BARRIER (COMM, ERROR)

99

Hands on

n Use MPI_BARRIER to enforce consecutive ordering of
output messages in hello_mpi.c/f90

100

Broadcast

n Broadcast sends data from one process to the same
memory location in all other processes
n send and receive buffer are the same!

101

Broadcast Cont’d

int MPI_Bcast (void* buffer, int count,
 MPI_Datatype datatype,
 int root, MPI_Comm comm)

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,
 COMM, IERR)

n Note:
n Only one (send/receive) buffer
n No tag
n Root indicates the process owning the data to be broadcasted

102

Broadcast Example

#include <mpi.h>

void main(int argc, char *argv[]) {

 int rank;

 double param;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

if(rank==5) param=23.0;

MPI_Bcast(¶m,1,MPI_DOUBLE,5,MPI_COMM_WORLD);

printf("P:%d after broadcast parameter is %f \n",
rank,param);

MPI_Finalize();

}

103

Gather

n Gather is a all-to-one operation that collects the data from
all processes in target process

104

Gather Cont’d
int MPI_Gather (void* send_buffer, int send_count,
 MPI_datatype send_type, void* recv_buffer,
 int recv_count, MPI_Datatype recv_type,
 int rank, MPI_Comm comm)

MPI_GATHER (SEND_BUFFER, SEND_COUNT, SEND_TYPE,RECV_BUFFER,
 RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR)

n Note:
n Each process (including the root process) sends the contents of its

send buffer to the root process. The root process receives the
messages and stores them in rank order.

n Receive buffer needs to be large enough to store all data
n The gather could also be accomplished by each process calling
MPI_SEND and the root process calling MPI_RECV N times to
receive all of the messages.

n all processes, including the root, must send the same amount of
data, and the data are of the same type.

105

Gather Example

int rank,size;

double param[16],mine;

int sndcnt,rcvcnt; I;

sndcnt=1;

mine=23.0+rank;

if(rank==7) rcvcnt=1;

MPI_Gather(&mine,sndcnt,MPI_DOUBLE,param,rcvcnt,
MPI_DOUBLE,7,MPI_COMM_WORLD);

if(rank==7)

for(i=0;i<size;++i) printf("PE:%d param[%d] is %f \n",
rank,i,param[i]]);

106

Hands on

n Modify Pi_mpi.c/f90 to use MPI_GATHER on P0

n Hint: pirecv needs to turn into an array

n Hint: think about whether the calculation of pi_est needs
to change

107

Allgather

n Sometimes it is also useful to gather the data not only into
one process but all

n Equivalent to MPI_Gather plus MPI_Bcast
n MPI_Allgather has same syntax as MPI_Gather

108

Scatter

n Distribute data to all processes – one-to-all
communication

n Inverse to gather

109

Scatter Cont’d

int MPI_Scatter (void* send_buffer, int send_count,
 MPI_datatype send_type,
 void* recv_buffer, int recv_count,
 MPI_Datatype recv_type,

int rank, MPI_Comm comm)

MPI_Scatter (SEND_BUFFER, SEND_COUNT, SEND_TYPE,
RECV_BUFFER, RECV_COUNT, RECV_TYPE,
RANK, COMM, ERROR)

n root process breaks up the send buffer into equal chunks
and sends one chunk to each processor.
n The outcome is the same as if the root executed N MPI_SEND

operations and each process executed an MPI_RECV.

110

Scatter Example

rcvcnt=1;

if(rank==3) {

for(i=0;i<8;++i) param[i]=23.0+i;

sndcnt=1;

}

MPI_Scatter(param,sndcnt,MPI_DOUBLE,&mine,rcvcnt,
MPI_DOUBLE,3,MPI_COMM_WORLD);

for(i=0;i<size;++i) {

 if(rank==i) printf("P:%d mine is %f \n",rank,mine);

 fflush(stdout);

 MPI_Barrier(MPI_COMM_WORLD);

}

MPI_Finalize();

}

111

Other Gather/Scatter Variants

n Gather/Scatter is also defined over vectors
n MPI_GATHERV and MPI_SCATTERV allow a varying count of

data from/to each process.
n MPI_ALLTOALL

n Every process performs
a scatter

112

Reduction

n Collect data from each processor
n Reduce these data to a single value (such as a sum or

max)
n Store the reduced result on the root processor

113

Reduction Cont’d
int MPI_Reduce (void* send_buffer, void* recv_buffer, int
 count, MPI_Datatype datatype, MPI_Op
 operation, int rank, MPI_Comm comm)

MPI_REDUCE (SEND_BUFFER, RECV_BUFFER, COUNT, DATATYPE,
 OPERATION, RANK, COMM, ERROR)

n Note:
n Rank denotes the process that stores the result in recv_buffer
n Operation can be one of 12 pre-defined operations or user-

defined
n Both send and receive buffers must have the same number of

elements with the same type.
• The arguments count and datatype must have identical values in

all processes.
n The argument rank must also be the same in all processes.

114

Predefined Reduction Operations

Operation Description
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical xor
MPI_BXOR bitwise xor
MPI_MINLOC computes a global minimum and an index attached to the

minimum value -- can be used to determine the rank of
the process containing the minimum value

MPI_MAXLOC computes a global maximum and an index attached to the
rank of the process containing the maximum value 115

Reduction Example
#include <stdio.h>
#include <mpi.h>

void main(int argc, char *argv[]) {
 int rank;
 int source,result,root;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

root=7;
source=rank+1;

MPI_Reduce(&source,&result,1, MPI_INT, MPI_PROD, root,
MPI_COMM_WORLD);

if(rank==root) printf("P:%d MPI_PROD result is %d \n", rank,
result);

MPI_Finalize();

}
116

Reduce Variations
n MPI_Allreduce makes the result available in the

receive buffers of all processes
n Equivalent to MPI_Reduce plus MPI_Bcast

n MPI_Reduce_scatter scatters the result vector across
the processes in the group

117

Reduce Variations Cont’d

n MPI_Scan performs a partial reduction in which process i
receives data from processes 0 through i, inclusive

118

Hands on

n Modify Pi_mpi.c/f90 to use MPI_REDUCE

119

Summary

n Collective communication routines provide convenient
calls for standard communication patterns

n Depending on the implementation they may be much
more efficient than hand-coding (or not)
n Synchronization overhead might be substantial

n Collective communication makes extensive use of
groups/communicators

120

What’s next

n Intermediate MPI
n Overlapping communication/computation
n Using communicators
n Derived datatypes

121

122

Intermediate MPI

Erwin Laure

Director Max Planck Computing and Data Facility
& Technical University Munich

What we know already

n Everything to write MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication
n Collective Communication

123

Take a deeper look

n Usage of data types
n So far we used the pre-defined data types; what if we need to deal

with more complex structures?

n Usage of communicators
n How to group processes in individual groups

n Improving Communication Performance
n Aka how to speed up programs

124

Recap: MPI Datatypes

125

MPI Datatype Fortran Datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

Note: the names of the MPI C datatypes are slightly different

Derived Datatypes

n Primitive datatypes are contiguous (basically arrays)

n Derived Datatypes allow you to define your own data structures based
upon sequences of the MPI primitive data types.

n Derived data types allow you to specify non-contiguous data in a
convenient manner and to treat it as though it was contiguous.

n MPI provides several methods for constructing derived data types:
n Contiguous
n Vector
n Indexed
n Struct

126

Example

n Send one row of a matrix:
n Data is contiguous in C;

can simply send
n But it is not contiguous in Fortran

n Send one column of a matrix:
n Same as above but

contiguous in Fortran

n How to solve non-contiguous case?
n Send each element in separate message

• Overhead and error prone

127

Send contiguous data

n Could be achieved simply with
MPI_Send(&a[i][0], 4, MPI_FLOAT, j, tag,
 MPI_COMM_WORLD);

n If you do this frequently, you might want to use a more
descriptive datatype name (eg. coordinate point) and help
MPI packing the data

MPI_Type_contiguous(4, MPI_FLOAT, &rowtype);

MPI_Type_commit(&rowtype);

MPI_Send(&a[i][0], 1, rowtype, j, tag,
 MPI_COMM_WORLD)

128

Equivalent to above

Example Cont’d
MPI_Type_contiguous(SIZE, MPI_FLOAT, &rowtype);
MPI_Type_commit(&rowtype);

if (numtasks == SIZE) {
 if (rank == 0) {

for (i=0; i<numtasks; i++)
MPI_Send(&a[i][0], 1, rowtype, i, tag, MPI_COMM_WORLD);

}

MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD,
&stat);
 printf("rank= %d b= %3.1f %3.1f %3.1f %3.1f\n",

 rank,b[0],b[1],b[2],b[3]);
 }
else

 printf("Must specify %d processors. Terminating.\n",SIZE);

129

• Note different type in send/recv
• Is the program safe?

Example: submatrix

130

do j = 1, m

call MPI_Send(a(k,l+j-1), n, MPI_DOUBLE,
dest, tag, MPI_COMM_WORLD, ierr)

enddo

First Approach: Buffering

n Create a user-level buffer for the sub-matrix:
icount = 0
do j = l, l+m-1

do i = k, k+n-1

 icount = icount + 1
 p(icount) = a(i,j)

 enddo
enddo

call MPI_Send(p, n*m, MPI_DOUBLE, dest, tag,
 MPI_COMM_WORLD, ierr)

n Limitations:
n Usage of memory and CPU time to do buffering
n Still can use only one datatype in the buffer
n Need to interpret the buffer correctly on the receiving side 131

A better Approach: Derived Datatypes

n MPI_TYPE_Vector: Similar to contiguous, but allows for regular
gaps (stride) in the displacements

call MPI_TYPE_VECTOR(m, n, nn, MPI_DOUBLE,
 my_mpi_type, ierr)

call MPI_TYPE_COMMIT(my_mpi_type, ierr)
call MPI_SEND(a(k,l), 1, my_mpi_type, dest, tag,
 MPI_COMM_WORLD, ierr)

n m…count (we send m columns)
n n…number of contiguous elements (each column has n elements)
n nn…stride (distance between the starting locations of adjacent blocks

of data. The columns of the full matrix each have NN values, so NN
will be the stride between the beginning of one column segment and
an adjacent column segment.)

132

Different Derived Datatypes

n Contiguous: This is the simplest constructor. It produces a new
datatype by making count copies of an existing one.

n Vector: This is a slight generalization of the contiguous type that
allows for regular gaps in the displacements. Elements are separated
by multiples of the extent of the input datatype.

n Hvector: This is like vector, but elements are separated by a
specified number of bytes.

n Indexed and Hindexed: An array of displacements of the input
datatype is provided; the displacements are measured in terms of the
extent of the input datatype or in bytes.

n Struct: This provides a fully general description.

133

Indexed
int MPI_Type_indexed(int count,
 const int *array_of_blocklengths,
 const int *array_of_displacements,

 MPI_Datatype oldtype,
 MPI_Datatype *newtype);

Input Parameters:
* count: number of blocks – also number of entries in

array_of_displacements and array_of_blocklengths
* array_of_blocklengths: number of elements in each block

(array of nonnegative integers)

* array_of_displacements: displacement of each block in
multiples of oldtype (array of integers) – always
from beginning

* oldtype: old datatype (handle)

Output Parameters

* newtype: new datatype (handle) 134

Hands On

n Send elements 6-9 and 13-14 of array a from rank 0 to
rank1

n source files: indexed.f90 or indexed.c

135

Solution

136

Struct

n int MPI_Type_create_struct(
int count,
int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[],
MPI_Datatype *newtype);

137

Struct Example

Struct Particlestruct{
 double x,y,z,velocity;
 int n,type;
} particle[100];

MPI_Datatype particletype;
MPI_Datatype type[2] = {MPI_DOUBLE,
 MPI_INT};
Int blocklen[2] = {4,2};
MPI_Aint disp[2] = {0, 4*sizeof(double)};

MPI_Type_create_struct(2, blocklen, disp, type,
&particletype);
MPI_Type_commit(&particletype);

MPI_Send(particle, 100, particletype, dest, tag,
comm);

138

Derived Datatypes Summary

n MPI allows to create user defined datatypes

n Useful if non-contiguous memory locations need to be
communicated

n The created derived datatype should be used frequently in
a program – otherwise overhead might be too large

139

Performance Considerations

n Simple and effective performance model:
n More parameters == slower

n contig < vector < index < struct

n Some (most) MPIs are inconsistent
n But this rule is portable

n Advice to users:
n Try datatype “compression” bottom-up

140

Groups and Communicators

141

Recap

n Processes belong to groups
n Processes within a group are identified with their rank

n A group of n processes has ranks 0 … n-1

n MPI uses objects called communicators and groups to
define which collection of processes may communicate
with each other
n MPI_COMM_WORLD

is the default
communicator
covering all of the
original MPI
processes

142

Communicator Basics

n So far we used MPI_COMM_WORLD
n Allows any process to communicate with any other process
n Very useful for many tasks

n Sometimes it is advantageous to restrict the number of
processes in a communicator (group)
n E.g. Matrix-Matrix multiplication:

• Communication along rows and columns
• Can have individual communicators for rows and columns

n E.g. Master/Worker:
• Restrict certain communications only to workers

143

Groups vs. Communicators

n A group is an ordered set of processes. Each process in a group is
associated with a unique integer rank. Rank values start at zero and
go to N-1, where N is the number of processes in the group. A group
is always associated with a communicator object.

n A communicator encompasses a group of processes that may
communicate with each other. All MPI messages must specify a
communicator. The communicator that comprises all tasks is
MPI_COMM_WORLD.

n From the programmer's perspective, a group and a communicator are
one. The group routines are primarily used to specify which processes
should be used to construct a communicator.

144

Primary Purposes of Groups and Communicators

1. Allow you to organize tasks, based upon function, into
task groups.

2. Enable Collective Communications operations across a
subset of related tasks.

3. Provide basis for implementing user defined virtual
topologies

4. Provide for safe communications

145

Programming Considerations

n Groups/communicators are dynamic - they can be created and
destroyed during program execution.

n Processes may be in more than one group/communicator. They will
have a unique rank within each group/communicator.

n MPI provides over 40 routines related to groups, communicators, and
virtual topologies.

n Typical usage:
n Extract handle of global group from MPI_COMM_WORLD using

MPI_Comm_group
n Form new group as a subset of global group using MPI_Group_incl
n Create new communicator for new group using MPI_Comm_create
n Determine new rank in new communicator using MPI_Comm_rank
n Conduct communications using any MPI message passing routine
n When finished, free up new communicator and group (optional) using

MPI_Comm_free and MPI_Group_free

146

147

Intra- and Intercommunicators

n Intracommunicators refer to a process group
n E.g. comm1 from the example below
n Allow communication within the group

n Intercommunicators
refer to two groups
of processes
n Allow communication

between disjoint groups

148

Creation of Intracommunicators

n Split an existing intracommunicator into two or more sub-
communicators

n Duplicate an existing intracommunicator

n Modify a group of processes from an existing
intracommunicator, and create a new communicator
based on this modified group

149

Communicator Split

MPI_Comm_split(MPI_Comm comm, int color, int key,
 MPI_Comm *newcomm);

MPI_COMM_SPLIT(int comm, int color, int key, int
 newcomm, int IERR)

n Color denotes the group a process should be part of
n Key denotes the ranking in the new group

150

Example

n Split MPI_COMM_WORLD into two groups for even-ranked and odd-
ranked process and keep the relative ranking

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

color = rank%2;

MPI_Comm_split(MPI_COMM_WORLD, color, rank, &newcomm);

151

Hands on

n Modify hello-world and create intra-communicators for odd
and even processes

n Print out local and global rank

152

Duplication of existing Communicator

MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm);

MPI_COMM_DUP(int comm, int newcomm, int IERR)

153

Modifying a Group of Processes

154

Group Modifications
n MPI_Group_incl creates a new group by reordering a specified

number of the processes from an existing group

n MPI_Group_excl creates a new group from an original group that
contains all processes left after deleting those with specified ranks.

n MPI_Group_union creates a new group that contains all processes
in the first group followed by all processes in the second group with
no duplication of processes.

n MPI_Group_intersection creates a new group from two groups
that contains all processes that are in both of the groups with rank
order the same as that in the first group1.

n MPI_Group_difference creates a new group from two groups that
contains all processes in the first group that are not in the second
group with rank order the same as that in the first group.

155

Example

n In a master/worker scheme create communicator for workers
n Master has rank 0

comm_world = MPI_COMM_WORLD;

ranks[0] = 0; /* process 0 not member */

MPI_Comm_group(comm_world, &group_world);

MPI_Group_excl(group_world, 1, &ranks,
 &group_worker);

MPI_Comm_create(comm_world, group_worker, &comm_worker);

…

MPI_Comm_free(&comm_worker);
156

Communicators Summary

n Communicators provide a powerful tool to restrict
communication to subsets of processes

n Useful for certain programming styles
n E.g. Master/Worker
n Virtual Topologies

157

Improving Performance

158

Loss of performance

n Transfer time = latency + message length/bandwidth +
synchronization time

n You cannot do much about bandwidth but

n Reduce latency
n Combine many small into a single large message
n Hide communication with computation

n Reduce message length
n Only communicate what is absolutely needed

n Avoid synchronization
159

Avoid Synchronization

n Synchronization time occurs when
n Receiver waits for message to be sent
n Sender waits for message to be received

n Send early, receive late
n Send early – reduce time receiver has to wait for message
n Receive late – do as much work as possible on the receiving side

before waiting for message to arrive

n BUT: What if underlying protocol requires send/receive
handshake? Then things are actually getting worse!

160

Avoid Synchronization

n Non-blocking communication modes can help
n Post Irecv early on so that send would find matching receive
n But could introduce buffer problems

n If receiving order is not important avoid receiving from a
dedicated sender but post receives with
MPI_ANY_SOURCE

MPI_Recv(buffer, size, MPI_INT,
 MPI_ANY_SOURCE, tag, comm, &status)

161

Can we avoid
copying?

MPI-ANY-SOURCE Example

if (myrank == 0) {

 for (int i = 1,numproc-1) {

 MPI_Recv(b[i], size, MPI_INT, i, tag,
 comm, &status);

 }

} else {

 MPI_Send(x, size, MPI_INT, 0, tag, comm);

}

n Better:
MPI_Recv(x, size, MPI_INT,
 MPI_ANY_SOURCE, tag, comm, &status);
b[status.MPI_SOURCE] = x; 162

Example Cont’d

MPI_Probe(MPI_ANY_SOURCE, tag, comm, &status);

MPI_Recv(b[status.MPI_SOURCE], size, MPI_INT,
 status.MPI_SOURCE, tag, comm,
 &status);

163

Avoid Synchronization

n Use Sendrecv
n Use Collective operations

n Most of them will synchronize but are typically implemented well.
n But avoid MPI_Barrier and all-to-all

n Pitfall:
n Not all MPI implementations are equally well optimized
n If critical, implement several variants and compare their timing

(same for derived datatypes)

164

Latency Hiding

n Use non-blocking communication and try to do as much
computation as possible before blocking on the WAIT
n Use standard send/receive if WAIT follows immediately after the

send/receive
n Can result in buffer and/or envelope queue overflow

165

Reduce communication

n Re-compute vs. communication
n Sometimes it can be more efficient to compute certain data on all

processes where it is needed rather than communicating it.

166

Summary

n Several ways to reduce communication/synchronization
overhead

n Use tools to figure out where the hot-spots of your
application are

n Most performance tuning is NOT portable and highly
implementation and hardware dependent

167

