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What does MPI stand for?

Message Passing Interface
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Why message passing? 

n OpenMP does not know the concept of message passing 
…

n Distributed memory architectures don’t offer shared 
memory/address space
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Material

n This course is mainly based on 

n Using MPI – Portable Parallel Programming with the 
Message-Passing Interface, W. Gropp, E. Lusk and A. 
Skjellum, MIT Press, 1994

n Several online tutorials:
n http://www.mcs.anl.gov/research/projects/mpi/tutorial/ 
n https://computing.llnl.gov/tutorials/mpi/
n http://www.nccs.nasa.gov/tutorials/mpi1.pdf.gz
n http://www.citutor.org/index.php

n Lecture notes by Michael Hanke, CSC, KTH
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Recap: Computer Architecture



7

Shared Memory
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Shared Memory Multiprocessor

n Hardware provides single physical address space for all 
processors

n Global physical address space and symmetric access to 
all of main memory (symmetric multiprocessor - SMP)

n All processors and memory modules are attached to the 
same interconnect (bus or switched network)
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Differences in Memory Access

n Uniform Memory Access (UMA)
Memory access takes about the same time independent of data 

location and requesting processor

n Nonuniform memory access (NUMA)
Memory access can differ depending on where the data is located and 

which processor requests the data
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Cache coherence

n While main memory is shared, caches are local to 
individual processors

n Client B’s cache might have old data since updates in 
client A’s cache are not yet propagated

n Different cache coherency protocols to avoid this problem
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Synchronization

n Access to shared data needs to be protected
n Mutual exclusion (mutex)
n Point-to-point events
n Global event synchronization (barrier)

n Generic three steps:
1. Wait for lock 
2. Acquire lock
3. Release lock
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SMP Pros and Cons

n Advantages:
n Global address space provides a user-friendly programming 

perspective to memory
n Data sharing between tasks is both fast and uniform due to the 

proximity of memory to CPUs 
n Disadvantages:

n Primary disadvantage is the lack of scalability between memory 
and CPUs. Adding more CPUs can geometrically increases traffic 
on the shared memory-CPU path, and for cache coherent 
systems, geometrically increase traffic associated with 
cache/memory management.

n Programmer responsibility for synchronization constructs that 
insure "correct" access of global memory.

n Expense: it becomes increasingly difficult and expensive to design 
and produce shared memory machines with ever increasing 
numbers of processors.

Fugaku 7,630,848 cores
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Distributed Memory Multiprocessors



14

DMMPs

n Each processor has private physical address space
n No cache coherence problem

n Hardware sends/receives messages between processors
n Message passing
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Synchronization

n Synchronization via exchange of messages

n Synchronous communication
n Sender/receiver wait until data has been sent/received

n Asynchronous communication
n Sender/receiver can proceed after sending/receiving has been 

initiated

n Higher level concepts
(barriers, semaphores, …)
can be constructed using
send/recv primitives
n Message passing libraries

typically provide them

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)
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DMMPs Pros and Cons

n  Advantages:
n Memory is scalable with number of processors. Increase the 

number of processors and the size of memory increases 
proportionately.

n Each processor can rapidly access its own memory without 
interference and without the overhead incurred with trying to 
maintain cache coherency.

n Cost effectiveness: can use commodity, off-the-shelf processors 
and networking. 

n Disadvantages:
n The programmer is responsible for many of the details associated 

with data communication between processors.
n It may be difficult to map existing data structures, based on global 

memory, to this memory organization.
n Very different access times for local/non-local memory
n Administration and software overhead (essentially N systems vs. 1 

SMP)
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Hybrid Approaches
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Combining SMPs and DMMPs
n Today, DMMPs are typically built with SMPs as building 

blocks
n E.g. Dardel has two AMD CPUs with 64 cores each per DMMP 

node
n Soon systems with more CPUs and many more cores will appear

• upcoming AMD CPUS ~200 cores

n Combine advantages and disadvantages from both 
categories
n Programming is more complicated due to the combination of 

several different memory organizations that require different 
treatment
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Programming DMMPs
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Single Program Multiple Data (SPMD)

n DMMPs are typically programmed following the SPMD 
model

n A single program is executed by all tasks simultaneously. 
n At any moment in time, tasks can be executing the same 

or different instructions within the same program. All tasks 
may use different data. (MIMD)

n SPMD programs usually have the necessary logic 
programmed into them to allow different tasks to branch 
or conditionally execute only those parts of the program 
they are designed to execute. That is, tasks do not 
necessarily have to execute the entire program - perhaps 
only a portion of it. 
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Multiple Program Multiple Data (MPMD)

n MPMD applications typically have multiple executable 
object files (programs). While the application is being run 
in parallel, each task can be executing the same or 
different program as other tasks. 

n All tasks may use different data
n Workflow applications, multidisciplinary optimization, 

combination of different models
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How to decompose a problem in 
SPMD?
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Functional Decomposition

n The problem is decomposed according to the work that 
must be done. Each task then performs a portion of the 
overall work.

n Also called “Task Parallelism”

Proc. 0 Proc. 1 Proc. 2 Proc. 3
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Task Parallelism Examples

Signal filtering

Climate modeling

Ecosystem modeling
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Task Parallelism Summary

n Often pipelined approaches or Master/Worker
n Master assigns work items to its workers

n “Natural” approach to parallelism

n Typically good efficiency
n Tasks proceed without interactions
n Synchronization/communication needed at the end

n In practice scalability is limited
n Problem can by split only into a finite set of different tasks
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Domain Decomposition

n The data associated with a problem is decomposed. Each 
parallel task then works on a portion of of the data.

n Also called “Data Parallelism”

Proc. 0 Proc. 1 Proc. 2 Proc. 3
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How to Partition Data
n Distribution Function:

n f(N)->P; N denotes the data index and P the target processor

n Typical strategies are

n Block
• Distribute data in equal blocks over available processors

n Cyclic
• Distribute individual data items in round robin fashion over available 

processors

n “*” 
• Replicate along a dimension

n Irregular
• Distribute data in over the processors using any kind of distribution function 
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Typical Data Distributions
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Access Patterns

n Stencils are a typical access pattern
… = … a[i-1]+a[i]+a[i+1]

n Replicate overlap area or communicate it early on to avoid 
excessive communication inside loop

P0 P1 P2 P3

Overlap area
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2D Overlap Area

Ghost 
cells
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Programming 
Distributed Memory Systems



n Different processes execute in different address space
n In most cases on different cores or nodes

n Inter process communication by exchange of messages 
over the interconnection network

n Typically facilitated by library calls from within user 
program

Node 2
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Message Passing

Node 1

Process 0

User Code

MP Library

Process 1

User Code

MP Library

Process 2

User Code

MP Library

Network
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Drawback of Threads and MP

n Threads and message passing are low level programming 
models

n It’s the responsibility of the programmer to parallelize, 
synchronize, exchange messages

n Rather difficult to use

n Ideally we would like to have a parallelizing compiler that 
takes a standard sequential program and transforms it 
automatically into an efficient parallel program
n In practice static compiler analysis cannot detect enough 

parallelism due to conservative treatment of dependencies
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Parallel Languages

n Explicit parallel constructs
n Parallel loops, array operations, …
n Fortran >90, DPC/Sycl 

n Compiler directives
n “Hints” to the compiler on how to parallelize a program
n OpenMP

n Directives are typically interpreted as comments by 
sequential compilers
n Allows to compile parallel program with sequential compiler 
n Eases parallelization of legacy applications

n Partitioned Global Address Space (PGAS)
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Attention

n Distributed Memory programming models can often also 
be applied to shared memory
n Parallel languages: 

• Runtime system based on message passing or threads
• Compiler support

n Message passing
• Use shared memory to do message passing - typically involves extra 

copies due to distributed address space of different processes 
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What is MPI

n M P I = Message Passing Interface 
n MPI is not an implementation – it is a specification

n Specifies the interface of the library
n Interface specifications have been defined for C (C++) 

and Fortran programs.

n Commonly used implementations of MPI:
n MPICH (Argonne)
n MVAPICH
n OpenMPI
n Vendor specific

• Cray/HPE
• Intel
• IBM
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A basic MP library

send(address, length, destination, tag)

n address: memory location signifying the beginning of the 
buffer containing the data to be sent,

n length: is the length in bytes of the message, 
n destination: is the receiving process identifier
n tag: arbitrary integer to restrict receipt of message

recv (address, maxlen, source, tag, actlen)

38

Process 0

Message Buffer

Process 1

Recv Buffer
tag



Message Buffers

n (address, length) is insufficient in case of non-contiguous 
data and the need of data conversion

n MPI introduces datatypes
n Basic datatypes predefined (MPI_INT, MPI_DOUBLE, …)
n User can define own (non-contiguous) data types

n A message buffer in MPI is described as

(buf, count, datatype)
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MPI Basic Datatypes (Fortran)

MPI Datatype Fortran Datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED
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Note: the names of the MPI C datatypes are slightly different



Processes and Communicators

n Processes belong to groups
n Processes within a group are identified with their rank

n A group of n processes has ranks 0 … n-1

n MPI uses objects called communicators and groups to 
define which collection of processes may communicate with 
each other
n MPI_COMM_WORLD 

is the default 
communicator 
covering all of the 
original MPI 
processes
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Why Communicators?

n How to chose safe (unique) tags when writing a library? 
I.e. how to avoid a message being picked up by the wrong 
receiver? 

n Collective operations (broadcast, reductions) can be 
easily defined over subgroups by using communicators

n Basis for advanced functionalities (mesh & graph 
topologies, neighbor communications, …)
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Note: Processes vs. Processors

n MPI defines processes, it does not specify how these 
processes are mapped to physical processors/cores

n The mapping of processes to processors/cores is done at 
program start and dependent on the startup mechanism 
available on a certain resource – more about that later on.

n In principle, a MPI process does not necessarily 
correspond to an OS process – in practice it very often 
does.
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Send/Receive in MPI

n (buf, count, datatype) describes the data to be 
sent

n Dest is the rank of the destination in the group 
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received, 
including source, tag, and count

44

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag, 
          comm, status)



Recap: Basic MPI Concepts

n Message buffers described by address, data type, and 
count

n Processes identified by their ranks

n Communicators identifying communication 
contexts/groups
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MPI 4 Standard has over 1000 pages with 
several hundred functions …
n How many years do I have to study before I can use it? 

n In fact, you will hardly ever use most of the MPI functions

n 6 functions are sufficient for simple programs:
n MPI_Init – to initialize the MPI environment
n MPI_Comm_Size – to know the number of processes
n MPI_Comm_Rank – to know the rank of the calling process
n MPI_Send – to send a message
n MPI_Recv – to receive a message
n MPI_Finalize – to exit in a clean way
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What is not specified

n Certain aspects are not specified in the MPI standard but 
left as implementation detail:
n Process startup (how to start an MPI program)

• All what happens before MPI_Init is executed
n Richer error codes are allowed
n Message 

buffering

47



A first MPI Program
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MPI Program Structure
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#include "mpi.h"

rc = MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&
numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&
rank);

MPI_Finalize();



Format of MPI Routines

n C Binding:  
n rc = MPI_Xxxxx(parameter, ... ) 
n Example: rc = MPI_Send(&buf,count,type,dest,tag,comm)
n Error code: Returned as "rc". MPI_SUCCESS if successful

n Fortran Binding  
n call mpi_xxxxx(parameter,..., ierr) 

n Example: CALL 
MPI_SEND(buf,count,type,dest,tag,comm,ierr)

n Error code: Returned as "ierr" parameter. MPI_SUCCESS if 
successful 
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Example: Hello, World (C)
#include "mpi.h"

   #include <stdio.h>

   int main(argc,argv)
   int argc;

char *argv[]; {

int numtasks, rank, rc; 

rc = MPI_Init(&argc,&argv);

   if (rc != MPI_SUCCESS) {
     printf ("Error starting MPI program. Terminating.\n");
    MPI_Abort(MPI_COMM_WORLD, rc);
     }

   MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
   MPI_Comm_rank(MPI_COMM_WORLD,&rank);

   printf ("Hello, World from rank %d out of %d\n", rank, numtasks);
   MPI_Finalize();
   }
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Example: Hello, World (Fortran)
program simple

   include 'mpif.h'

   integer numtasks, rank, ierr, rc

   call MPI_INIT(ierr)

   if (ierr .ne. MPI_SUCCESS) then
      print *,'Error starting MPI program. Terminating.'
      call MPI_ABORT(MPI_COMM_WORLD, rc, ierr)

end if

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr)
print *, 'Hello, World from rank ',rank, ' out of=',numtasks

   call MPI_FINALIZE(ierr)

   end
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Sample Output (24 processes)
Hello, World from rank 9 out of 24 
Hello, World from rank 17 out of 24 

Hello, World from rank 13 out of 24 
Hello, World from rank 7 out of 24 
Hello, World from rank 11 out of 24 
Hello, World from rank 14 out of 24 

Hello, World from rank 16 out of 24 
Hello, World from rank 4 out of 24 
Hello, World from rank 15 out of 24 
Hello, World from rank 3 out of 24 

Hello, World from rank 23 out of 24 
Hello, World from rank 10 out of 24 
Hello, World from rank 5 out of 24 
Hello, World from rank 12 out of 24 

Hello, World from rank 2 out of 24 
Hello, World from rank 19 out of 24 
Hello, World from rank 21 out of 24 
Hello, World from rank 8 out of 24 
Hello, World from rank 18 out of 24 

Hello, World from rank 1 out of 24 
Hello, World from rank 6 out of 24 
Hello, World from rank 22 out of 24 
Hello, World from rank 20 out of 24 

Hello, World from rank 0 out of 24 
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Note the 
random order!



How to launch MPI Programs?

n Not specified by MPI standard

n Many implementations use mpirun –np X
n Hostfile used to specify processes/hardware mapping

n MPI standard proposes, but does not mandate, a common 
mpiexec syntax/semantics, similar to mpirun

n Dardel uses srun –n x
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Hands on 

n Compile and run the hello world example

n Compiler: 
n cc
n ftn

n Request interactive resources
n salloc -N 1 -A edu24.summer -t 0:10:00 –p lab-08-22 (23)

n Run
n srun -n 16 a.out

n Code
n hello_mpi.c/f90 55



Summary

n MPI Basics
n Message buffers
n Processes and communicators
n Structure of MPI programs
n Implementation specific features

n To find out the exact syntax of certain commands:
n On Dardel use > man MPI_xxx
n Look up Web resources
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Contents

n Sending data from A to B
n Message format
n Buffers and semantics
n Communication modes

n Deadlocks

n Blocking and non-blocking communication
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Sending Data from A to B …

n The basic function of any message passing library
n Typically a SEND/RECEIVE pair

n Needed when process X needs data from process Y

n Two main incarnations
n Blocking: stops the program until it is safe to continue
n Non-blocking: separates communication from computation

59

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)



Send/Receive in MPI

n (buf, count, datatype) describes the data to be 
sent

n Dest is the rank of the destination in the group 
associated with communicator comm

n tag is an identifier of the message
n comm identifies a group of processes

n status provides information on the message received, 
including source, tag, and count
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MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag, 
          comm, status)



Basic MPI Message Syntax

n An MPI message consists of an envelope and message 
body – think of it like a letter in the mail:

n The envelope of an MPI message has four parts:
n Source — the sending process
n Destination — the receiving process
n Communicator — specifies a group of processes to which both 

source and destination belong
n Tag — used to classify messages

n The message body has three parts:
n Buffer — the message data
n Datatype — the type of the message data
n Count — the number of items of type datatype in buffer
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Basic Send/Receive Commands

int MPI_Send(void *buf, int count, MPI_Datatype 
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

int MPI_Recv(void *buf, int count, MPI_Datatype 
dtype, int source, int tag, MPI_Comm comm, MPI_Status 
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, 
STATUS, IERR)
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Body
Destination
Tag
Communicator

Envelope
Buffer
Count
Datatype



Example
double a[100],b[100];

  if( myrank == 0 )        /* Send a message */
  {

for (i=0;i<100;++i)
a[i]=sqrt(i);

MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
}
else if( myrank == 1 )   /* Receive a message */

MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status ); 
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What happens 
on P0 if b is 
replaced with a?



Wildcards

n Instead of specifying everything in the envelope explicitly, 
wildcards can be used for sender and tag:

MPI_ANY_SOURCE and MPI_ANY_TAG 
n Actual source and tag are stored in STATUS variable

C:
MPI_Status status;

MPI_Recv(b, 100, MPI_DOUBLE,
MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD, &status );

source = status.MPI_SOURCE;

tag = status.MPI_TAG;
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Wildcards cont’d

n Fortran:

integer status(MPI_STATUS_SIZE)

call MPI_RECV(b, 100, MPI_DOUBLE_PRECISON,
MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD, status, ierr );

tag = status(MPI_TAG)

source = status(MPI_SOURCE)
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Message Size

n Semantics of receiving buffer is that it has to be at least 
as large as the message to be received – the actual data 
received might be smaller!

n Again, actual information is stored in STATUS variable:

int MPI_Get_count(MPI_Status *status, 
    MPI_Datatype dtype, int *count);

66



A Word on Buffering

n MPI implementations typically use (internal) message 
buffers
n Sending process can safely modify the sent data once it is copied 

into the buffer, irrespectively of status of receiving process
n Receiving process can buffer incoming messages even if no (user 

space) receiving buffer is provided, yet
n Buffers can be on both sides
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P1 P2

send(x)

recv(y)
buffer

P1 P2

send(x)

recv(y)

buffer



Note

This system buffer is DIFFERENT to the message buffer you 
specify in the MPI_Send or MPI_Recv calls!
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A Word on Buffering Cont’d
n The efficiency of MPI implementations critically depends 

on how buffers are being handled
n A great source for optimization
n Out of scope for this lecture

n Different handling of buffers can show different effects – 
hard to debug!
n E.g. while in general no handshake between sending and 

receiving process is needed (i.e sending process may continue 
after data is copied into buffer even if no matching receive has 
been posted, yet) large messages or lack of buffering space may 
require synchronization with receiving process

n No handshake is often called “eager protocol”, handshake 
“rendezvous protocol”

n Sometimes explicit buffers are required (see later) and lack of 
sufficient buffer space will cause the communication to fail. 69



Blocking and Completion

n Both MPI_Send and MPI_Recv are blocking
n They program only continues after they are completed

n The command is completed once it is safe to (re)use the 
data
n MPI_Recv: data has been fully received

n MPI_Send: can be completed even if no non-local action has 
been taking place. WHY?

n Once data is copied into a send buffer MPI_Send can complete
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Hands on

n Propagate data through all processes
n process 0 sends to process 1
n process n receives from process n-1 and sends to n+1

n Modify the code such that process 0 sends data to all 
others

n Code: send_recv.c/f90
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Hands on – Approximate Pi

n The given PI program calculates PI using an integral approximation. Take the serial version of 
the program and modify it to run in parallel.

n First familiarize yourself with the way the serial program works. How does it calculate PI?

n Hint: look at the program comments. How does the precision of the calculation depend on 
DARTS and ROUNDS, the number of approximation steps?

n Hint: edit DARTS to have various input values from 10 to 10000. What do you think will 
happen to the precision with which we calculate PI when we split up the work among the 
nodes?

n Now parallelize the serial PI program. Use only the six basic MPI calls.

n Hint: As the number of darts and rounds is hard coded then all workers already know it, but 
each worker should calculate how many are in its share of the DARTS so it does its share of 
the work. When done, each worker sends its partial sum back to the master, which receives 
them and calculates the final sum.

n Code: pi_serial.c/f90

n What are the differences between receiving from a specified worker (i.e. loop index) and using 
MPI_ANY_SOURCE?
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Message Order

n MPI messages are non-overtaking
n If the sender sends two messages (with the same envelope) to 

the same destination they have to be received in the same order

IF (rank.EQ.0) THEN 
  CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr) 

  CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag1, comm, ierr)
 
ELSE    ! Rank.EQ.1 

  CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag1, comm,
     status, ierr) 
  CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, 
                status, ierr) 
END IF
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Fairness

n MPI makes no guarantees about fairness
n If there are two matching sends (from different sources) for a 

receive any of these can be successful
n MPI does not prevent operation starvation (e.g. sends that will 

never be picked up)
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What have we learned? 

n The semantics of MPI_Send/MPI_Recv are quite 
implementation dependent 

n How can we get more control on what is actually 
happening? 
n MPI provides different communication modes with different 

semantics
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MPI Communication Modes

n Synchronous mode
n Syntax: MPI_Ssend(…)
n Semantics: handshake required, send will block until matching 

receive has been posted and receiving has started

n Ready mode
n Syntax: MPI_Rsend(…)
n Semantics: user guarantees that matching receive has already 

been posted; similar to synchronous but no need for handshake

n Buffered mode
n Syntax: MPI_Bsend(…)
n Semantics: send buffer will be used and command returns once 

data is locally copied; send buffer needs to be provided by user
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Discussion

n Standard MPI_Send(…) behaves like MPI_Bsend or 
MPI_Ssend depending on message size and internal 
buffer space

n For portability and safety reasons you should always 
assume MPI_Ssend semantics
n Don’t assume MPI_Send(…) will return irrespectively of 

matching receive status
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Discussion Cont’d

n MPI_Bsend will fail if not enough buffer space is available
n You must provide sufficient buffer space in user space to an MPI 

process:

int MPI_Buffer_attach( void* buffer, int size) 

MPI_BUFFER_ATTACH( BUFFER, SIZE, IERROR)

int MPI_Buffer_detach( void* buffer_addr, int* size) 

MPI_BUFFER_DETACH( BUFFER_ADDR, SIZE, IERROR)

n This buffer is only used for buffered send and detach will 
block until all data is actually sent. 
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Pros and Cons of different modes

Advantages Disadvantages
Synchronous Mode

Safest, most portable Can occur substantial 
synchronization overhead

Ready Mode
Lowest total overhead Difficult to guarantee that receive 

precedes send
Buffered Mode

Decouples send from receive Potentially substantial overhead 
through buffering

Standard Mode
Most flexible, general purpose Implementation dependent
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Deadlocks

n Deadlocks are common (and hard to debug) errors in 
message passing programs

n A deadlock occurs when two (or more) processes wait on 
the progress of each other:

if( myrank == 0 ) {

/* Receive, then send a message */
MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, 

&status );
MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );

}
else if( myrank == 1 ) {
/* Receive, then send a message */

MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, 
&status );   

MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );80



Deadlock or not?

IF (rank.EQ.0) THEN 

  CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, 
                ierr) 

  CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, 
                ierr)

 

ELSE    ! rank.EQ.1 

  CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, 
                status, ierr) 

  CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, 
                status, ierr) 

END IF 
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How to avoid Deadlocks?

n Careful organize the communication in your program
n Make sure sends are always paired with receives in the correct 

order
n A difficult task in large programs!

n Don’t depend on how specific implementations handle 
their internal buffers
n A program may work well with certain problem sizes but deadlock 

once you increase the problem size or move to a different 
architecture or MPI implementation because of internal buffer 
limitations

82



Communication modes revisited
IF (rank.EQ.0) THEN 
  CALL MPI_SSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr) 

  CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE    ! rank.EQ.1 
  CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr) 
  CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr) 

END IF 

IF (rank.EQ.0) THEN 

  CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr) 
  CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE    ! rank.EQ.1 
  CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr) 

  CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr) 
END IF 

IF (rank.EQ.0) THEN 
  CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr) 
  CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE    ! rank.EQ.1 

  CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr) 
  CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr) 
END IF 83

D
EA

D
LO

C
K

SY
S 

D
EP

.
O

K 
(If

 …
)



Help to avoid Deadlock

n Careful ordering of send/receives is facilitated by a 
combined send/receive command:

int MPI_Sendrecv( void *sendbuf, int sendcount, 
                  MPI_Datatype sendtype, 

int dest, int sendtag, 

void *recvbuf, int recvcount, 
MPI_Datatype recvtype, 

int source, int recvtag, MPI_Comm
comm, MPI_Status *status )

n Advantage: order of send/receive irrelevant; receive will 
not be blocked by potentially blocking send

n Very useful for shift operations
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Sendrcv Example
if (myid == 0) then

   call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)

   call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,  
                 status,ierr)

elseif (myid == 1) then

   call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)

   call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD, 
                 status,ierr)

end if

if (myid == 0) then
   call mpi_sendrecv(a,1,mpi_real,1,tag1,

                     b,1,mpi_real,1,tag2,

                     MPI_COMM_WORLD, status,ierr)

elseif (myid == 1) then

   call mpi_sendrecv(b,1,mpi_real,0,tag2,

                     a,1,mpi_real,0,tag1,
                     MPI_COMM_WORLD, status,ierr)

end if 85



Help to avoid Deadlocks Cont’d

n Careful message ordering
n Always a good idea!

n Buffered communication
n But comes with (quite substantial) overhead 

n Non-blocking calls
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Non-blocking Communication

n For all send/receive calls there is a non-blocking 
equivalent named I(x)send/Irecv

n Non-blocking calls will return immediately irrespectively of 
the send/receive status
n They actually only initiate the action
n Actual sending/receiving of messages will be handled internally in 

the MPI implementation
n Calls return a handle that allows to check the progress of 

sending/receiving

n Blocking and non-blocking calls can be intermixed
n A blocking receive can match a non-blocking send and vice-versa.
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Non-blocking Syntax
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int 
dest, int tag, MPI_Comm comm, MPI_Request *request);
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int 
source, int tag, MPI_Comm comm, MPI_Request *request)

MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)

MPI_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, REQ, IERR)

n Request is the handle to the request

n Important: None of the arguments passed to a non-
blocking send/recv must be written or read until the 
send/recv operation is completed.
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Completion of non-blocking send/receives

int MPI_Wait( MPI_Request *request, MPI_Status 
*status );

MPI_WAIT(REQUEST, STATUS, IERR )

n MPI_Wait is blocking and will only return when the 
message has been sent/received
n After MPI_Wait returns it is safe to access the data again

int MPI_Test( MPI_Request *request, int *flag, 
              MPI_Status *status );

MPI_TEST(REQUEST, FLAG, STATUS, IERR)

n MPI_Test returns immediately
n Status of request is returned in flag (true for done, false when still 

ongoing) 89



Deadlock Example revisited

if( myrank == 0 ) {
/* Receive, then send a message */
MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, 

&status );

MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
}
else if( myrank == 1 ) {

/* Receive, then send a message */
MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, 

&status );   
MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
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Example
if( myrank == 0 ) {
/* Post a receive, send a message, then wait */
MPI_Irecv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, 

&request );

MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
MPI_Wait( &request, &status );

}

else if( myrank == 1 ) {
/* Post a receive, send a message, then wait */
MPI_Irecv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, 

&request );   

MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
MPI_Wait( &request, &status );

}

n No deadlock because non-blocking receive is posted before send
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Discussion

n Non-blocking communication has two main benefits:

n Helps avoid deadlocks
n Allows to overlap communication with computation (latency hiding)

• More about that later on

n Disadvantage:
n Makes code more complex to read/understand and thus debug 

and maintain. 
n Limitations of internal data structures to keep track of outstanding 

requests

92



Summary

n MPI provides blocking and non-blocking communication
n 4 communication modes

n You should now be able to program message passing 
applications

n Everything you want to do can be done with the (6) basic 
commands you know now. 
n But many tasks would be awkward and inefficient – hence the 

lecture continues

n Beware deadlocks!
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What we know already

n Everything to write MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication
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Collective Communication

n Often more than 2 processes are involved in 
communication
n Send input data to all processes
n Collect results from all processes
n Synchronize all processes
n Update all processes with partial results
n …

n All this can be implemented with the commands you 
already know
n But it is tedious, error-prone, and difficult to implement efficiently

n Hence MPI provides ready-made commands for this
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Collective Communication Cont’d
n Communication involving all processes in a group (i.e. a 

communicator)
n MPI-3 defines “neighborhood collectives”

n All processes in a group MUST participate to the 
collective operation

n No tag mechanism, only order of program execution
n Remember that MPI messages cannot overtake another one

n Until MPI-2 all collective routines were only blocking
n With the standard completion semantics of blocking 

communication – thus no guarantee there is a full synchronization
n MPI-3 introduced non-blocking collectives

• Important difference to non-blocking p2p: no matching with non-
blocking collectives! 97



List of Collective Routines

n Barrier synchronization across all processes.
n Broadcast from one process to all other processes
n Global reduction operations such as sum, min, max or 

user-defined reductions
n Gather data from all processes to one process
n Scatter data from one process to all processes
n All-to-all exchange of data
n Scan across all processes
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Barrier Synchronization

n Sometimes there is a need to synchronize all processes before them 
continuing independently
n E.g. read in input data

n MPI_Barrier blocks the calling process until all processes in the 
group have also called MPI_Barrier

int MPI_Barrier (MPI_comm comm)

MPI_BARRIER (COMM, ERROR)

99



Hands on

n Use MPI_BARRIER to enforce consecutive ordering of 
output messages in hello_mpi.c/f90
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Broadcast

n Broadcast sends data from one process to the same 
memory location in all other processes
n send and receive buffer are the same!
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Broadcast Cont’d

int MPI_Bcast (void* buffer, int count, 
               MPI_Datatype datatype, 
               int root, MPI_Comm comm ) 

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT, 
           COMM, IERR )

n Note:
n Only one (send/receive) buffer
n No tag
n Root indicates the process owning the data to be broadcasted
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Broadcast Example

#include <mpi.h>

void main(int argc, char *argv[]) {

  int rank;

  double param;

  MPI_Init(&argc, &argv);

  MPI_Comm_rank(MPI_COMM_WORLD,&rank);

if(rank==5) param=23.0;

MPI_Bcast(&param,1,MPI_DOUBLE,5,MPI_COMM_WORLD);

printf("P:%d after broadcast parameter is %f \n", 
rank,param);

MPI_Finalize();

}
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Gather

n Gather is a all-to-one operation that collects the data from 
all processes in target process
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Gather Cont’d
int MPI_Gather (void* send_buffer, int send_count, 
                MPI_datatype send_type, void* recv_buffer, 
                int recv_count, MPI_Datatype recv_type, 
                int rank, MPI_Comm comm )

MPI_GATHER (SEND_BUFFER, SEND_COUNT, SEND_TYPE,RECV_BUFFER, 
            RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR ) 

n Note:
n Each process (including the root process) sends the contents of its 

send buffer to the root process. The root process receives the 
messages and stores them in rank order.

n Receive buffer needs to be large enough to store all data
n The gather could also be accomplished by each process calling 
MPI_SEND and the root process calling MPI_RECV N times to 
receive all of the messages.

n all processes, including the root, must send the same amount of 
data, and the data are of the same type. 
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Gather Example

int rank,size;

double param[16],mine;

int sndcnt,rcvcnt; I;

sndcnt=1;

mine=23.0+rank;

if(rank==7) rcvcnt=1;

MPI_Gather(&mine,sndcnt,MPI_DOUBLE,param,rcvcnt, 
MPI_DOUBLE,7,MPI_COMM_WORLD);

if(rank==7)

for(i=0;i<size;++i) printf("PE:%d param[%d] is %f \n", 
rank,i,param[i]]); 
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Hands on 

n Modify Pi_mpi.c/f90 to use MPI_GATHER on P0

n Hint: pirecv needs to turn into an array

n Hint: think about whether the calculation of pi_est needs 
to change
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Allgather

n Sometimes it is also useful to gather the data not only into 
one process but all

n Equivalent to MPI_Gather plus MPI_Bcast
n MPI_Allgather has same syntax as MPI_Gather
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Scatter

n Distribute data to all processes – one-to-all 
communication

n Inverse to gather
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Scatter Cont’d

int MPI_Scatter (void* send_buffer, int send_count, 
                 MPI_datatype send_type, 
                 void* recv_buffer, int recv_count, 
                 MPI_Datatype recv_type, 

int rank, MPI_Comm comm ) 

MPI_Scatter (SEND_BUFFER, SEND_COUNT, SEND_TYPE, 
RECV_BUFFER, RECV_COUNT, RECV_TYPE, 
RANK, COMM, ERROR ) 

n root process breaks up the send buffer into equal chunks 
and sends one chunk to each processor. 
n The outcome is the same as if the root executed N MPI_SEND 

operations and each process executed an MPI_RECV. 
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Scatter Example

rcvcnt=1;

if(rank==3) {

for(i=0;i<8;++i) param[i]=23.0+i;

sndcnt=1;

}

MPI_Scatter(param,sndcnt,MPI_DOUBLE,&mine,rcvcnt, 
MPI_DOUBLE,3,MPI_COMM_WORLD);

for(i=0;i<size;++i)  {

  if(rank==i) printf("P:%d mine is %f \n",rank,mine);

  fflush(stdout);

  MPI_Barrier(MPI_COMM_WORLD);

}

MPI_Finalize();

}
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Other Gather/Scatter Variants

n Gather/Scatter is also defined over vectors
n MPI_GATHERV and MPI_SCATTERV allow a varying count of 

data from/to each process.
n MPI_ALLTOALL

n Every process performs
a scatter
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Reduction

n Collect data from each processor
n Reduce these data to a single value (such as a sum or 

max)
n Store the reduced result on the root processor
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Reduction Cont’d
int MPI_Reduce (void* send_buffer, void* recv_buffer, int 
                count, MPI_Datatype datatype, MPI_Op 
                operation, int rank, MPI_Comm comm ) 

MPI_REDUCE ( SEND_BUFFER, RECV_BUFFER, COUNT, DATATYPE, 
             OPERATION, RANK, COMM, ERROR )

n Note:
n Rank denotes the process that stores the result in recv_buffer
n Operation can be one of 12 pre-defined operations or user-

defined
n Both send and receive buffers must have the same number of 

elements with the same type. 
• The arguments count and datatype must have identical values in 

all processes. 
n The argument rank must also be the same in all processes.
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Predefined Reduction Operations

Operation Description
MPI_MAX  maximum
MPI_MIN   minimum
MPI_SUM  sum
MPI_PROD  product
MPI_LAND  logical and
MPI_BAND  bit-wise and
MPI_LOR  logical or
MPI_BOR  bit-wise or
MPI_LXOR  logical xor
MPI_BXOR  bitwise xor
MPI_MINLOC  computes a global minimum and an index attached to the 

minimum value -- can be used to determine the rank of 
the process containing the minimum value

MPI_MAXLOC computes a global maximum and an index attached to the 
rank of the process containing the maximum value 115



Reduction Example
#include   <stdio.h>
#include   <mpi.h>

void main(int argc, char *argv[]) {
  int rank;
  int source,result,root;

  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD,&rank);

root=7;
source=rank+1;

MPI_Reduce(&source,&result,1, MPI_INT, MPI_PROD, root, 
MPI_COMM_WORLD);

if(rank==root) printf("P:%d MPI_PROD result is %d \n", rank, 
result);

MPI_Finalize();

}
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Reduce Variations
n MPI_Allreduce makes the result available in the 

receive buffers of all processes
n Equivalent to MPI_Reduce plus MPI_Bcast

n MPI_Reduce_scatter scatters the result vector across 
the processes in the group
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Reduce Variations Cont’d

n MPI_Scan performs a partial reduction in which process i 
receives data from processes 0 through i, inclusive
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Hands on 

n Modify Pi_mpi.c/f90 to use MPI_REDUCE
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Summary

n Collective communication routines provide convenient 
calls for standard communication patterns

n Depending on the implementation they may be much 
more efficient than hand-coding (or not)
n Synchronization overhead might be substantial

n Collective communication makes extensive use of 
groups/communicators
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What’s next

n Intermediate MPI
n Overlapping communication/computation
n Using communicators
n Derived datatypes
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What we know already

n Everything to write MPI programs
n Program structure
n Point-to-point communication
n Communication modes
n Blocking/non-blocking communication
n Collective Communication
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Take a deeper look

n Usage of data types
n So far we used the pre-defined data types; what if we need to deal 

with more complex structures? 

n Usage of communicators
n How to group processes in individual groups

n Improving Communication Performance
n Aka how to speed up programs
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Recap: MPI Datatypes

125

MPI Datatype Fortran Datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE_PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

Note: the names of the MPI C datatypes are slightly different



Derived Datatypes

n Primitive datatypes are contiguous (basically arrays)

n Derived Datatypes allow you to define your own data structures based 
upon sequences of the MPI primitive data types. 

n Derived data types allow you to specify non-contiguous data in a 
convenient manner and to treat it as though it was contiguous. 

n MPI provides several methods for constructing derived data types:
n Contiguous
n Vector
n Indexed
n Struct
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Example

n Send one row of a matrix:
n Data is contiguous in C; 

can simply send
n But it is not contiguous in Fortran

n Send one column of a matrix:
n Same as above but 

contiguous in Fortran

n How to solve non-contiguous case?
n Send each element in separate message

• Overhead and error prone
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Send contiguous data

n Could be achieved simply with 
MPI_Send(&a[i][0], 4, MPI_FLOAT, j, tag, 
         MPI_COMM_WORLD);

n If you do this frequently, you might want to use a more 
descriptive datatype name (eg. coordinate point) and help 
MPI packing the data

MPI_Type_contiguous(4, MPI_FLOAT, &rowtype);

MPI_Type_commit(&rowtype);

MPI_Send(&a[i][0], 1, rowtype, j, tag,
         MPI_COMM_WORLD)
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Example Cont’d
MPI_Type_contiguous(SIZE, MPI_FLOAT, &rowtype);
MPI_Type_commit(&rowtype);

if (numtasks == SIZE) {
  if (rank == 0) {

for (i=0; i<numtasks; i++)
MPI_Send(&a[i][0], 1, rowtype, i, tag, MPI_COMM_WORLD);

}

MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD, 
&stat);
  printf("rank= %d  b= %3.1f %3.1f %3.1f %3.1f\n",

         rank,b[0],b[1],b[2],b[3]);
  }
else

  printf("Must specify %d processors. Terminating.\n",SIZE);

129

• Note different type in send/recv
• Is the program safe? 



Example: submatrix

130

do j = 1, m

call MPI_Send(a(k,l+j-1), n, MPI_DOUBLE, 
dest, tag, MPI_COMM_WORLD, ierr)

enddo



First Approach: Buffering

n Create a user-level buffer for the sub-matrix:
icount = 0
do j = l, l+m-1

do i = k, k+n-1

      icount = icount + 1
      p(icount) = a(i,j)

   enddo
enddo

call MPI_Send(p, n*m, MPI_DOUBLE, dest, tag, 
              MPI_COMM_WORLD, ierr)

n Limitations: 
n Usage of memory and CPU time to do buffering
n Still can use only one datatype in the buffer
n Need to interpret the buffer correctly on the receiving side 131



A better Approach: Derived Datatypes

n MPI_TYPE_Vector: Similar to contiguous, but allows for regular 
gaps (stride) in the displacements

call MPI_TYPE_VECTOR(m, n, nn, MPI_DOUBLE, 
                     my_mpi_type, ierr)

call MPI_TYPE_COMMIT(my_mpi_type, ierr)
call MPI_SEND(a(k,l), 1, my_mpi_type, dest, tag, 
              MPI_COMM_WORLD, ierr)

n m…count (we send m columns)
n n…number of contiguous elements (each column has n elements)
n nn…stride (distance between the starting locations of adjacent blocks 

of data. The columns of the full matrix each have NN values, so NN 
will be the stride between the beginning of one column segment and 
an adjacent column segment.)
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Different Derived Datatypes

n Contiguous: This is the simplest constructor. It produces a new 
datatype by making count copies of an existing one.

n Vector: This is a slight generalization of the contiguous type that 
allows for regular gaps in the displacements. Elements are separated 
by multiples of the extent of the input datatype. 

n Hvector: This is like vector, but elements are separated by a 
specified number of bytes. 

n Indexed and Hindexed: An array of displacements of the input 
datatype is provided; the displacements are measured in terms of the 
extent of the input datatype or in bytes. 

n Struct: This provides a fully general description. 
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Indexed
int MPI_Type_indexed(int count,
     const int *array_of_blocklengths,
     const int *array_of_displacements,

     MPI_Datatype oldtype,
     MPI_Datatype *newtype);

     
Input Parameters:
* count: number of blocks – also number of entries in 

array_of_displacements and array_of_blocklengths
* array_of_blocklengths: number of elements in each block 

(array of nonnegative integers)

* array_of_displacements: displacement of each block in 
multiples of oldtype (array of integers) – always 
from beginning

* oldtype: old datatype (handle)
     
Output Parameters

* newtype: new datatype (handle) 134



Hands On

n Send elements 6-9 and 13-14 of array a from rank 0 to 
rank1

n source files: indexed.f90 or indexed.c
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Solution
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Struct

n int MPI_Type_create_struct(
int count,
int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[],
MPI_Datatype *newtype );
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Struct Example

Struct Particlestruct{
  double x,y,z,velocity;
  int n,type;
} particle[100];

MPI_Datatype particletype;
MPI_Datatype type[2] = {MPI_DOUBLE,  
           MPI_INT};
Int blocklen[2] = {4,2};
MPI_Aint disp[2] = {0, 4*sizeof(double)};

MPI_Type_create_struct(2, blocklen, disp, type, 
&particletype);
MPI_Type_commit(&particletype);

MPI_Send(particle, 100, particletype, dest, tag, 
comm);
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Derived Datatypes Summary 

n MPI allows to create user defined datatypes

n Useful if non-contiguous memory locations need to be 
communicated 

n The created derived datatype should be used frequently in 
a program – otherwise overhead might be too large
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Performance Considerations

n Simple and effective performance model: 
n More parameters == slower 

n contig < vector < index < struct 

n Some (most) MPIs are inconsistent 
n But this rule is portable 

n Advice to users: 
n Try datatype “compression” bottom-up 
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Groups and Communicators
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Recap

n Processes belong to groups
n Processes within a group are identified with their rank

n A group of n processes has ranks 0 … n-1

n MPI uses objects called communicators and groups to 
define which collection of processes may communicate 
with each other
n MPI_COMM_WORLD 

is the default 
communicator 
covering all of the 
original MPI 
processes
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Communicator Basics

n So far we used MPI_COMM_WORLD
n Allows any process to communicate with any other process
n Very useful for many tasks

n Sometimes it is advantageous to restrict the number of 
processes in a communicator (group)
n E.g. Matrix-Matrix multiplication:

• Communication along rows and columns
• Can have individual communicators for rows and columns 

n E.g. Master/Worker:
• Restrict certain communications only to workers
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Groups vs. Communicators

n A group is an ordered set of processes. Each process in a group is 
associated with a unique integer rank. Rank values start at zero and 
go to N-1, where N is the number of processes in the group. A group 
is always associated with a communicator object. 

n A communicator encompasses a group of processes that may 
communicate with each other. All MPI messages must specify a 
communicator. The communicator that comprises all tasks is 
MPI_COMM_WORLD. 

n From the programmer's perspective, a group and a communicator are 
one. The group routines are primarily used to specify which processes 
should be used to construct a communicator.
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Primary Purposes of Groups and Communicators

1. Allow you to organize tasks, based upon function, into 
task groups. 

2. Enable Collective Communications operations across a 
subset of related tasks. 

3. Provide basis for implementing user defined virtual 
topologies

4. Provide for safe communications
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Programming Considerations

n Groups/communicators are dynamic - they can be created and 
destroyed during program execution. 

n Processes may be in more than one group/communicator. They will 
have a unique rank within each group/communicator. 

n MPI provides over 40 routines related to groups, communicators, and 
virtual topologies. 

n Typical usage:
n Extract handle of global group from MPI_COMM_WORLD using 

MPI_Comm_group
n Form new group as a subset of global group using MPI_Group_incl
n Create new communicator for new group using MPI_Comm_create
n Determine new rank in new communicator using MPI_Comm_rank
n Conduct communications using any MPI message passing routine
n When finished, free up new communicator and group (optional) using 

MPI_Comm_free and MPI_Group_free
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Intra- and Intercommunicators

n Intracommunicators refer to a process group
n E.g. comm1 from the example below
n Allow communication within the group

n Intercommunicators 
refer to two groups 
of processes
n Allow communication 

between disjoint groups 

148



Creation of Intracommunicators

n Split an existing intracommunicator into two or more sub-
communicators

n Duplicate an existing intracommunicator

n Modify a group of processes from an existing 
intracommunicator, and create a new communicator 
based on this modified group
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Communicator Split

MPI_Comm_split(MPI_Comm comm, int color, int key, 
               MPI_Comm *newcomm);

MPI_COMM_SPLIT(int comm, int color, int key, int 
               newcomm, int IERR)

n Color denotes the group a process should be part of 
n Key denotes the ranking in the new group

150



Example

n Split MPI_COMM_WORLD into two groups for even-ranked and odd-
ranked process and keep the relative ranking

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

color = rank%2;

MPI_Comm_split(MPI_COMM_WORLD, color, rank, &newcomm);
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Hands on 

n Modify hello-world and create intra-communicators for odd 
and even processes

n Print out local and global rank
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Duplication of existing Communicator

MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm);

MPI_COMM_DUP(int comm, int newcomm, int IERR)
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Modifying a Group of Processes
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Group Modifications
n MPI_Group_incl creates a new group by reordering a specified 

number of the processes from an existing group

n MPI_Group_excl creates a new group from an original group that 
contains all processes left after deleting those with specified ranks. 

n MPI_Group_union creates a new group that contains all processes 
in the first group followed by all processes in the second group with 
no duplication of processes.

n MPI_Group_intersection creates a new group from two groups 
that contains all processes that are in both of the groups with rank 
order the same as that in the first group1.

n MPI_Group_difference creates a new group from two groups that 
contains all processes in the first group that are not in the second 
group with rank order the same as that in the first group.
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Example

n In a master/worker scheme create communicator for workers
n Master has rank 0

comm_world = MPI_COMM_WORLD;

ranks[0] = 0; /* process 0 not member */

  

MPI_Comm_group(comm_world, &group_world);

MPI_Group_excl(group_world, 1, &ranks, 
               &group_worker);  

MPI_Comm_create(comm_world, group_worker, &comm_worker);

…

MPI_Comm_free(&comm_worker);
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Communicators Summary

n Communicators provide a powerful tool to restrict 
communication to subsets of processes

n Useful for certain programming styles
n E.g. Master/Worker
n Virtual Topologies
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Improving Performance
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Loss of performance

n Transfer time = latency + message length/bandwidth + 
synchronization time

n You cannot do much about bandwidth but

n Reduce latency
n Combine many small into a single large message
n Hide communication with computation

n Reduce message length
n Only communicate what is absolutely needed

n Avoid synchronization 
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Avoid Synchronization

n Synchronization time occurs when
n Receiver waits for message to be sent
n Sender waits for message to be received

n Send early, receive late
n Send early – reduce time receiver has to wait for message
n Receive late – do as much work as possible on the receiving side 

before waiting for message to arrive

n BUT: What if underlying protocol requires send/receive 
handshake? Then things are actually getting worse!
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Avoid Synchronization

n Non-blocking communication modes can help
n Post Irecv early on so that send would find matching receive
n But could introduce buffer problems

n If receiving order is not important avoid receiving from a 
dedicated sender but post receives with 
MPI_ANY_SOURCE

MPI_Recv(buffer, size, MPI_INT, 
         MPI_ANY_SOURCE, tag, comm, &status) 
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Can we avoid 
copying?

MPI-ANY-SOURCE Example

if (myrank == 0) {

   for (int i = 1,numproc-1) {

      MPI_Recv(b[i], size, MPI_INT, i, tag, 
               comm, &status);

   }

} else {

  MPI_Send(x, size, MPI_INT, 0, tag, comm);

}

n Better:
MPI_Recv(x, size, MPI_INT, 
         MPI_ANY_SOURCE, tag, comm, &status);
b[status.MPI_SOURCE] = x; 162



Example Cont’d

MPI_Probe(MPI_ANY_SOURCE, tag, comm, &status);

MPI_Recv(b[status.MPI_SOURCE], size, MPI_INT, 
         status.MPI_SOURCE, tag, comm, 
         &status);
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Avoid Synchronization

n Use Sendrecv
n Use Collective operations

n Most of them will synchronize but are typically implemented well.
n But avoid MPI_Barrier and all-to-all 

n Pitfall:
n Not all MPI implementations are equally well optimized
n If critical, implement several variants and compare their timing 

(same for derived datatypes)
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Latency Hiding

n Use non-blocking communication and try to do as much 
computation as possible before blocking on the WAIT
n Use standard send/receive if WAIT follows immediately after the 

send/receive
n Can result in buffer and/or envelope queue overflow
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Reduce communication

n Re-compute vs. communication
n Sometimes it can be more efficient to compute certain data on all 

processes where it is needed rather than communicating it. 
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Summary

n Several ways to reduce communication/synchronization 
overhead

n Use tools to figure out where the hot-spots of your 
application are

n Most performance tuning is NOT portable and highly 
implementation and hardware dependent
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