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Agenda (ambitious)
• Part 1 :  The anatomy of supercomputers

• Part 2 : What’s in a name node? 

• Part 3 :  Diversity in parallelism

• Part 4 :  One more word about performance 

• Part 5 :  Summary and beyond 
• Famous last words … 



PART 3: PARALLELISM DIVERSITY
Different parallelism models from hardware to software



First taxonomy: Michael Flynn (1966)

Multiple Instructions
Single Data

Single Instruction
Single Data

Single Instruction
Multiple Data

Multiple Instructions
Multiple Data



Before 2005: technology push 



Moore’s Law
• Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of 

semiconductor chips would double roughly every 18 months.
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“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965



Until early 2000s …
More transistors = more performance 

Thus, every 18 months, 
we had better and faster 
processors. 

• Higher clock-speed 
• Higher perf/cycle
• Same power
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 (CMU 15-418, Spring 2012)

Why parallelism?
▪ The answer 10 years ago

- To get performance that was faster 
than what clock frequency scaling 
would provide

- Because if you just waited until next 
year, your code would run faster on 
the next generation CPU

▪ Parallelizing your code not 
always worth the time
- Do nothing: performance doubling 

~ every 18 months



Wait … why do I care? 
• More transistors =  … ?
= more functionality 

• Think more functional units, more complex units, etc…. 

• Higher perf/clock  (aka, higher ILP) = … ?
= more operations per cycle

• Faster overall applications (when they have different operations…) 

• Higher clock frequency = …?
= more operations per time unit 

• Faster instructions => faster overall application 

• Higher power = … ?
= global warming … 

• Ideally, we want power consumption to be low



Until early 2000s …

Parallelism = interesting and “quirky”, but not main-stream
• Pro: Better performance than frequency scaling would provide.
• Con: Parallelizing code was not always worth the effort

• Do nothing: the performance will double ~ every 18 months



Around 2005: “hitting the walls”

Frequency wall

Power wall

ILP wall



Single core performance scaling
• The rate of single core performance scaling has significantly 
decreased (essentially, to 0)
• Frequency scaling limited by power
• ILP scaling tapped out
• Design complexity posing serious limitations

• No more free lunch for software developers!
• No more dramatic increase of software performance for free. 
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So what? 

Chip density can still 
increase about 2x every 
2 years

BUT
• Clock speed is not
• Power is not
• Instruction Level 

Parallelism is not
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What does this mean in practice? 



Traditionally … single core CPUs 
• More transistors = more functionality 
• Improved technology = faster clocks = more speed

• Every 18 months => better and faster processors. 

Not anymore! 
We no longer gain performance by “growing” sequential 

processors … 

CPU 

Individual 
Memory (cache)

More individual 
memory (cache)

Bus interface

Off-chip 
components

Single core processor



New ways to use transistors
Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs) 
and many-core processors (GPUs).



The shift to multi-core



Multi-core CPUs



Generic multi-core CPU
Hardware threads 
SIMD units (vector lanes)

L1 and L2
dedicated 
caches 

Shared L3 cache
Main memory, I/O

Peak 
performance

Bandwidth



CPU levels of parallelism
• Instruction-level parallelism (e.g., superscalar processors) (fine)

• Multiple operations of different kinds per cycle
• Implemented/supported by the instruction scheduler

• typically in hardware 
• SIMD parallelism = data parallelism (fine)

• Multiple operations *of the same kind* per cycle  
• Run same instruction on vector data 
• Sensitive to divergence 
• Implemented by programmer OR compiler 

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores 

• Hardware hyperthreading (2x)
• Local caches 
• Symmetrical or asymmetrical threading model 
• Implemented by programmer  



(1) ILP (Instruction level parallelism) 
• Multiple instructions issued & executed in the same cycle 

Instr. i
Instr. i+1
.
.
.
.
.
Instr. n

Sequential

No parallelism ILP support
Potentially 
in parallel

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Implementing ILP
• Super-scalar processors 

• “dynamic scheduling”: instruction reordering and scheduling happens in hardware 
• More complex hardware

• More area, more power …  

• Adopted in most high-end CPUs today 

• VLIW processors 
• ”static scheduling”: instruction reordering and scheduling is done by the compiler 

• Simpler hardware
• Less area, less power

• Adopted in most GPUs and embedded CPUs 

No programmer’s intervention! 



(2) SIMD (single instruction, multiple data)
• Same instruction executed on multiple data items 

a[i]   +=5
a[i+1] +=5
.
.
.
a[i+7] +=5

“vector”
(parallel)

”scalar” 
(sequential)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Scalar vs SIMD operations

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html



Implementing SIMD 
• SIMD extensions: special registers and functional units 
• Multiple generations of SIMD extensions 

• SSE4.x = 128 bits 
• AVX / AVX2 = 256 bits (most available CPUs, DAS-5 included)
• AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

Requires programmer’s (or compiler’s) 
intervention! 



SIMD programmer intervention 
• Auto-vectorization

• Typically enabled with “-O” compiler flags 
• Compiler directives 

• Specifically add directives in the code to force persuade the compiler to vectorize code  
• C or C++ intrinsics

• Wrappers around ASM instructions 
• Declare vector variables
• Name instruction
• Work on variables, not registers

• Assembly instructions
• Can write assembly to target SIMD



(3) Multi-core parallelism 
• Two (or more cores) to execute different streams of instructions. 

Requires programmer’s (or compiler’s) 
intervention and OS (operating system) support! 

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Multi-core programmer intervention
• Must define concurrent tasks to be executed in parallel

• Typically called (software) threads 
• Threads are executed per core 

• Under the OS scheduling 
• Some control can be exercised with additional programmer intervention 

for i = 1 … 3*n
 do_something(i) 

for i = 1 … n 
 do_something(i) 

for i = n+1 … 2*n 
 do_something(i) 

for i = 2*n+1 … 3*n 
 do_something(i) 

Core 0

Core 1

Core 2



Computer architecture talk



CPU features for ILP
• Instruction pipelining 

• Multiple instructions “in-flight”
• Superscalar execution 

• Multiple execution units 
• Out-of-order execution

• Any order that does not violate data dependencies 
• Branch prediction 
• Speculative execution 



Superscalar, Out-of-order
• A superscalar processor can issue and execute multiple instructions in one 

cycle. 
• The instructions are retrieved from a sequential instruction stream and are usually 

scheduled dynamically.
• An out-of-order processor can reorder the execution of operations in 

hardware.

• Superscalar, out-of-order processors can take advantage of the instruction 
level parallelism that most programs have.

• Most modern CPUs are superscalar and out-of-order.
• Intel: since Pentium (1993)



Modern CPU Design
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A real CPU … 



SkyLake ® 

Image: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Multiple execution 
units, some SIMD

Fetch & decode,
producing multiple 
uOps

Optimize, reorder,
schedule uOps 



Hardware multi-threading (or hyperthreading®)

BONUS!



”Are there hardware threads?!” 
• Hardware (supported) multi-threading 

• Core manages thread context 
• Interleaved (temporal multi-threading) – employed in GPUs
• Simultaneous (co-located execution) – e.g., Intel Hyperthreading 



Why bother? 
• Interleave the processing of multiple instruction streams on the same core to 

hide the latency of stalls

• Requires replication of hardware resources
• Each thread uses its own PC to execute the instruction stream
• Requires replication of register file

• Performance improvement: higher throughput



Advantage: increased throughput



Advantage: increased throughput



Advantage: increased throughput



What about the memory? 
• Three levels of cache: L1 (separate I$ and D$, per-core), L2 (per-core), L3 

(=LLC, shared)  



Putting it all together 
• A modern CPU has a mix of all these features… 



SIMD programming

BONUS!



Vectorization/SIMD options
• Auto-vectorization

• Both gcc and icc have support for it 
• Successful for simple loops and data structures

• Compiler directives 
• Both gcc and icc allow for specific pragma’s to enable vectorization
• Pragma’s are used to “force” the compiler to vectorize 

• C or C++: intrinsics
• Declare vector variables
• Name instruction
• Work on variables, not registers

• Assembly instructions
• Execute on vector registers



Using intrinsics
• https://software.intel.com/en-us/articles/introduction-to-intel-advanced-

vector-extensions
• https://software.intel.com/sites/landingpage/IntrinsicsGuide/
• Requirements: 

• Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Examples of intrinsics

0.0
0element

value
1 2 3

0.00.00.0

0.0
0element

value
1 2 3

3.02.01.0

float data[1024];
// init: data[0] = 0.0, data[1] = 1.0, data[2] = 2.0, etc.
init(data);

// Set all elements in my vector to zero.
__m128 myVector0 = _mm_setzero_ps();

// Load the first 4 elements of the array into my vector.
__m128 myVector1 = _mm_load_ps(data);

// Load the second 4 elements of the array into my vector.
__m128 myVector2 = _mm_load_ps(data+4);

4.0
0element

value
1 2 3

7.06.05.0



Examples of intrinsics
// Add vectors 1 and 2; instruction performs 4 FLOP.
__m128 myVector3 = _mm_add_ps(myVector1, myVector2);

// Multiply vectors 1 and 2; instruction performs 4 FLOP.
__m128 myVector4 = _mm_mul_ps(myVector1, myVector2);
 

// _MM_SHUFFLE(w,x,y,z) selects w&x from vec1 and y&z from vec2.
__m128 myVector5 = _mm_shuffle_ps(myVector1, myVector2,          
                                  _MM_SHUFFLE(2, 3, 0, 1));

0element
value

1 2 3
4.0 = +6.0 8.0 10.0

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0

0element
value

1 2 3
0.0 = x5.0 12.0 21.0

0element
value

1 2 3
2.0 =3.0 4.0 5.0 s

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0



Steps for vectorization
• Identify (loop) to vectorize 
• Unroll (by the intended SIMD width) 
• Use the correct intrinsics to vectorize computation
• Move data from arrays to vectors 



Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
    for(int i=0; i<size; i++) {
        c[i] = a[i] + b[i];
   }
}



Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
    for(int i=0; i<size; i += 4) {
        c[i+0] = a[i+0] + b[i+0];
        c[i+1] = a[i+1] + b[i+1];
        c[i+2] = a[i+2] + b[i+2];
        c[i+3] = a[i+3] + b[i+3];
    }
}



Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
  for(int i=0; i<size; i += 4) {
      __m128 vecA = _mm_load_ps(a + i); // load 4 elts from a
      __m128 vecB = _mm_load_ps(b + i); // load 4 elts from b
      __m128 vecC = _mm_add_ps(vecA, vecB); // add four elts
     _mm_store_ps(c + i, vecC); // store four elts
  }
}



Many-core GPUs 



Generic GPU

Streaming
Multi-

processor
(SM)

CUDA 
cores

Special 
function units

Local 
memory



… or, using our CPU “symbols” 
• Instructions operate on 32 pieces of data at a 

time (called “warps”).
• Warp = thread issuing 32-wide vector instructions

• Up to 48 warps are simultaneously interleaved
• Over 1500 elements can be processed 

concurrently by a core

• Full board: 15 cores (SMs)!  

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Inside an NVIDIA GPU architecture



Inside an NVIDIA GPU architecture

• GigaThread Engine 
• SM’s = streaming multiprocessors 
• GPC = graphics processing clusters 
• TPC = texture processing clusters
• L2 cache 
• Memory controllers 
• NVLink 



Inside a Streaming Multiprocessor
• Different types of cores 

• CUDA Cores (INT/FP32)
• LD/ST
• Special function units

• Register file 
• Warp scheduler 
• Data caches 
• Instruction buffers/caches
• Texture units

Maxwell



More features … 
• Different types of cores 

• Adding: DP Units (Pascal)
• Adding: Tensor units (Volta)

• … <Pascal

Volta>



GPU Integration into the host system
• Typically based on a PCI Express bus
• Transfer speed (effectively, CPU-to-GPU):
 16 GT/s per lane x 16 lanes
• Can be NVLink (~10x faster) for specialized motherboards



NVIDIA GPUs (8+ years)
Fermi Kepler Maxwell Pascal Volta

GPU GTX480 GK180 GM200 GP100 GV100
Compute 
capability (CC)

2.x 3.5 5.2 6.0 7.0

SMs 16 15 24 56 80
TPCs 16 15 24 28 40
FP32 Cores / SM 32 192 128 64 64
FP64 “Cores” / SM 4 64 4 32 32
Clock[MHz] 700 875 1114 1480 1530
Peak FP32
[TFLOPs]

1.35 5.04 6.8 10.6 15.7

Peak FP64
[TFLOPs]

0.168 1.68 .21 5.3 7.8



Other players on the market 
• AMD (former ATI)

• Much better performance 
• Programmed using OpenCL (standard!)
• Poorer software drivers and infrastructure (so far) 
• A lot less libraries and tools
• Much smaller community effort 

• arm (formerly ARM J ) 
• Low-power devices (mobile platforms mostly) 
• Programmed using OpenCL 
• Lower performance than ATI and Intel, by choice 

• Intel 
• To support own CPUs with integrated graphics 
• Programmed using OpenCL 



All GPUs … 
• Have a similar architecture 

• Massively parallel 
• Simple cores 
• Complex memory system 

• Are programmed in a similar way 
• Fine-grain (SIMD/SIMT) parallelism

• Programming models ? 
• OpenCL is the de-facto standard for GPU programming
• Lots of efforts for C++
• Many other libraries and models on top of CUDA / OpenCL  



GPU Levels or Parallelism 
• Data parallelism (fine-grain) 

• Write 1 thread, instantiate a lot of them 
• SIMT (Single Instruction Multiple Thread) execution

• Many threads execute concurrently
• Same instruction
• Different data elements
• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths* 
• Hardware multithreading

• HW resource allocation & thread scheduling
• Excess of threads to hide latency
• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain) 
• Hardware mechanisms exist 
• Specific programming constructs to execute multiple tasks.  

• Heterogeneous computing 
• CPU is always present … 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



GPUs vs CPUs 



Why so different? 
• Different goals produce different designs!

• CPU must be good at everything
• GPUs focus on massive parallelism 

• Less flexible, more specialized 

• CPU: minimize latency experienced by 1 thread
• big on-chip caches
• sophisticated control logic

• GPU: maximize throughput of all threads
• # threads in flight limited by resources => lots of resources (registers, etc.)
• multithreading can hide latency => no big caches
• share control logic across many threads



CPU vs. GPU
68

Control

ALU ALU

ALU ALU

Cache

CPU
Low latency, high 
flexibility.
Excellent for irregular 
codes with 
limited parallelism.

GPU
High 

throughput. 
Excellent for 

massively 
parallel 

workloads. 



CPU vs GPU



CPU vs. GPU: the movie
• The Mythbusters

• Jamie Hyneman & Adam Savage
• Discovery Channel

• Appearance at NVIDIA’s NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI


PART 3: PERFORMANCE



Performance “metrics” 
• Clock frequency [GHz] = absolute hardware speed

• Memories, CPUs, interconnects

• Operational speed [GFLOPs]

• Operations per second, single/double/… precision 

• Memory bandwidth [GB/s]

• Memory operations per second

• Differs a lot between different memories on chip

• Derived metrics

• FLOP/Byte, FLOP/Watt



Theoretical peak performance
Throughput[GFLOP/s] = chips * cores * vectorWidth * 
     FLOPs/cycle * clockFrequency 
Bandwidth[GB/s] = memory bus frequency * bits per cycle * 
bus width

Cores Threads/ALUs Throughput Bandwidth
Intel Core i7 4 16 85 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264
Intel Xeon Phi 7120 61 240 2417 352



Why should we care? 
• Peak performance indicates an absolute bound of the performance that can be achieved on a 

given machine 
• It is *application independent* 

• Such performance is rarely* achievable in practice for real applications. 
• Applications rarely utilize all the machine features. 

• The balance of an application must consistently match the balance of the machine to get 
anywhere near the peak…

• ... or else… different bottlenecks! 

*Empirical studies show this reads as “almost never” .
https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master


Hardware performance



Performance “metrics” 
• Clock frequency [GHz] = absolute hardware speed

• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second
• single AND double precision 

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations ! 
• Differs a lot between different memories on chip

• Power [Watt] 
• The rate of consumption of energy 

• Derived metrics
• FLOP/Byte, FLOP/Watt



Theoretical peak performance
Throughput[GFLOP/s] = chips * cores * vectorWidth * 
     FLOPs/cycle * clockFrequency 
Bandwidth[GB/s] = memory bus frequency * bits per cycle * 
bus width

Cores Threads/ALUs Throughput Bandwidth
Intel Core i7 4 16 85 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264
Intel Xeon Phi 7120 61 240 2417 352



*multi* vs *many* cores (SP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

102

103

104

 2008  2010  2012  2014  2016  2018

G
FL

O
P/

se
c

End of Year

Theoretical Peak Performance, Single Precision

HD 3870

HD 4870

HD 5870

HD 6970

HD 6970
HD 7970 G

Hz E
d.

HD 8970
FirePro W9100

FirePro S9150

MI25

MI60

X5482

X5492

W
5590

X5680

X5690

E5-2690 E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Platin
um 8180 Platin

um 9282

8800 G
TS

GTX 280

GTX 285 GTX 580

GTX 580

GTX 680

GTX Tita
n

Tesla K
40

GTX Tita
n X

Tita
n X Tita

n V

Tita
n R

TX

Xeon Phi 7120 (KNC)

Xeon P
hi 7

290 (K
NL)

INTEL Xeon CPUs

NVIDIA GeForce GPUs

AMD Radeon GPUs

INTEL Xeon Phis



*multi* vs *many* cores (DP-FLOPs)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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*multi* vs *many* cores (GB/s)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

101

102

103

 2008  2010  2012  2014  2016  2018

G
B/

se
c

End of Year

Theoretical Peak Memory Bandwidth Comparison

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970
HD 7970 GHz Ed.

HD 8970
FirePro W

9100

FirePro S9150

MI25

MI60

X5482
X5492

W5590
X5680

X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Platinum 8180

Platinum 9282

Tesla C1060

Tesla C1060 Tesla C2050 Tesla M2090
Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

Xeon Phi 7120 (KNC)

Xeo
n 

Phi
 7

29
0 

(K
NL)

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis



Balance ? 
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FLOPs/Byte (SP) !



Balance ? 
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FLOPs/Byte (DP) !



Why should we care? 
• Peak performance indicates an absolute bound of the performance that can 

be achieved on a given machine 
• It is *application independent* 

• Such performance is rarely* achievable in practice for real applications. 
• Applications rarely utilize all the machine features. 

• The balance of an application must consistently match the balance of the 
machine to get anywhere near the peak…

• ... or else… different bottlenecks! 

*Empirical studies show this reads as “almost never” .

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master


Measuring hardware performance 
• Microbenchmarking* 

• Evaluates hardware features in isolation 
• Goal: find out the true limits of the hardware components 
• Platform-specific results
• Compared with the theoretical peak, per platform. 

• Benchmarking 
• Evaluates the FULL platform 
• Application-specific performance 

• Top500 – computation capability 
• Graph500 – graph processing capability 
• Green500 – energy consumption 

• Compares platforms 

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos.   ”Demystifying GPU Microarchitecture through 



Microbenchmarks
• Isolate specific features of the processing units and define specific stress tests for 

them. 

• Compute operations 
• CPU: nanoBench, likwid-bench, … 
• GPU: MIPP, various papers, …  

• Memory operations 
• ”memory mountain”  

• see Computer Systems: A Programmer’s Perspective  
• CPU: nanoBench, lmbench3, … 
• GPU: various papers 

• Different compute and memory mixes 
• STREAM / BabelStream / … 



Benchmarking suites 
• Collections of “representative” applications 
• Allow testing processors in real-life conditions and compare them 

• Application-specific benchmarking suites 
• Top500 
• Graph500 
• Green500 

• Scientific benchmarking suites:
• SPEC benchmarks 
• NAS parallel benchmarks 
• SPLASH-2 
• PARSEC 
• … 



The Roofline model

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: comparing architectures

AMD Opteron X2: 17.6 gflops, 15 GB/s, ops/byte = 1.17                                  AMD Opteron X4: 73.6 gflops, 15 GB/s, ops/byte = 4.9



Roofline: computational ceilings

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: bandwidth ceilings

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17



Roofline: optimization regions



Use the Roofline model
• Determine what to do first to gain performance

• Increase memory streaming rate 
• Apply in-core optimizations
• Increase arithmetic intensity

• Read:
Samuel Williams, Andrew Waterman, David Patterson
“Roofline: an insightful visual performance model for multicore architectures” 



Absolute hardware performance
• Only achieved in the optimal conditions:

• Processing units 100% used
• All parallelism 100% exploited
• All data transfers at maximum bandwidth

• In real life
• No application is like this
• Can we reason about “real” performance?

95



“REAL” hardware performance 
• Microbenchmarking* 

• Evaluates hardware features in isolation 
• Goal: find out the true limits of the hardware components 
• Platform-specific results
• Compared with the theoretical peak, per platform. 

• Benchmarking 
• Evaluates the FULL platform 
• Application-specific performance 

• Top500 – computation capability 
• Graph500 – graph processing capability 
• Green500 – energy consumption 

• Compares platforms 

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos.   ”Demystifying GPU Microarchitecture through 



What if you want to know more? 



Meet Hardware performance counters 
• A set of special-purpose registers built into modern microprocessors 

• Store the counts of hardware-related activities/events  

• Counters = the actual registers 
• Events = actual hardware events 

• Events / counters >> 1 => reprogramming the counters ! 

• Performance Monitoring Units: hardware units to monitor performance  
• Core: what happens at core level 
• Uncore: outside the core 



Types of counters (examples) 
Core-events 
• instructions retired
• elapsed core clock ticks
• core frequency 
• memory subsystem (L1, L2)

UnCore-events
• LLC
• Read/written bytes from/to memory controller(s)
• Data traffic transferred by the QPI links.

Literally hundreds and hundreds more 



Warnings : complexity 
• High-complexity of hardware => many different types of counters 

• It is rarely the case that a single event tells a complete story 

• Intel splits events in architectural and non-architectural
• i.e., processor independent vs. processor dependent 

• Different generations => different non-architectural counters 
• Different names 
• Different meanings 

• Typically used to confirm/infirm hypotheses 
• A counter on its own won’t tell you much if you don’t have any expectation … 



Tools & methods
• Low-level assembly code 

• Set what needs to be counted … 
• … and keep reading the register! 

• PAPI (http://icl.cs.utk.edu/papi/overview/index.html)
• Portable interface across devices
• Simple API to access most counters & operations 

• High-level tools 
• Intel VTune
• AMD uProf
• NVIDIA nsight/nvprof
• LIKWID 

• Lots of tools to simplify collection of performance counter data

#define rdpmc(counter,low,high) \
__asm__ __volatile__("rdpmc" \
: "=a" (low), "=d" (high) \
: "c" (counter))

c = counter code (from documentation) 
a, d = result 

int event[NUM_EV]={PAPI_TOT_INS, PAPI_TOT_CYC, PAPI_L1_DCM };
long long values[NUM_EV];

/* Start counting events */
PAPI_start_counters(event, NUM_EV);
//call function 
PAPI_read_counters(values, NUM_EV);

printf("Total instructions: %lld\n", values[0]);
/* Stop counting events */
PAPI_stop_counters(values, NUM_EVENTS)

http://icl.cs.utk.edu/papi/overview/index.html


Top500: the HPC pulse



HPC pulse
• TOP500 Project*

• The 500 most powerful computers in the world

• Benchmark: Rmax of LINPACK
• Solve the Ax=b linear system

• dense problem
• matrix A is random

• Dominated by dense matrix-matrix multiply

• Metric: FLOPS/s
• Computational throughput: number of floating point operations per second 

• Updated twice a year: latest is June 2023
*Read more: www.top500.org

http://www.top500.org/


TOP5(00)  
JUNE 2023

1 Exascale machine

1 custom-built machine

3 energy-efficient machines:
AMD, Intel+NVIDIA, IBM



Top500
June 2023

Lots of accelerators. 

Many many many cores.

High peak performance. 

Large gap from peak to 
“real” performance.

Let’s talk about energy. 

Gap:  20 – 30%
See more at: https://www.top500.org/



Green 500

Rank
TOP500 

Rank System Cores
Rmax 
(PFlop/s)

Power 
(kW)

Energy 
Efficiency 
(GFlops/watts)

1 255

Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 
2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo

8,288 2.88 44 65.396United States

2 34

Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation 
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

120,832 19.20 309 62.684United States

3 12

Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation 
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

319,072 46.10 921 58.021France

4 17

Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd 
Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-
11, HPE

181,248 27.16 477 56.983Australia

5 77

Dardel GPU - HPE Cray EX235a, AMD Optimized 3rd Generation 
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

52,864 8.26 146 56.491Sweden

https://www.top500.org/system/180087
https://www.top500.org/system/180087
https://www.top500.org/system/180053
https://www.top500.org/system/180053
https://www.top500.org/system/180051
https://www.top500.org/system/180051
https://www.top500.org/system/180123
https://www.top500.org/system/180123
https://www.top500.org/system/180123
https://www.top500.org/system/180126
https://www.top500.org/system/180126


PART 5: SUMMARY AND BEYOND
Where to? 



Today’s computing machines 
• Parallel at different levels 

• Multi- or many-cores 
• Core-level parallelism 
• CPU-accelerator(s) parallelism 
• None-level parallelism 

• Different performance and power “profiles” => different energy consumption => different 
energy efficiency envelops 

• Hardware-level performance 
• FLOPs (or INTOPs) for computation 
• GB/s for memory bandwidth 
• FLOPS/Watt for energy efficiency 

• Benchmarking machine performance 
• Micro-benchmarking vs. benchmarking 
• Diverse metrics => “performance counters” 



Programming and programmability 
• Diversity in hardware from nodes to system is challenging for programmers 

• A multitude of programming models with different trade-offs between 
productivity/programmability and performance exist and emerge 

• There exists important limitations in suppoting all models on all systems effectively 
and efficiently
• … meaning choices (and therefore criteria for such choices) are needed 

• System-level knowledge is difficult to acquire and use as programmer 
• But we should not stop trying. 

• Tools for programming, debugging, modelling, analysis, benchmarking exist
• But they could use further improvements. 



Performance/Efficiency will depend on … 

System integrators
Offer the right mix of resources 
for the application developers 
and system operators. 
Include efficient hardware to 
enable different application 
mixes. 

System operators 
Ensure efficient scheduling 
of workloads on system 
resources. 
Harvest energy where 
resources/systems are 
massively underutilized. 

Developers and users 
Improve the energy efficiency 
of their own codes, making use 
of algorithmic, programming, 
and hardware tools 
Design and implement 
applications able to adapt to 
the available system resources

Dolas, Sagar et al. “Making Scientific Research on Dutch National Supercomputer Energy Efficient.” ERCIM News 131, Oct. 2022
https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient

https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient


Looking forward
• Larger and more complex systems 

• With a stronger focus on energy efficiency

• More heterogeneous systems 
• At node, blade, and rack level 
• At memory-system level 

• More programming models, runtimes, and schedulers 
• Seamless integration possible, but unlikely 

• Gradual performance shift from pure HPC towards efficiency and sustainability
• Metrics and tools needed 

From: https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
Adapted from: Jim Naylor at https://www.cartoonstock.com/cartoon?searchID=CS273198

I don’t make 
predictions, and 

I never will! 

https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
https://www.cartoonstock.com/cartoon?searchID=CS273198

