TRANSFORMERS:
AGE OF PARALLEL MACHINES

Ana Lucia Varbanescu, University of Twente, NL
a.l.varbanescu@utwente.nl

UNIVERSITY
OF TWENTE.

mailto:a.l.varbanescu@utwente.nl

-
Agenda (ambitious)
Part 1 The anatomy of supercomputers
~Part 2 : What's in a name node? =
- Part 3 : Diversity in parallelism

- Part 4 : One more word about performance

- Part 5. Summary and beyond

- Famous last words ...

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”

PART 3: PARALLELISM DIVERSITY

Different parallelism models from hardware to software

-
First taxonomy: Michael Flynn (1966)

SISD Instruction Pool SIMD Instruction Pool

—————|PU|+

Single Instruction
Multiple Data

Single Instruction

— - |pul—

PU |~

Single Data

Data Pool
Data Pool

———[PU|-

———|PUl-

MISD Instruction Pool MIMD Instruction Pool

—|PU| L=|PU|-

Multiple Instructions
Multiple Data

—|PU|— =|PU|-

Lrod Lyl

Multiple Instructions

Data Pool
Data Pool

Single Data —|PUj —|PU]

—|pul~ [Pyl

Before 2005: technology push

Moore’ s Law

- Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of
semiconductor chips would double roughly every 18 months.

!
=1 [B

P e, P,]
 Minllen of GomtrssB s R T Cocd

.
N\ 3 o
L) / bR
\ N Y \ / o 7 N
h 5% o = R
fis i %, N
| \ g % RN
f \ R S & e
Y DO QNRBOO ° - g
\ OQUNSRSOUN ! A

Y e N e

Until early 2000s ...

More transistors = more performance

Intel CPU Trenr15

Thus, every 18 months, 100000 | 0UICES?Intey, Wikipeiia, K- Ojukotun}
we had better and faster
Processors. o

- Higher clock-speed 1,000

- Higher perf/cycle
- Same power

100

10

| Transistors (000)

@ Clock Speed (MHz)
aPower (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000

Wait ... why do | care”

- More transistors = ... ?

= more functionality
- Think more functional units, more complex units, etc....

- Higher perf/clock (aka, higher ILP)= ... ?

= more operations per cycle
- Faster overall applications (when they have different operations...)

- Higher clock frequency = ...7

= more operations per time unit
- Faster instructions => faster overall application

- Higher power = ... ?
= global warming ...
- Ideally, we want power consumption to be low

-
Until early 2000s ...

Parallelism = interesting and “quirky”, but not main-stream
- Pro: Better performance than frequency scaling would provide.

- Con: Parallelizing code was not always worth the effort
- Do nothing: the performance will double ~ every 18 months

-
Around 2005: “hitting the walls”

10,000,000
/
Du3a e |ta
1,000,000 2 - /-
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
100,000
10,000
Frequency wall
1,000
100 Power wall
e
? ‘/‘o oo
= g
1 m Transistors (000)
Py ° @ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0 [[

1970 1975 1980 1985 1990 1995 2000 2005 2010

Single core performance scaling

- The rate of single core performance scaling has significantly
decreased (essentially, to 0)
- Frequency scaling limited by power
- ILP scaling tapped out
- Design complexity posing serious limitations

- No more free lunch for software developers!
- No more dramatic increase of software performance for free.

So what?

10,000,000

/
2UdiLorele d Chip density can still
Intel CPU Trends A Increase about 2x every
100,000 {sources: Intel, Wikipedia, K. Olukotun} - 2 y e ar S
' BUT
1,000 \° Clock Speed is not
[336 =) /- Power is not
100 —=—2<— . Instruction Level
an A / Parallelism is not
10 / z/
/4) —ee
e T el

1970 1975 1980 1985 1990 1995 2004

° 1 What does this mean in practice?]

/ Single core process?l\

Traditionally ... single core CPUs

- More transistors = more functionality

Individual
- Improved technology = faster clocks = more speed Memory (cache)
- Every 18 months => better and faster processors. More individual

memory (cache)

K Bus interface j

Not anymore!
We no longer gain performance by “growing” sequential
Processors ...

_

New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs)
and many-core processors (GPUs).

The shift to multi-core

107 2
and ransistors
6 e (thousands)
10° | g 1
5 L | Single-Thread
i P *® | Performance
10% | " | (SpecINT x 10%
el el ". Frequency (MHz)
103 X a2 -
A Typical Power
102 B * - 2.. v "V' 'v" "‘* ” - (wattS)
so! x - ~ 3)v e . °'§ | Number of
. s B v .y Logical Cores
" i m g ¥ vy Ye¥ vwvvw . *»
10" I ‘ . S 6 B e W LMD M0Ne o d
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond. and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Multi-core CPUs

Generic multi-core CPU

Hardware threads

) SIMD units (vector lanes
Multi-core Processor ()

Peak
performanct

L1 and L2
dedicated
caches

l\ Bus Interface

Bandwidth —>1 Chip Boundary

Shared L3 cache

Main memory, 1/0O

CPU levels of parallelism

- Instruction-level parallelism (e.g., superscalar processors) (fine)
- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler
- typically in hardware
- SIMD parallelism = data parallelism (fine)
- Multiple operations *of the same kind* per cycle
- Run same instruction on vector data
- Sensitive to divergence
- Implemented by programmer OR compliler

- Multi-Core parallelism ~ task/data parallelism (coarse)

- 10s of powerful cores
- Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer

(1) ILP (Instruction level parallelism)

- Multiple instructions issued & executed in the same cycle

No parallelism | ILP support
- Instr. 1
ALU - Instr. 1+ Exec Exec
(Execute) 1 2
Sequential -

=T

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn://15418 courses cs cmtl edu/sorina?2016/lectires

http://15418.courses.cs.cmu.edu/spring2016/lectures

No programmer’s intervention!

Implementing ILP

- Super-scalar processors

- “dynamic scheduling”: instruction reordering and scheduling happens in hardware

- More complex hardware
* More area, more power ...

- Adopted in most high-end CPUs today

- VLIW processors

- "static scheduling”: instruction reordering and scheduling is done by the compiler

- Simpler hardware
» Less area, less power

- Adopted in most GPUs and embedded CPUs

(2) SIMD (single instruction, multiple data)

- Same instruction executed on multiple data items

- Cl['l.+1:| +=5 ALU1| |ALU2| |ALU3| |ALU4
ALU .

(Execute) - ALU5| [ALU6| |ALU7| |ALUS
“scalar”

(sequential) . “vector”

Cl['i_ +7:| +=5 (parallel)

==

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —

http://15418.courses.cs.cmu.edu/spring2016/lectures

Scalar vs SIMD operations

SIMD Mode Scalar Mode
 ODDE D
D OO DD
o ER T [

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html

Requires programmer’s (or compiler’s)
intervention!

Implementing SIMD

- SIMD extensions: special registers and functional units

- Multiple generations of SIMD extensions
- SSE4.x = 128 bits

- AVX/AVX2 = 256 bits (most available CPUs, DAS-5 included)
- AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

512 0
= cmmcmemcmmmecmoesanee-- 512 bits === -==============mmo - >
-=mommmane 256 bits --------- >

<-- 128 bits --»

ZMMO YMMO

SIMD programmer intervention

- Auto-vectorization

- Typically enabled with “-O” compiler flags
- Compiler directives

- Specifically add directives in the code to foree persuade the compiler to vectorize code
- C or C++ intrinsics

- Wrappers around ASM instructions
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly instructions
- Can write assembly to target SIMD

Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

(3) Multi-core parallelism

- Two (or more cores) to execute different streams of instructions.

ALU ALU
(Execute) (Execute)

= || B

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn://15418 courses cs cmtl edu/sorina?2016/lectires

http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

- Must define concurrent tasks to be executed in parallel
- Typically called (software) threads

- Threads are executed per core

- Under the OS scheduling
- Some control can be exercised with additional programmer intervention

Core 0
fori=1...n
do_something(i)
Core 1
fori=1...3"n fori=n+1...2*n
do_something(i) do_something(i)
Core 2
fori=2*n+1 ... 3*n
do_something(i)

Computer architecture talk

e
CPU features for ILP

- Instruction pipelining
- Multiple instructions “in-flight”

- Superscalar execution
- Multiple execution units

- Out-of-order execution
- Any order that does not violate data dependencies

- Branch prediction
- Speculative execution

Superscalar, Out-of-order

- A superscalar processor can issue and execute multiple instructions in one
cycle.

- The instructions are retrieved from a sequential instruction stream and are usually
scheduled dynamically.

- An out-of-order processor can reorder the execution of operations in
hardware.

- Superscalar, out-of-order processors can take advantage of the instruction
level parallelism that most programs have.

- Most modern CPUs are superscalar and out-of-order.
- Intel: since Pentium (1993)

-
Modern CPU Design

Instruction Control
Control Instruction

: Retirement

...... Unit

. Register Instruction PINILCIETelglS
File Decode)

Cache

Operations

Register Updates Prediction OK?

Functional
Units

\ 4 \ 4 A 4 A 4 A\ 4 A\ 4

Operation Results

Addr. Addr.

Data Data

Execution

Areal CPU ...

—tI 36 Entry Reservation Station
Port 0 Port 1 Port 5

L L
A Load
Internal Results Bus 128 bits| o8

Store
128 bits

Front End Instruction
CacheTag| L1 Instruction Cache

LOP Cache 32KiB 8-Way Instruction
kyLake
16 B!cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
P rip rﬁp rip rip P
150 Se22 brries)
] rip rip rip P

MicroCode 5\Way Decode

Seq;gacer Complex|| Simple || Simple || Simple || Simple
(MS ROM) |Decoder”Decoder”Decoder”Decoder”DecoderI
P

14 s
S pOPs
Decoded Stream Buffer (DSB)
(HOP Cache)
(1.5k LOPs; 8-Way)

(64 B window) \ L0 /

Opti m ize, reo rder, — P;:::j:'ﬁ;’ﬂ Allocation Queue (IDQ) (128, 2x64 POPs)

schedule uOps l l l
- - pOP poOP P pOP pOP pOP |Branch Order Buffer:

gister Alias Table (RAT) (BOB) (48-entry)
l]

91pAd/g19

Fetch & decode,
producing multiple
uOps

& Rename / Allocate / Retirement - : :

: Move Elimination ReOrder Buffer (224 entries) | ones Idioms | [Zeroing Idioms |
0

2 [E

e . . Scheduler : ;

) Integer Physical Register Filg) \Vector Physical Register File

§ E (180 Registers) Unified Re‘l;v::;lr;ztaﬁon (RS) (168 Registers)

[Portl |
0 32B/cycle

b o

Multiple execution
units, some SIMD

g1.Ls p=uiun
Aepa-v gni9se
ayoe) 7]

Image: https://en.wikichip.org/wiki/intel/microarchitec

Hardware multi-threading (or hyperthreading®)

"Are there hardware threads?!”

- Hardware (supported) multi-threading

- Core manages thread context
- Interleaved (temporal multi-threading) — employed in GPUs

- Simultaneous (co-located execution) — e.g., Intel Hyperthreading
Issue slots

I Thread 0
B Thread 1
[Thread 2
] Thread 4

Time

e
Why bother?

- Interleave the processing of multiple instruction streams on the same core to
hide the latency of stalls

- Requires replication of hardware resources
- Each thread uses its own PC to execute the instruction stream
- Requires replication of register file

- Performance improvement: higher throughput

Advantage: increased throughput

Thread 1
. Elements0...7
Time

o o o o

1 Core (1 thread)

-
Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements16...23 Elements 24... 31

OOo0oOoOoOooo oooooooo OoOooooooo oooooooo

© o

1 Core (4 hardware threads)

Runnable

Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
ElementsO0.. Elements8.. Elements 16... 23 Elements 24... 31

DCIDDCICICICI DCII:IDDDDD OO0 OOoOoo0 oooooooo

M > °
Stall -

h Stall
-l \[\
Runnable *

Runnable :
[T M § OO M
[IIIIII' \ [TITT] § (111117 'UIIII
/ [TTTT] § [TTITLN
DI[[[II]L]]I[[[D D]]I[[[JL[IIIII]]

Runnable
Done! b 4
Runnable

1 Core (4 hardware threads)

What about the memory?

.

L3 cache
(8 MB)

25 GB/sec

<)

- Three levels of cache: L1 (separate 1$ and D$, per-core), L2 (per-core), L3
(=LLC, shared)

Memory
DDR3 DRAM

(Gigabytes)

e
Putting it all together

- A modern CPU has a mix of all these features...

g T A e ey o oy 8 [
[- N | [[I
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache
% < On-chip
Interconnect
Memory
L3 Cache Controller

Memory Bus l
(to DRAM)

SIMD programming

Vectorization/SIMD options

- Auto-vectorization
- Both gcc and icc have support for it
- Successful for simple loops and data structures

- Compiler directives
- Both gcc and icc allow for specific pragma’s to enable vectorization
- Pragma’s are used to “force” the compiler to vectorize
/- C or C++: intrinsics)
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly Instructions
- Execute on vector registers

Using intrinsics

 https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions

 https://software.intel.com/sites/landingpage/IntrinsicsGuide/

- Requirements:
- Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Examples of intrinsics

float data[l1l024];
// init: data[0] = 0.0, data[l] = 1.0, data[2] = 2.0, etc.
init (data) ;

// Set all elements in my vector to zero.

element 0 1 2 3
'zl 00 0.0 0.0 0.0

_ _ml28 myVector0 = mm setzero ps();

// Load the first 4 elements of the array into my vector.

~_ml28 myVectorl = mm load ps(data); element 0 1 2 3
'zl 0.0 1.0 20 3.0

// Load the second 4 elements of the array into my vector.

128 Vector2 = load data+4) ;
_m myVector _mm_load ps(data+4) clement O

'z 40 50 6.0 7.0

Examples of intrinsics

// Add vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector3

_mm_add ps (myVectorl, myVector2);

element 0 1 2

101 40 6.0 8.0 10.0

3

element 0 1 2 3
20 3.0

0.0 1.0

value

+

element 0 1 2 3

40 5.0 6.

value

// Multiply vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector4

~mm mul ps(myVectorl, myVector2);

element 0

1

2

3

\cz\':3 0.0 5.0 120 21.0

element 0 1 3

value |} [111) 1.0 3.0

N
(=)

X

element 0

1

2

3

value | 3 5.0 6 7.0

I

// MM SHUFFLE (w,x,y,z) selects w&x from vecl and y&z from vec2.

__ml28 myVector5

_mm shuffle ps(myVectorl, myVector2,

_MM SHUFFLE(2, 3, 0, 1));

element 0 1 2 3

\'eI0Y 20 3.0 40 5.0

N
(=)

element 0 1

value | [111) 1.

0

2

3
3.0

S

element 0

value | 3

1
5.

0

2
6

7.0

I

Steps for vectorization

- Identify (loop) to vectorize
- Unroll (by the intended SIMD width)
- Use the correct intrinsics to vectorize computation

- Move data from arrays to vectors

e
Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i1=0; i<size; i++) {
c[i] = a[i] + b[i];

-
Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i=0; i<size; i += 4) {
c[i+0] = a[i+0] + b[i+O0];
c[i+l] = a[i+l] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {
~ ml28 vecA = mm load ps(a + i); // load 4 elts from a
~ ml28 vecB = mm load ps(b + i); // load 4 elts from b
~ ml28 vecC = mm add ps(vecA, vecB); // add four elts

~mm store ps(c + i, vecC); // store four elts

Many-core GPUs

Generic GPU

e t =g
4)
Host
Memory

\

©2010 The Portland Group, Inc.

Control

DMA

Device Memory

Execution Queue)
4 Y. e
P
Streaming CUDA -
Multi- cores
processor
(SM) Special = =
Local e
K / Cache Selectable Cache
+
(t Level ZtCache t t)

... or, using our CPU “symbols”

- Instructions operate on 32 pieces of data at a
time (called “warps”).
- Warp = thread issuing 32-wide vector instructions
- Up to 48 warps are simultaneously interleaved

- Over 1500 elements can be processed
concurrently by a core

- Full board: 15 cores (SMs)!

NVIDIA GTX 480 core

L]
L]

L) D
LI

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

= SIMD function unit,

control shared across 16 units
(1 MUL-ADD per clock)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —

http://15418.courses.cs.cmu.edu/spring2016/lectures

Inside an NVIDIA GPU architecture

PCI Express 3.0 Host Interface

Memory Controller
je|onuo) Aoweyy

s
2
5
o
e
2
S
b3

Jsponuon Aoweyy

Memory Controller
soponuo) owey

Memory Controller
qjonuo)) Aowey

2 2 2 ~
NVLink NVLink NVLink

e
Inside an NVIDIA GPU architecture

GigaThread Engine

SM’s = streaming multiprocessors
GPC = graphics processing clusters

TPC = texture processing clusters
L2 cache

Memory controllers

NVLink

PolyMorph Engine 2.0
Vertex Fetch Tessellator | | Viewport Transform

| | Stream Output

Instruction Cache

n u n -
n e e nn n e Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
S I a r a I u I ro C S S O r Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
£ RS 1 T 2 R I I

Register File (65,536 x 32-bit)

4 3 & $ 4 3 3 $
Core Core LD/ST SFU |Core Core Core Core

- Different types of cores

Core Core SFU Core Core Core Core

- CUDA Cores (INT/FP32)
. LD/ST

64 KB Shared Memory / L1 Cache

- Special function units T
- Register file o - i
- Warp scheduler o =
- Data caches —| T
- Instruction buffers/caches —
- Texture units \

Uniform Cache |

Maxwell

L1 Instruction Cache

LO Instruction Cache LO Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

M O re fe at u re S " = m Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

. Different types of cores

FP64 INT INT FP32 FP32 L. onp TENSOR FP64 INT (INT FP32 FP32 L cop TENSOR
CORE CORE CORE CORE

. Ad d i n g : D P U n itS (Pascal) FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

- Adding: Tensor units (Volta)

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Instruction Buffer i LO Instruction Cache LO Instruction Cache

Warp Scheduler Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Déspatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
3 s a3 ¥ .

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

Core Core Core Core FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

Core Core Core Core FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 TENSOR TENSOR FP64 INT INT [FP32 FP32 TENSOR TENSOR

FP64 INT INT [FP32 FP32 GORE KRk FP64 INT INT FP32 FP32 GORE GORE

Core Core Core

Core Core Core

FP64 INT INT [FP32 FP32 FP64 INT INT [FP32 FP32
Core Core

= FP64 INT INT |FP32 FP32 FP64 INT INT |FP32 FP32
ore

= FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32
ore

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

GPU Integration into the host system

- Typically based on a PCI Express bus

- Transfer speed (effectively, CPU-to-GPU):
16 GT/s per lane x 16 lanes

- Can be NVLink (~10x faster) for specialized motherboards

NVIDIA GPUs (8+ years)
—mmmm

GTX480 GK180 GM200 GP100 GV100

Compute 2.X 3.5 5.2 6.0 7.0
capability (CC)

FP32 Cores / SM

FP64 “Cores” / SM

Clock[MHZ]

Peak FP32 1.35 5.04 6.8 10.6 15.7
[TFLOPS]

Peak FP64 0.168 1.68 21 5.3 7.8

[TFLOPS]

Other players on the market

- AMD (former ATI)

- Much better performance
- Programmed using OpenCL (standard!)
- Poorer software drivers and infrastructure (so far)
- Alot less libraries and tools
- Much smaller community effort

- arm (formerly ARM ©)
- Low-power devices (mobile platforms mostly)
- Programmed using OpenCL
- Lower performance than ATI and Intel, by choice

- Intel
- To support own CPUs with integrated graphics
- Programmed using OpenCL

RADEON

GRAPHICS

AMDC

Intel

GRAPHICS

e
All GPUs ...

- Have a similar architecture
- Massively parallel
- Simple cores
- Complex memory system

- Are programmed in a similar way
- Fine-grain (SIMD/SIMT) parallelism

- Programming models ?
- OpenCL is the de-facto standard for GPU programming
- Lots of efforts for C++
- Many other libraries and models on top of CUDA / OpenCL

GPU Levels or Parallelism

- Data parallelism (fine-grain)
- Write 1 thread, instantiate a lot of them

- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
« Same instruction
- Different data elements
« HW automatically handles divergence

- Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading

- HW resource allocation & thread scheduling
« Excess of threads to hide latency
« Context switching is (basically) free

- Task parallelism is “emulated” (coarse-grain)

- Hardware mechanisms exist
- Specific programming constructs to execute multiple tasks.

- Heterogeneous computing
- CPU is always present ...

*http://lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

GPUs vs CPUs

e
Why so different?

- Different goals produce different designs!
- CPU must be good at everything
- GPUs focus on massive parallelism
- Less flexible, more specialized
- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic
- GPU: maximize throughput of all threads
- # threads in flight limited by resources => lots of resources (registers, etc.)

- multithreading can hide latency => no big caches
- share control logic across many threads

CPU vs. GPU

Excellent for irregular

Low latency, high
codes with

flexibility.

CPU

limited parallelism.

ALU
ALU

o

.

f—

c

(o)
-

<
o)
I

£ 520 o
U:nlue%%
pt.Nma
568 T
UlSpH
O O o
O £
£ X =
L

e
CPU vs GPU

CPU vs. GPU memory hierarchies

L;;altshe
25 GB/sec Memory
Core 1
L2 cache ﬁ DDR3 DRAM
(256 KB)
(Gigabytes)
L3 cache
(8 MB)
L1 cache
(32KB)
CoreN (PU:
Pl Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
GFX
texture
cache
(12KB)
Core1 ——— 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
=1 |(768KB)
texture
cache
(12KB) GPU:
CoreN
scratchpad Small caches, many threads, huge memory BW
L1 cache . . .
(64KB) Rely mainly on multi-threading
| CMU 15-418/618, Spring 2016

e
CPU vs. GPU: the movie

- The Mythbusters

- Jamie Hyneman & Adam Savage
- Discovery Channel

- Appearance at NVIDIA's NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWT zr|

e e e e A

MYTHBUSTERS!

https://www.youtube.com/watch?v=-P28LKWTzrI

PART 3: PERFORMANCE

Performance “metrics’

- Clock frequency [GHz] = absolute hardware speed

Memories, CPUs, interconnects

- Operational speed [GFLOPs]

Name FLOPS |
yottaFLOPS 1024
zettaFLOPS 102!
exaFLOPS 1018
petaFLOPS 10'°
teraFLOPS 1012

gigaFLOPS 10%
FLOP/Byte, FLOP/Watt megaFLOPS 108

- Operations per second, single/double/... precision
Memory bandwidth [GB/s]
Memory operations per second

Differs a lot between different memories on chip

Derived metrics

kiloFLOPS 10°

Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width
—
Intel Core i7 25.6
AMD Barcelona 4 8 37 214
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352

Why should we care?

- Peak performance indicates an absolute bound of the performance that can be achieved on a
given machine

- It is *application independent*

- Such performance is rarely* achievable in practice for real applications.

- Applications rarely utilize all the machine features.

- The balance of an application must consistently match the balance of the machine to get
anywhere near the peak...

- ... or else... different bottlenecks!

*Empirical studies show this reads as “almost never” .
https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Hardware performance

Performance “metrics’

- Clock frequency [GHz] = absolute hardware speed
- Memories, CPUs, interconnects

- Operational speed [GFLOPs] Name FLOPS |

- Operations per second
- single AND double precision yottaFLOPS 1024
1
. Memory bandwidth [GBI/s] zettaFLOPS 107
- Memory operations per second exaFLOPS 1018
- Can differ for read and write operations !
- Differs a lot between different memories on chip petaFLOPS 1015
- Power [Watt] teraFLOPS 10'2

- The rate of consumption of energy

gigaFLOPS 10%

- Derived metrics megaFLOPS 108
. FLOP/Byte, FLOP/Watt
kiloFLOPS 10°

Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width
—
Intel Core i7 25.6
AMD Barcelona 4 8 37 214
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352

multi vs *many” cores (SP-FLOPSs)

Theoretical Peak Performance, Single Precision

T T T T T ! «s\\
' % 3\ <™
Ll i i P S P RS R LY iy -
St]
S
o l
o 891 e
Z - : '
<t Xeon Phi 7120 (KNC) Q@ !
3 o> :
@ o8 !
e Tl R R T e e S < - R c o e
g %QDQQ '
S .
\e\o
2 | Ae————e 40 S . : : 1 i
107 F 2 S =S . . . INTEL Xeon CPUs =——fe—
+* +* N ! ! !
. | . - NVIDIA GeForce GPUs —JJi—
' : : : AMD Radeon GPUs +
X X X X INTEL Xeon Phis =g
1 1 1 1 1 1
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

multi vs *many™ cores (DP-FLOPSs)

GFLOP/sec

Theoretical Peak Performance, Double Precision

10%

102

X X X X MI60]
I I I LD 1
N
: : : N -]
' ' ' S <O ! cqucbrz/
1 i 1 - & f '((\
| | | < S
: : : St S :
! ! .\139 & \q;i\
' ' D> t'o\(b 6"9 '
| . <& <@ «
. . . .
: : g v
"""""""" L SRR\ S R Sy . S Xeon Phi 7120 (KNGY T 7T S A
! N © S . < S\ Xeon FPhi 7120 ()]
. < \3\0 . \2\0 Vs S .
; Y o Y _~
! A o o >
, @Q/Q% \2\0’\ , Lo Q’Q)\\ @ﬂg?@ .
: - > ' o a© <L E
© | <& & <& =
S ! <°Q \ .
‘?‘ ' IC)Q’Q
N\
S e : ,\\\(7/
Q:\Q 1 ’\Q 1 g (?/Q)g Il
o7 S o PSSR =1
/\6%\’0: <&
o < INTEL Xeon CPUs =iy
' o S
. Y 4 45 NVIDIA Tesla GPUs —Jill—
bibq’ ll}qu’ 6696 : AMD Radeon GPUs +
+° + v : INTEL Xeon Phis =g
1 1 1 1 1 1
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

multi vs *many”* cores (GB/s)

Theoretical Peak Memory Bandwidth Comparison

T T T T !)
103 ----------------------------------- e e e e e e e e e e e - e e e e e e e e e e oo O =151 £ WV 1O 1O I : - el
N\CN
/\
S\S)
19 S 1° 69’16 ' Tesla K40
e
O s Xeon Phi 7120 (KNC) o

O Tesla K20X , 2

[&] ! ’i'\(\ l

3 .
m 2 L ey - - N mmmmmmm— OOl 'l M L, A N

N0 IR NP o aaaeanananind RIS s e e e e T e T 1 —
(O] \]

O -

MG 0O N : : : :

. W &7 427 | | | '
b L - : : INTEL Xeon CPUs ==l
= = . . . NVIDIA Tesla GPUs —JJJ—
; AMD Radeon GPUs =—@)—
X X X X INTEL Xeon Phis =g

101 1 1 1 1 1 1

2008 2010 2012 2014 2016 2018

End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Balance ? FLOPs/Byte (SP) !

Theoretical Peak Floating Point Operations per Byte, Single Precision

10 b----

FLOP per Byte

T

iNTEL Xeon CPUs
NVIDIA Geforce GPUs
AMD Radeon GPUs
. . INTEL Xeon Phis
1 1 1 1 1 1
2008 2010 2012 2014 2016 2018
End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FLOPs/Byte (DP) |

Balance ?

Theoretical Peak Floating Point Operations per Byte, Double Precision

FLOP per Byte

iNTEL Xeon CPUs
NVIDIA Tesla GPUs
AMD Radeon GPUs
INTEL Xeon Phis

End of Year

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

2016

+:
—@— |

Why should we care?

- Peak performance indicates an absolute bound of the performance that can
be achieved on a given machine
- It is *application independent*

- Such performance is rarely” achievable in practice for real applications.
- Applications rarely utilize all the machine features.

- The balance of an application must consistently match the balance of the

machine to get anywhere near the peak...
- ... or else... different bottlenecks!

*Empirical studies show this reads as “almost never” .

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Measuring hardware performance

- Microbenchmarking*
- Evaluates hardware features in isolation
- Goal: find out the true limits of the hardware components
- Platform-specific results
- Compared with the theoretical peak, per platform.

- Benchmarking

- Evaluates the FULL platform

- Application-specific performance
- Top500 — computation capability
- Graph500 — graph processing capability
- Green500 — energy consumption

- Compares platforms

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos. “Demystifying GPL

Microbenchmarks

- Isolate specific features of the processing units and define specific stress tests for
them.

- Compute operations

- CPU: nanoBench, likwid-bench, ...
- GPU: MIPP, various papers, ...

- Memory operations

- “memory mountain”
- see Computer Systems: A Programmer’s Perspective

- CPU: nanoBench, Imbench3, ...
- GPU: various papers

- Different compute and memory mixes
- STREAM / BabelStream / ...

Benchmarking suites

- Collections of “representative” applications
- Allow testing processors in real-life conditions and compare them

- Application-specific benchmarking suites
- Top500
- Graph500
- Green500

- Scientific benchmarking suites:
- SPEC benchmarks
- NAS parallel benchmarks
- SPLASH-2
- PARSEC

The Roofline model

128
64
o
g 32
m
o W
L) 16 A0 peak floating-point performance
& |
o
= 3 oy I
2 e\\‘v‘:\l
@
= el = o 1
¢ - N
$ 4 2 | z
) S =)
o
E gl e S|
2 =2 53
e < I T Q I
<5 5 &
"'._'_.-. C)l s} 2
: g g = el
8 2 g 5
SE &8

1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: comparing architectures

128
Opteron X4
64
" 32
E_ Opteron X2
E 16 _—
(L) -
2 8 -
£ -
g +p=
<
2
1

1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

AMD Opteron X2: 17.6 gflops, 15 GB/s, ops/byte = 1.17 AMD Opteron X4: 73.6 gflops, 15 GB/s, ops/byte = 4.9

Roofline: computational ceilings

128

B4

32

peak floating-point performance

16 \
\5’&(@3«“ 2. floating-point balance

: oo v 1. ILP or SIMD

Attainable GFlops/sec

2 TLP only

1/2

1/8 1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: bandwidth ceilings

128

B4

32

peak floating-point performance

16

Attainable GFlops/sec
(o0)

1/2

1/8 1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Roofline: optimization regions

128
64
0 32
= peak floating-point performance
a 16 _
) 2. floating-point balance
5 8
&) 1. ILP or SIMD
2 |
£ 4
g |
<
z | TLP only
: |
Kernel 1 Kernel 2
1/2
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Use the Roofline model

- Determine what to do first to gain performance
- Increase memory streaming rate
- Apply in-core optimizations
- Increase arithmetic intensity

- Read:

Samuel Williams, Andrew Waterman, David Patterson
“‘Roofline: an insightful visual performance model for multicore architectures”

Absolute hardware performance

- Only achieved in the optimal conditions:
- Processing units 100% used
- All parallelism 100% exploited
- All data transfers at maximum bandwidth

- In real life
- No application is like this
- Can we reason about “real” performance?

"REAL" hardware performance

- Microbenchmarking*
- Evaluates hardware features in isolation
- Goal: find out the true limits of the hardware components
- Platform-specific results
- Compared with the theoretical peak, per platform.

- Benchmarking

- Evaluates the FULL platform

- Application-specific performance
- Top500 — computation capability
- Graph500 — graph processing capability
- Green500 — energy consumption

- Compares platforms

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos. “Demystifying GPL

What if you want to know more?

Meet Hardware performance counters

- A set of special-purpose registers built into modern microprocessors

- Store the counts of hardware-related activities/events

- Counters = the actual registers

- Events = actual hardware events
:) &9 69 68 K
- Events / counters >> 1 => reprogramming the counters ! (T - o

A A A

UnCore

- Performance Monitoring Units: hardware units to n
- Core: what happens at core level QP! Controller
- Uncore: outside the core

Memory Controller

QPI Controller

(DMI Controllerx x16 PCI-E)

DMI Link Two x8 PCI-E Two Memory Channels

Types of counters (examples)

Core-events

- instructions retired

- elapsed core clock ticks

- core frequency

- memory subsystem (L1, L2)

UnCore-events

- LLC

- Read/written bytes from/to memory controller(s)
- Data traffic transferred by the QPI links.

Literally hundreds and hundreds more

Warnings : complexity

- High-complexity of hardware => many different types of counters
- It is rarely the case that a single event tells a complete story

- Intel splits events in architectural and non-architectural
- i.e., processor independent vs. processor dependent

- Different generations => different non-architectural counters
- Different names
- Different meanings

- Typically used to confirm/infirm hypotheses
- A counter on its own won't tell you much if you don’t have any expectation ...

Tools & methods

- Low-level assembly code
- Set what needs to be counted ...
- ... and keep reading the register!

- PAPI (http://icl.cs.utk.edu/papi/overview/index.html)
- Portable interface across devices
- Simple API to access most coun’

int event[NUM EV]={PAPI_TOT INS, PAPI_ TOT CYC, PAPI L1 DCM };
long long values[NUM EV];

- High-level tools

/* Start counting events */
- Intel VTune

PAPI start_counters(event, NUM EV);

- AMD uProf //call function
- NVIDIA nsight/nvprof PAPI read counters(values, NUM EV);
- LIKWID

_ . ~ printf("Total instructions: %11ld\n", values[0]);
- Lots of tools to simplify collection /+ stop counting events */

PAPI_stop_counters(values, NUM_EVENTS)

http://icl.cs.utk.edu/papi/overview/index.html

-
Top500: the HPC pulse

-
HPC pulse

- TOP500 Project”

- The 500 most powerful computers in the world

- Benchmark: Rmax of LINPACK

- Solve the Ax=b linear system
- dense problem

- matrix A is random

- Dominated by dense matrix-matrix multiply

- Metric: FLOPS/s

- Computational throughput: number of floating point operations per second

- Updated twice a year: latest is June 2023

*Read more:; www.top500.0ro

http://www.top500.org/

TOP5(00)
JUNE 2023

1 Exascale machine

Rank

2

1 custom-built machin/

3 energy-efficient machin
AMD, Intel+NVIDIA, IBM

3

4

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0ak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA
HDR100 Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0ak Ridge National Laboratory

United States

Cores

8,699,904

7,630,848

2,220,288

1,824,768

2,414,592

Rmax
(PFlop/s)

1,194.00

442.01

309.10

238.70

148.60

Rpeak
(PFlop/s)

1,679.82

537.21

428.70

304.47

200.79

Power
(kW)

22,703

29,899

6,016

7,404

10,096

Rmax Rpeak Power

Rank System Cores (PFlop/s) (PFlop/s) (kW) TO p 5 O O
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,194.00 1,679.82 J 2023

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Lots of accelerators.

Slingshot-11, HPE
DOE/SC/0Oak Ridge National Laboratory
United States

2 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 7,630,848 442.01
48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Many many many cores.

Japan]
High peak performance.
3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,220,288 309.10
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC Large gap from peak to
Fintand “real” performance.
4 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 1,824,768 238.70
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA
HDR100 Infiniband, Atos ,
EuroHPC/CINECA Let’s talk about energy.
Italy
5 Summit - IBM Power System AC922, IBM POWER9 22C 2,614,592 148.60
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM
DOE/SC/Oak Ridge National Laboratory .
United States Gap: 20 — 30%

See more at: https://www.top500.org/

e
Green 500

Energy
TOPS500 Rmax Power Efficiency
Rank Rank System Cores (PFlop/s) (kW) (GFlops/watts)

Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C
2.8GHz, NVIDIA H100 80GB PCle, Infiniband HDR, Lenovo

1 255 United States 8,288 2.88 44 65.396
Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

2 34 United States 120,832 19.20 309 62.684
Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE

3 12 France 319,072 46.10 921 58.021
Setonix — GPU - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI1250X, Slingshot-
11, HPE

4 17 Australia 181,248 27.16 477 56.983
Dardel GPU - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI1250X, Slingshot-11, HPE

5 77 Sweden 52,864 8.26 146 56.491

https://www.top500.org/system/180087
https://www.top500.org/system/180087
https://www.top500.org/system/180053
https://www.top500.org/system/180053
https://www.top500.org/system/180051
https://www.top500.org/system/180051
https://www.top500.org/system/180123
https://www.top500.org/system/180123
https://www.top500.org/system/180123
https://www.top500.org/system/180126
https://www.top500.org/system/180126

PART 5: SUMMARY AND BEYOND

Where t0?

Today’'s computing machines

Parallel at different levels

 Multi- or many-cores

- Core-level parallelism

- CPU-accelerator(s) parallelism

- None-level parallelism

Different performance and power “profiles” => different energy consumption => different
energy efficiency envelops
Hardware-level performance

- FLOPs (or INTOPs) for computation

- GB/s for memory bandwidth

- FLOPS/Watt for energy efficiency
Benchmarking machine performance

- Micro-benchmarking vs. benchmarking

- Diverse metrics => “performance counters”

Programming and programmability

- Diversity in hardware from nodes to system is challenging for programmers

- A multitude of programming models with different trade-offs between
productivity/programmability and performance exist and emerge

- There exists important limitations in suppoting all models on all systems effectively
and efficiently
- ... meaning choices (and therefore criteria for such choices) are needed

- System-level knowledge is difficult to acquire and use as programmer
- But we should not stop trying.

- Tools for programming, debugging, modelling, analysis, benchmarking exist
- But they could use further improvements.

Performance/Efficiency will depend on ...

..................

...
¢¢¢¢¢
3 LN

Developers and users

System integrators

System operators

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

for the application developers of workloads on system
and system operators. resources.

Include efficient hardware to
Design and implement enable different application '

applications able to adapt to mixes. i massively underutilized.
the available system resources/ ’"

Harvest energy where

i
1
|
1
1
i
1
1
1
1
Offer the right mix of resources: | Ensure efficient scheduling
I
|
i
i
1
I
l:' resources/systems are

o5 T N M NN NN N N N N

o,
0
....
. .

...........................
...................................

Dolas, Sagar et al. “Making Scientific Research on Dutch National Supercomputer Energy Efficient.” ERCIM News 1317, Oct. 2022
https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient

https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient

| don’'t make
predictions, and

LOOking forward | never will

PR uRE>

- Larger and more complex systems PAST
- With a stronger focus on energy efficiency

- More heterogeneous systems e
- At node, blade, and rack level
- At memory-system level

- More programming models, runtimes, and schedulers
- Seamless integration possible, but unlikely

- Gradual performance shift from pure HPC towards efficiency and sustainability
- Metrics and tools needed

From: https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
Adapted from: Jim Naylor at hitps://www.cartoonstock.com/cartoon?search!D=CS273198

https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
https://www.cartoonstock.com/cartoon?searchID=CS273198

