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Agenda (ambitious)
Part 1 The anatomy of supercomputers
~Part 2 : What's in a name node? =
- Part 3 : Diversity in parallelism

- Part 4 : One more word about performance

- Part 5. Summary and beyond

- Famous last words ...

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”



PART 3: PARALLELISM DIVERSITY

Different parallelism models from hardware to software
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First taxonomy: Michael Flynn (1966)
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Before 2005: technology push



Moore’ s Law

- Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of
semiconductor chips would double roughly every 18 months.
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Until early 2000s ...

More transistors = more performance

Intel CPU Trenr15

Thus, every 18 months, 100000 | 0UICES?Intey, Wikipeiia, K- Ojukotun}
we had better and faster
Processors. o

- Higher clock-speed 1,000

- Higher perf/cycle
- Same power
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Wait ... why do | care”

- More transistors = ... ?

= more functionality
- Think more functional units, more complex units, etc....

- Higher perf/clock (aka, higher ILP)= ... ?

= more operations per cycle
- Faster overall applications (when they have different operations...)

- Higher clock frequency = ...7

= more operations per time unit
- Faster instructions => faster overall application

- Higher power = ... ?
= global warming ...
- Ideally, we want power consumption to be low



-
Until early 2000s ...

Parallelism = interesting and “quirky”, but not main-stream
- Pro: Better performance than frequency scaling would provide.

- Con: Parallelizing code was not always worth the effort
- Do nothing: the performance will double ~ every 18 months
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Around 2005: “hitting the walls”
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Single core performance scaling

- The rate of single core performance scaling has significantly
decreased (essentially, to 0)
- Frequency scaling limited by power
- ILP scaling tapped out
- Design complexity posing serious limitations

- No more free lunch for software developers!
- No more dramatic increase of software performance for free.



So what?
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/ Single core process?l\

Traditionally ... single core CPUs

- More transistors = more functionality

Individual
- Improved technology = faster clocks = more speed Memory (cache)
- Every 18 months => better and faster processors. More individual

memory (cache)

K Bus interface j

Not anymore!
We no longer gain performance by “growing” sequential
Processors ...

\_




New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs)
and many-core processors (GPUs).




The shift to multi-core
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Multi-core CPUs



Generic multi-core CPU

Hardware threads

) SIMD units (vector lanes
Multi-core Processor ( )

Peak
performanct

L1 and L2
dedicated
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CPU levels of parallelism

- Instruction-level parallelism (e.g., superscalar processors) (fine)
- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler
- typically in hardware
- SIMD parallelism = data parallelism (fine)
- Multiple operations *of the same kind* per cycle
- Run same instruction on vector data
- Sensitive to divergence
- Implemented by programmer OR compliler

- Multi-Core parallelism ~ task/data parallelism (coarse)

- 10s of powerful cores
- Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer



(1) ILP (Instruction level parallelism)

- Multiple instructions issued & executed in the same cycle

No parallelism | ILP support
- Instr. 1
ALU - Instr. 1+ Exec Exec
(Execute) 1 2
Sequential -

=T

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn://15418 courses cs cmtl edu/sorina?2016/lectires



http://15418.courses.cs.cmu.edu/spring2016/lectures

No programmer’s intervention!

Implementing ILP

- Super-scalar processors

- “dynamic scheduling”: instruction reordering and scheduling happens in hardware

- More complex hardware
* More area, more power ...

- Adopted in most high-end CPUs today

- VLIW processors

- "static scheduling”: instruction reordering and scheduling is done by the compiler

- Simpler hardware
» Less area, less power

- Adopted in most GPUs and embedded CPUs



(2) SIMD (single instruction, multiple data)

- Same instruction executed on multiple data items

- Cl['l.+1:| +=5 ALU1| |ALU2| |ALU3| |ALU4
ALU .

(Execute) - ALU5| [ALU6| |ALU7| |ALUS
“scalar”

(sequential) . “vector”

Cl['i_ +7:| +=5 (parallel)

==

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —



http://15418.courses.cs.cmu.edu/spring2016/lectures

SIMD programmer intervention

- Auto-vectorization

- Typically enabled with “-O” compiler flags
- Compiler directives

- Specifically add directives in the code to foree persuade the compiler to vectorize code
- C or C++ intrinsics

- Wrappers around ASM instructions
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly instructions
- Can write assembly to target SIMD



Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

(3) Multi-core parallelism

- Two (or more cores) to execute different streams of instructions.

ALU ALU
(Execute) (Execute)

= || B

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn://15418 courses cs cmtl edu/sorina?2016/lectires


http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

- Must define concurrent tasks to be executed in parallel
- Typically called (software) threads

- Threads are executed per core

- Under the OS scheduling
- Some control can be exercised with additional programmer intervention

Core 0
fori=1...n
do_something(i)
Core 1
fori=1...3"n fori=n+1...2*n
do_something(i) do_something(i)
Core 2
fori=2*n+1 ... 3*n
do_something(i)




What about the memory?

.

L3 cache
(8 MB)

25 GB/sec

<)

- Three levels of cache: L1 (separate 1$ and D$, per-core), L2 (per-core), L3
(=LLC, shared)

Memory
DDR3 DRAM

(Gigabytes)
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Putting it all together

- A modern CPU has a mix of all these features...
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L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache
% < On-chip
Interconnect
Memory
L3 Cache Controller

Memory Bus l
(to DRAM)



Many-core GPUs



Generic GPU
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... or, using our CPU “symbols”

- Instructions operate on 32 pieces of data at a
time (called “warps”).
- Warp = thread issuing 32-wide vector instructions
- Up to 48 warps are simultaneously interleaved

- Over 1500 elements can be processed
concurrently by a core

- Full board: 15 cores (SMs)!

NVIDIA GTX 480 core

L]
L]

L) D
LI

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

= SIMD function unit,

control shared across 16 units
(1 MUL-ADD per clock)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —


http://15418.courses.cs.cmu.edu/spring2016/lectures

Inside an NVIDIA GPU architecture

PCI Express 3.0 Host Interface

Memory Controller
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Inside an NVIDIA GPU architecture

GigaThread Engine

SM’s = streaming multiprocessors
GPC = graphics processing clusters

TPC = texture processing clusters
L2 cache

Memory controllers

NVLink
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Vertex Fetch Tessellator | | Viewport Transform
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L1 Instruction Cache
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GPU Integration into the host system

- Typically based on a PCI Express bus

- Transfer speed (effectively, CPU-to-GPU):
16 GT/s per lane x 16 lanes

- Can be NVLink (~10x faster) for specialized motherboards




NVIDIA GPUs (8+ years)
—mmmm

GTX480 GK180 GM200 GP100 GV100

Compute 2.X 3.5 5.2 6.0 7.0
capability (CC)

FP32 Cores / SM

FP64 “Cores” / SM

Clock[MHZ]

Peak FP32 1.35 5.04 6.8 10.6 15.7
[TFLOPS]

Peak FP64 0.168 1.68 21 5.3 7.8

[TFLOPS]



Other players on the market

- AMD (former ATI)

- Much better performance
- Programmed using OpenCL (standard!)
- Poorer software drivers and infrastructure (so far)
- Alot less libraries and tools
- Much smaller community effort

- arm (formerly ARM © )
- Low-power devices (mobile platforms mostly)
- Programmed using OpenCL
- Lower performance than ATI and Intel, by choice

- Intel
- To support own CPUs with integrated graphics
- Programmed using OpenCL

RADEON

GRAPHICS

AMDC

Intel

GRAPHICS
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All GPUs ...

- Have a similar architecture
- Massively parallel
- Simple cores
- Complex memory system

- Are programmed in a similar way
- Fine-grain (SIMD/SIMT) parallelism

- Programming models ?
- OpenCL is the de-facto standard for GPU programming
- Lots of efforts for C++
- Many other libraries and models on top of CUDA / OpenCL



GPU Levels or Parallelism

- Data parallelism (fine-grain)
- Write 1 thread, instantiate a lot of them

- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
« Same instruction
- Different data elements
« HW automatically handles divergence

- Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading

- HW resource allocation & thread scheduling
« Excess of threads to hide latency
« Context switching is (basically) free

- Task parallelism is “emulated” (coarse-grain)

- Hardware mechanisms exist
- Specific programming constructs to execute multiple tasks.

- Heterogeneous computing
- CPU is always present ...

*http://lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



GPUs vs CPUs



e
Why so different?

- Different goals produce different designs!
- CPU must be good at everything
- GPUs focus on massive parallelism
- Less flexible, more specialized
- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic
- GPU: maximize throughput of all threads
- # threads in flight limited by resources => lots of resources (registers, etc.)

- multithreading can hide latency => no big caches
- share control logic across many threads



CPU vs. GPU

Excellent for irregular
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e
CPU vs GPU

CPU vs. GPU memory hierarchies

L;;altshe
25 GB/sec Memory
Core 1
L2 cache ﬁ DDR3 DRAM
(256 KB)
(Gigabytes)
L3 cache
(8 MB)
L1 cache
(32KB)
CoreN (PU:
Pl Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
GFX
texture
cache
(12KB)
Core1 ——— 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
=1 |(768KB)
texture
cache
(12KB) GPU:
CoreN
scratchpad Small caches, many threads, huge memory BW
L1 cache . . .
(64KB) Rely mainly on multi-threading
| CMU 15-418/618, Spring 2016




e
CPU vs. GPU: the movie

- The Mythbusters

- Jamie Hyneman & Adam Savage
- Discovery Channel

- Appearance at NVIDIA's NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWT zr|

e e e e A

MYTHBUSTERS!



https://www.youtube.com/watch?v=-P28LKWTzrI

PART 3: PERFORMANCE




Performance “metrics’

- Clock frequency [GHz] = absolute hardware speed

Memories, CPUs, interconnects

- Operational speed [GFLOPs]

Name FLOPS |
yottaFLOPS 1024
zettaFLOPS 102!
exaFLOPS 1018
petaFLOPS 10'°
teraFLOPS 1012

gigaFLOPS 10%
FLOP/Byte, FLOP/Watt megaFLOPS 108

- Operations per second, single/double/... precision
Memory bandwidth [GB/s]
Memory operations per second

Differs a lot between different memories on chip

Derived metrics

kiloFLOPS 10°




Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width
—
Intel Core i7 25.6
AMD Barcelona 4 8 37 214
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352



Why should we care?

- Peak performance indicates an absolute bound of the performance that can be achieved on a
given machine

- It is *application independent*

- Such performance is rarely* achievable in practice for real applications.

- Applications rarely utilize all the machine features.

- The balance of an application must consistently match the balance of the machine to get
anywhere near the peak...

- ... or else... different bottlenecks!

*Empirical studies show this reads as “almost never” .
https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master



https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Hardware performance



Performance “metrics’

- Clock frequency [GHz] = absolute hardware speed
- Memories, CPUs, interconnects

- Operational speed [GFLOPs] Name FLOPS |

- Operations per second
- single AND double precision yottaFLOPS 1024
1
. Memory bandwidth [GBI/s] zettaFLOPS 107
- Memory operations per second exaFLOPS 1018
- Can differ for read and write operations !
- Differs a lot between different memories on chip petaFLOPS 1015
- Power [Watt] teraFLOPS 10'2

- The rate of consumption of energy

gigaFLOPS 10%

- Derived metrics megaFLOPS 108
. FLOP/Byte, FLOP/Watt
kiloFLOPS 10°




Theoretical peak performance

Throughput [GFLOP/s] = chips * cores * vectorWidth *
FLOPs/cycle * clockFrequency

Bandwidth[GB/s] = memory bus frequency * bits per cycle *

bus width
—
Intel Core i7 25.6
AMD Barcelona 4 8 37 214
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264

Intel Xeon Phi 7120 61 240 2417 352



Why should we care?

- Peak performance indicates an absolute bound of the performance that can
be achieved on a given machine
- It is *application independent*

- Such performance is rarely” achievable in practice for real applications.
- Applications rarely utilize all the machine features.

- The balance of an application must consistently match the balance of the

machine to get anywhere near the peak...
- ... or else... different bottlenecks!

*Empirical studies show this reads as “almost never” .


https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

Measuring hardware performance

- Microbenchmarking*
- Evaluates hardware features in isolation
- Goal: find out the true limits of the hardware components
- Platform-specific results
- Compared with the theoretical peak, per platform.

- Benchmarking

- Evaluates the FULL platform

- Application-specific performance
- Top500 — computation capability
- Graph500 — graph processing capability
- Green500 — energy consumption

- Compares platforms

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos. “Demystifying GPL



TOP5(00)
JUNE 2024

1 Exascale machine 2

1 custom-built machin/

3 energy-efficient machin
AMD, Intel+NVIDIA, IBM

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI1250X,
Slingshot-11, HPE

DOE/SC/0Oak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade,
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure

United States

Supercomputer Fugaku - Supercomputer Fugaku,
Ab64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Cores

8,699,904

9,264,128

2,073,600

7,630,848

2,752,704

Rmax
(PFlop/s)

1,206.00

1,012.00

561.20

442.01

379.70

Rpeak
(PFlop/s)

1,714.81

1,980.01

846.84

537.21

531.51

Power
(kW)

22,786

38,698

29,899

7,107



Rmax Rpeak Power

Rank  System Cores (PFlop/s) (PFlop/s) (kW) TO p5OO
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,206.00 J u n e 2024

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
Lots of accelerators.

DOE/SC/0Oak Ridge National Laboratory
United States

2 Aurora - HPE Cray EX - Intel Exascale Compute Blade, 9,264,128 1,012.00 Many many many cores.
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU
Max, Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

High peak performance.

3 Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, 2,073,600 561.20
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure
United States

Large gap from peak to
“real” performance.

4 Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01
Ab64LFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Let’s talk about energy
=> check out Green500

Japan
5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,752,704 379.70
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC -
Finland Gap: 20 - 30%

See more at: https://www.top500.org/



PART 5: SUMMARY AND BEYOND

Where t0?



Today’'s computing machines

Parallel at different levels

 Multi- or many-cores

- Core-level parallelism

- CPU-accelerator(s) parallelism

- None-level parallelism

Different performance and power “profiles” => different energy consumption => different
energy efficiency envelops
Hardware-level performance

- FLOPs (or INTOPs) for computation

- GB/s for memory bandwidth

- FLOPS/Watt for energy efficiency
Benchmarking machine performance

- Micro-benchmarking vs. benchmarking

- Diverse metrics => “performance counters”



Programming and programmability

- Diversity in hardware from nodes to system is challenging for programmers

- A multitude of programming models with different trade-offs between
productivity/programmability and performance exist and emerge

- There exists important limitations in suppoting all models on all systems effectively
and efficiently
- ... meaning choices (and therefore criteria for such choices) are needed

- System-level knowledge is difficult to acquire and use as programmer
- But we should not stop trying.

- Tools for programming, debugging, modelling, analysis, benchmarking exist
- But they could use further improvements.



Performance/Efficiency will depend on ...

..................
------------------------
...........................................
¢¢¢¢¢
3 LN

Developers and users

System integrators

System operators

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

for the application developers of workloads on system
and system operators. resources.

Include efficient hardware to
Design and implement enable different application '

applications able to adapt to mixes. i massively underutilized.
the available system resources/ ’"

Harvest energy where

i
1
|
1
1
i
1
1
1
1
Offer the right mix of resources: | Ensure efficient scheduling
I
|
i
i
1
I
l:' resources/systems are
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Dolas, Sagar et al. “Making Scientific Research on Dutch National Supercomputer Energy Efficient.” ERCIM News 1317, Oct. 2022
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- Larger and more complex systems PAST
- With a stronger focus on energy efficiency

- More heterogeneous systems e
- At node, blade, and rack level
- At memory-system level

- More programming models, runtimes, and schedulers
- Seamless integration possible, but unlikely

- Gradual performance shift from pure HPC towards efficiency and sustainability
- Metrics and tools needed
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