
TRANSFORMERS: 
AGE OF PARALLEL MACHINES 

Ana Lucia Varbanescu, University of Twente, NL
a.l.varbanescu@utwente.nl

(a biased introduction to computer architecture for supercomputing)

mailto:a.l.varbanescu@utwente.nl


Agenda (ambitious)
• Part 1 :  The anatomy of supercomputers

• Part 2 : What’s in a name node? 

• Part 3 :  Diversity in parallelism

• Part 4 :  One more word about performance 

• Part 5 :  Summary and beyond 
• Famous last words … 



PART 3: PARALLELISM DIVERSITY
Different parallelism models from hardware to software



First taxonomy: Michael Flynn (1966)

Multiple Instructions
Single Data

Single Instruction
Single Data

Single Instruction
Multiple Data

Multiple Instructions
Multiple Data



Before 2005: technology push 



Moore’s Law
• Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of 

semiconductor chips would double roughly every 18 months.

6

“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965



Until early 2000s …
More transistors = more performance 

Thus, every 18 months, 
we had better and faster 
processors. 

• Higher clock-speed 
• Higher perf/cycle
• Same power

7

 (CMU 15-418, Spring 2012)

Why parallelism?
▪ The answer 10 years ago

- To get performance that was faster 
than what clock frequency scaling 
would provide

- Because if you just waited until next 
year, your code would run faster on 
the next generation CPU

▪ Parallelizing your code not 
always worth the time
- Do nothing: performance doubling 

~ every 18 months



Wait … why do I care? 
• More transistors =  … ?
= more functionality 

• Think more functional units, more complex units, etc…. 

• Higher perf/clock  (aka, higher ILP) = … ?
= more operations per cycle

• Faster overall applications (when they have different operations…) 

• Higher clock frequency = …?
= more operations per time unit 

• Faster instructions => faster overall application 

• Higher power = … ?
= global warming … 

• Ideally, we want power consumption to be low



Until early 2000s …

Parallelism = interesting and “quirky”, but not main-stream
• Pro: Better performance than frequency scaling would provide.
• Con: Parallelizing code was not always worth the effort

• Do nothing: the performance will double ~ every 18 months



Around 2005: “hitting the walls”

Frequency wall

Power wall

ILP wall



Single core performance scaling
• The rate of single core performance scaling has significantly 
decreased (essentially, to 0)
• Frequency scaling limited by power
• ILP scaling tapped out
• Design complexity posing serious limitations

• No more free lunch for software developers!
• No more dramatic increase of software performance for free. 

11



So what? 

Chip density can still 
increase about 2x every 
2 years

BUT
• Clock speed is not
• Power is not
• Instruction Level 

Parallelism is not

12

What does this mean in practice? 



Traditionally … single core CPUs 
• More transistors = more functionality 
• Improved technology = faster clocks = more speed

• Every 18 months => better and faster processors. 

Not anymore! 
We no longer gain performance by “growing” sequential 

processors … 

CPU 

Individual 
Memory (cache)

More individual 
memory (cache)

Bus interface

Off-chip 
components

Single core processor



New ways to use transistors
Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs) 
and many-core processors (GPUs).



The shift to multi-core



Multi-core CPUs



Generic multi-core CPU
Hardware threads 
SIMD units (vector lanes)

L1 and L2
dedicated 
caches 

Shared L3 cache
Main memory, I/O

Peak 
performance

Bandwidth



CPU levels of parallelism
• Instruction-level parallelism (e.g., superscalar processors) (fine)

• Multiple operations of different kinds per cycle
• Implemented/supported by the instruction scheduler

• typically in hardware 
• SIMD parallelism = data parallelism (fine)

• Multiple operations *of the same kind* per cycle  
• Run same instruction on vector data 
• Sensitive to divergence 
• Implemented by programmer OR compiler 

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores 

• Hardware hyperthreading (2x)
• Local caches 
• Symmetrical or asymmetrical threading model 
• Implemented by programmer  



(1) ILP (Instruction level parallelism) 
• Multiple instructions issued & executed in the same cycle 

Instr. i
Instr. i+1
.
.
.
.
.
Instr. n

Sequential

No parallelism ILP support
Potentially 
in parallel

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Implementing ILP
• Super-scalar processors 

• “dynamic scheduling”: instruction reordering and scheduling happens in hardware 
• More complex hardware

• More area, more power …  

• Adopted in most high-end CPUs today 

• VLIW processors 
• ”static scheduling”: instruction reordering and scheduling is done by the compiler 

• Simpler hardware
• Less area, less power

• Adopted in most GPUs and embedded CPUs 

No programmer’s intervention! 



(2) SIMD (single instruction, multiple data)
• Same instruction executed on multiple data items 

a[i]   +=5
a[i+1] +=5
.
.
.
a[i+7] +=5

“vector”
(parallel)

”scalar” 
(sequential)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


SIMD programmer intervention 
• Auto-vectorization

• Typically enabled with “-O” compiler flags 
• Compiler directives 

• Specifically add directives in the code to force persuade the compiler to vectorize code  
• C or C++ intrinsics

• Wrappers around ASM instructions 
• Declare vector variables
• Name instruction
• Work on variables, not registers

• Assembly instructions
• Can write assembly to target SIMD



(3) Multi-core parallelism 
• Two (or more cores) to execute different streams of instructions. 

Requires programmer’s (or compiler’s) 
intervention and OS (operating system) support! 

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Multi-core programmer intervention
• Must define concurrent tasks to be executed in parallel

• Typically called (software) threads 
• Threads are executed per core 

• Under the OS scheduling 
• Some control can be exercised with additional programmer intervention 

for i = 1 … 3*n
 do_something(i) 

for i = 1 … n 
 do_something(i) 

for i = n+1 … 2*n 
 do_something(i) 

for i = 2*n+1 … 3*n 
 do_something(i) 

Core 0

Core 1

Core 2



What about the memory? 
• Three levels of cache: L1 (separate I$ and D$, per-core), L2 (per-core), L3 

(=LLC, shared)  



Putting it all together 
• A modern CPU has a mix of all these features… 



Many-core GPUs 



Generic GPU

Streaming
Multi-

processor
(SM)

CUDA 
cores

Special 
function units

Local 
memory



… or, using our CPU “symbols” 
• Instructions operate on 32 pieces of data at a 

time (called “warps”).
• Warp = thread issuing 32-wide vector instructions

• Up to 48 warps are simultaneously interleaved
• Over 1500 elements can be processed 

concurrently by a core

• Full board: 15 cores (SMs)!  

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Inside an NVIDIA GPU architecture



Inside an NVIDIA GPU architecture

• GigaThread Engine 
• SM’s = streaming multiprocessors 
• GPC = graphics processing clusters 
• TPC = texture processing clusters
• L2 cache 
• Memory controllers 
• NVLink 



Inside a Streaming Multiprocessor
• Different types of cores 

• CUDA Cores (INT/FP32)
• LD/ST
• Special function units

• Register file 
• Warp scheduler 
• Data caches 
• Instruction buffers/caches
• Texture units

Maxwell



More features … 
• Different types of cores 

• Adding: DP Units (Pascal)
• Adding: Tensor units (Volta)

• … <Pascal

Volta>



GPU Integration into the host system
• Typically based on a PCI Express bus
• Transfer speed (effectively, CPU-to-GPU):
 16 GT/s per lane x 16 lanes
• Can be NVLink (~10x faster) for specialized motherboards



NVIDIA GPUs (8+ years)
Fermi Kepler Maxwell Pascal Volta

GPU GTX480 GK180 GM200 GP100 GV100
Compute 
capability (CC)

2.x 3.5 5.2 6.0 7.0

SMs 16 15 24 56 80
TPCs 16 15 24 28 40
FP32 Cores / SM 32 192 128 64 64
FP64 “Cores” / SM 4 64 4 32 32
Clock[MHz] 700 875 1114 1480 1530
Peak FP32
[TFLOPs]

1.35 5.04 6.8 10.6 15.7

Peak FP64
[TFLOPs]

0.168 1.68 .21 5.3 7.8



Other players on the market 
• AMD (former ATI)

• Much better performance 
• Programmed using OpenCL (standard!)
• Poorer software drivers and infrastructure (so far) 
• A lot less libraries and tools
• Much smaller community effort 

• arm (formerly ARM J ) 
• Low-power devices (mobile platforms mostly) 
• Programmed using OpenCL 
• Lower performance than ATI and Intel, by choice 

• Intel 
• To support own CPUs with integrated graphics 
• Programmed using OpenCL 



All GPUs … 
• Have a similar architecture 

• Massively parallel 
• Simple cores 
• Complex memory system 

• Are programmed in a similar way 
• Fine-grain (SIMD/SIMT) parallelism

• Programming models ? 
• OpenCL is the de-facto standard for GPU programming
• Lots of efforts for C++
• Many other libraries and models on top of CUDA / OpenCL  



GPU Levels or Parallelism 
• Data parallelism (fine-grain) 

• Write 1 thread, instantiate a lot of them 
• SIMT (Single Instruction Multiple Thread) execution

• Many threads execute concurrently
• Same instruction
• Different data elements
• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths* 
• Hardware multithreading

• HW resource allocation & thread scheduling
• Excess of threads to hide latency
• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain) 
• Hardware mechanisms exist 
• Specific programming constructs to execute multiple tasks.  

• Heterogeneous computing 
• CPU is always present … 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



GPUs vs CPUs 



Why so different? 
• Different goals produce different designs!

• CPU must be good at everything
• GPUs focus on massive parallelism 

• Less flexible, more specialized 

• CPU: minimize latency experienced by 1 thread
• big on-chip caches
• sophisticated control logic

• GPU: maximize throughput of all threads
• # threads in flight limited by resources => lots of resources (registers, etc.)
• multithreading can hide latency => no big caches
• share control logic across many threads



CPU vs. GPU
43

Control

ALU ALU

ALU ALU

Cache

CPU
Low latency, high 
flexibility.
Excellent for irregular 
codes with 
limited parallelism.

GPU
High 

throughput. 
Excellent for 

massively 
parallel 

workloads. 



CPU vs GPU



CPU vs. GPU: the movie
• The Mythbusters

• Jamie Hyneman & Adam Savage
• Discovery Channel

• Appearance at NVIDIA’s NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI


PART 3: PERFORMANCE



Performance “metrics” 
• Clock frequency [GHz] = absolute hardware speed

• Memories, CPUs, interconnects

• Operational speed [GFLOPs]

• Operations per second, single/double/… precision 

• Memory bandwidth [GB/s]

• Memory operations per second

• Differs a lot between different memories on chip

• Derived metrics

• FLOP/Byte, FLOP/Watt



Theoretical peak performance
Throughput[GFLOP/s] = chips * cores * vectorWidth * 
     FLOPs/cycle * clockFrequency 
Bandwidth[GB/s] = memory bus frequency * bits per cycle * 
bus width

Cores Threads/ALUs Throughput Bandwidth
Intel Core i7 4 16 85 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264
Intel Xeon Phi 7120 61 240 2417 352



Why should we care? 
• Peak performance indicates an absolute bound of the performance that can be achieved on a 

given machine 
• It is *application independent* 

• Such performance is rarely* achievable in practice for real applications. 
• Applications rarely utilize all the machine features. 

• The balance of an application must consistently match the balance of the machine to get 
anywhere near the peak…

• ... or else… different bottlenecks! 

*Empirical studies show this reads as “almost never” .
https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master


Hardware performance



Performance “metrics” 
• Clock frequency [GHz] = absolute hardware speed

• Memories, CPUs, interconnects

• Operational speed [GFLOPs]
• Operations per second
• single AND double precision 

• Memory bandwidth [GB/s]
• Memory operations per second

• Can differ for read and write operations ! 
• Differs a lot between different memories on chip

• Power [Watt] 
• The rate of consumption of energy 

• Derived metrics
• FLOP/Byte, FLOP/Watt



Theoretical peak performance
Throughput[GFLOP/s] = chips * cores * vectorWidth * 
     FLOPs/cycle * clockFrequency 
Bandwidth[GB/s] = memory bus frequency * bits per cycle * 
bus width

Cores Threads/ALUs Throughput Bandwidth
Intel Core i7 4 16 85 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264
Intel Xeon Phi 7120 61 240 2417 352



Why should we care? 
• Peak performance indicates an absolute bound of the performance that can 

be achieved on a given machine 
• It is *application independent* 

• Such performance is rarely* achievable in practice for real applications. 
• Applications rarely utilize all the machine features. 

• The balance of an application must consistently match the balance of the 
machine to get anywhere near the peak…

• ... or else… different bottlenecks! 

*Empirical studies show this reads as “almost never” .

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master

https://gitlab.com/astron-misc/benchmark-intrinsics/-/tree/master


Measuring hardware performance 
• Microbenchmarking* 

• Evaluates hardware features in isolation 
• Goal: find out the true limits of the hardware components 
• Platform-specific results
• Compared with the theoretical peak, per platform. 

• Benchmarking 
• Evaluates the FULL platform 
• Application-specific performance 

• Top500 – computation capability 
• Graph500 – graph processing capability 
• Green500 – energy consumption 

• Compares platforms 

* Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, Andreas Moshovos.   ”Demystifying GPU Microarchitecture through 



TOP5(00)  
JUNE 2024

1 Exascale machine

1 custom-built machine

3 energy-efficient machines:
AMD, Intel+NVIDIA, IBM



Top500
June 2024

Lots of accelerators. 

Many many many cores.

High peak performance. 

Large gap from peak to 
“real” performance.

Let’s talk about energy 
=> check out Green500 

Gap:  20 – 30%
See more at: https://www.top500.org/



PART 5: SUMMARY AND BEYOND
Where to? 



Today’s computing machines 
• Parallel at different levels 

• Multi- or many-cores 
• Core-level parallelism 
• CPU-accelerator(s) parallelism 
• None-level parallelism 

• Different performance and power “profiles” => different energy consumption => different 
energy efficiency envelops 

• Hardware-level performance 
• FLOPs (or INTOPs) for computation 
• GB/s for memory bandwidth 
• FLOPS/Watt for energy efficiency 

• Benchmarking machine performance 
• Micro-benchmarking vs. benchmarking 
• Diverse metrics => “performance counters” 



Programming and programmability 
• Diversity in hardware from nodes to system is challenging for programmers 

• A multitude of programming models with different trade-offs between 
productivity/programmability and performance exist and emerge 

• There exists important limitations in suppoting all models on all systems effectively 
and efficiently
• … meaning choices (and therefore criteria for such choices) are needed 

• System-level knowledge is difficult to acquire and use as programmer 
• But we should not stop trying. 

• Tools for programming, debugging, modelling, analysis, benchmarking exist
• But they could use further improvements. 



Performance/Efficiency will depend on … 

System integrators
Offer the right mix of resources 
for the application developers 
and system operators. 
Include efficient hardware to 
enable different application 
mixes. 

System operators 
Ensure efficient scheduling 
of workloads on system 
resources. 
Harvest energy where 
resources/systems are 
massively underutilized. 

Developers and users 
Improve the energy efficiency 
of their own codes, making use 
of algorithmic, programming, 
and hardware tools 
Design and implement 
applications able to adapt to 
the available system resources

Dolas, Sagar et al. “Making Scientific Research on Dutch National Supercomputer Energy Efficient.” ERCIM News 131, Oct. 2022
https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient

https://ercim-news.ercim.eu/en131/special/making-scientific-research-on-dutch-national-supercomputer-energy-efficient


Looking forward
• Larger and more complex systems 

• With a stronger focus on energy efficiency

• More heterogeneous systems 
• At node, blade, and rack level 
• At memory-system level 

• More programming models, runtimes, and schedulers 
• Seamless integration possible, but unlikely 

• Gradual performance shift from pure HPC towards efficiency and sustainability
• Metrics and tools needed 

From: https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
Adapted from: Jim Naylor at https://www.cartoonstock.com/cartoon?searchID=CS273198

I don’t make 
predictions, and 

I never will! 

https://image.shutterstock.com/image-vector/man-between-arrows-choice-past-260nw-1390413521.jpg
https://www.cartoonstock.com/cartoon?searchID=CS273198

