TRANSFORMERS:
AGE OF PARALLEL MACHINES

Ana Lucia Varbanescu, University of Twente, NL
a.l.varbanescu@utwente.nl

UNIVERSITY
OF TWENTE.

mailto:a.l.varbanescu@utwente.nl

What's iIn a name?

- @Al enthusiasts: this is not about the Al transformers models [1]
- @Movie enthusiasts: this is a word-play on the transformer movies [2]

- @AII (the others): this is about how computer architecture and computing
systems have been transformed in the past 15 years

[1] Vaswani et al. “Attention Is All You Need” - https://arxiv.org/abs/1706.03762
[2] https://www.imdb.com/list/Is069544665/

Assumptions

- We need computing systems for high-performance computing
- ... thus we focus on how machines are built to provide high-performance
- ... and we talk about that in the context of applications

- Main goal: best possible performance for our applications in computational
science & engineering

- What else is out there (but we won'’t cover)?
- Real-time systems — guarantees are everything
- Embedded systems — efficiency and scale is everything
- Shared (large) systems (e.g., cloud computing) — sharing is earing everything
- Computing continuum — a mix of everything from loT through Edge/Fog to Cloud

Agenda (ambitious)

- Part 1 : The anatomy of supercomputers
- Part 2 : What's in a rame node?
- Part 3 : Diversity in parallelism

- Part 4 : One more word about performance

- Part 5. Summary and beyond

- Famous last words ...

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”

PART1: (SUPER)COMPUTING
MACHINES

The anatomy of supercomputers

Computer Systems

Simplistic definition
A mix of hardware and software (systems) used to execute applications.

Traditional goals:

- High(er)-performance systems
- Low(er)-power systems

- More efficient systems

- Higher availability systems

- Reliable systems

- Programmable systems

Computer Systems: examples

% SNIC

Supercomputers

- The most powerful computers used for science, technology/engineering and even
artificial intelligence

- Typically built as extremely large computer systems, with hundreds of thousands of
“basic” components and many billion transistors

- All the processors in a supercomputer can perform computations at the same time =>
parallel computing.

« Faster progress than sequential systems ...
- ...iff parallel code exists.

Adapted from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

How do we build supercomputers?

- We “replicate” architectural patterns from nodes to blades to racks/cabinets.
- We interconnect each of these components with fast and/or efficient networks.

Anatomy of a supercomputer

supercomputer system
or cluster

S

e
Node: CPU and/or GPU

Individual processors are known
blade as cores. Central Processing Units

This blade has 4 nodes side by side. (CPU-s) us_ed to -have a single core,
Nodes are individual computers that so “core” and "CPU" were used

cabinet or rack S consist of one or more CPUs; in this interchangeably. Now CPU means the
case there are 2 CPUs per node. CPU chip which may contain several
cores; it has 16 in this example.

Image from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

e
(Parallel) Systems Models

- Why do we need parallel system models?
- Provide an abstraction of the real machine
- Dictate the properties of “dedicated” programming models
- Enable the selection of an appropriate programming model

- Organization-based classification
- Shared Memory
- Distributed Memory
- Virtual shared Memory
- Hybrids

- Processing-based classification
- Single/Multi Instruction, Single/Multi Data (items)

Shared memory

Parallel Machine Models

- Shared Memory
- Multiple compute nodes
- One single shared address space
- Typical example: multi-cores

- Distributed Memory

- Multiple compute nodes
- Multiple, local (disjoint) address spaces

- Virtual shared memory: software/hardware layer “emulates” shared memory

- Typical example: clusters

- Hybrids
- Multiple compute nodes, typically heterogeneous
- Mixed address space(s), some shared, some global memory
- Typical example: supercomputers

%

STl

B EE | Rt CPU

CPU

Netwods

Memocy

Distributed memory

(2Ll | ettt CPU

CPU

Netw odc

Interconnection Network

Parallel Machine Models

- Shared Memory

CPU

Shared memory

===~ |EEEU CPU

Netwods

Memocy

CPU

--------- CPU CPU

Distributed memory

Netw odc

4)
Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, ...
- J
- Distributed Memory
4)
Programming: message passing
Programming models: MPI, Big-data models, ... es” shared memory
- J
- Hybrids
f >
Programming: very diverse, depending on the l"y =
hardware configuration @
- J

Examples

- Multi-core CPUs ?
- Shared memory with respect to system memory
- Hybrid when taking caches into account

- Clusters ?
- Distributed memory
- Could be shared if middleware for virtual shared space is provided

- Supercomputers ?
- Usually hybrid
- GPUs ?
- Architectures with GPUs?

- Distributed for traditional, off-chip GPUs
- Shared for new APUs

Main challenge: scaling to ExaFLOPS and beyond

- Peak performance = sum of capabilities of all machines

- E.g.: 100 nodes x 1L28 cores X 1OOGFLOPs/corE’
I

- Scaling options:
- More nodes = scale'out
- More powerful nodes = scale up (or acceleration/heterogeneity)

Hybrid
- Limitations to actual performance @ @ @ @ @ @
- Memory, 1/O, networking bottlenecks
- Load-imbalance m m * o0 m
- Non-uniform behaviour
- Programmability @ @ @ @ @ @

Interconnection Network

How to scale-up/-out”?

- Shared Memory model <= typical for scale-up, limited for scale-out
- Interconnect scalability problems & uniform accesses
« Programming challenge: RD/WR Conflicts
- Distributed Memory model <= typical for scale-out, inefficient for scale-up
- Data distribution is mandatory
- Programming challenge: remote accesses, consistency
- Virtual Shared Memory model <= increased programmability and overhead
- Significant virtualization overhead
- Easier programming
- Hybrid models <= trade-offs at different levels!

- Local/remote data more difficult to trace

e
Example: IBM's BLUGENE/L

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board
(32 chips, 4x4x2)
16 Compute Cards

Compute Card
(2 chips, 2x1x1)

AL 295.7TFIs

90180 GFrs 220 OB DOR

8 GB DDR

- 5.6/11.2 GF/s

2.8/5.6 GF/s 0.5GB DDR
4 MB

Example: IBM’s BlueGene/Q

3. Compute card:
One chip module,
16 GB DDR3 Memory,
Heat Spreader for H,O Cooling

2. Single Chip Module

5b. IO drawer:
8 10 cards w/16 GB
8 PCle Gen2 x8 slots
SD I/O torus

5a. Midplane:
16 Node Cards

6. Rack: 2 Midplanes

4. Node Card:
32 Compute Cards,
Optical Modules, Link Chips; 5D Torus

7. System:
96 racks, 20PF/s

*Sustained single node perf: 10x P, 20x

* MF/Watt: (6x) P, (10x) L (~2GF/W, Green 500 criteria)

» Software and hardware support for programming models
for exploitation of node hardware concurrency

© 2011 IBM Corporation

e
Example: FUGAKU

» (MU BoB Shelf System

.
Example: SUMMIT

Compute System

Summit Overview 10.2 PB Total Memory
256 compute racks
4,608 compute nodes
& Compute Rack Mellanox EDR IB fabric
‘ OpenPOWER 18 Compute Servers 200 PFLOPS
Warm water (70°F direct-cooled ~13 MW
components) ;
Compute Node RDHX for air-cooled components
2 x POWERS9
c 6 x NVIDIA GV100
omponents NVMe-compatible PCle 1600 GB SSD
IBM POWER9 TR :
+ 22 Cores = [
« 4 Threads/core 'J8C r
« NVLink P
: 39.7 TB Memory/rack i
25 GB/s EDR IB- (2 ports) o o pozer,rack GPFS File System
512 GB DRAM- (DDR4) 250 PB storage
96 GB HBM- (3D Stacked) 2.5 TB/s read, 2.5 TB/s write

‘ Coherent Shared Memory
80 5 0 8]
S —

NVIDIA GV100
«7TF

+ 16 GB @ 0.9 TB/s
« NVLink

% OAK RIDGE | 5

-National Laboratory | FACILITY

Example: Dardel's CPU partition

- 1278 compute nodes

« 2x AMD EPYC™ Zen?2 2.25 GHz 64-core processors/node

- 128 physical CPU cores/node
- 2 hardware threads per core => 256 virtual CPU cores/node D O e | e

8 Cores 8 Cores 8 Cores 8 Cores
+ L3 4+ L3 4+L3 +L3

- Different memory sizes

- 700 x 256 GB (NAISS thin nodes)
268 x 512 GB (NAISS large nodes)
8 x 1024 GB (NAISS huge nodes) | — N P
18 x 2048 GB (NAISS giant nodes) 1 : [']

32B+16B2

Memory / 10 Die

36 x 256 GB (KTH industry/business research nodes) T T

8 Cores ‘ 8 Cores 8 Cores 8 Cores

248 x 512 GB (KTH industry/business research nodes) - A% +13 +13

Image from: https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
Data from: https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

Example: Dardel's GPU partition

n AMD EPYC™ Processor + AMD Instinct™ MI250X Accelerator
- 62 nodes

« 1z AMD EPYC™[2 - B
t64 cores (special version of 7A53 (Trento)
<'=>3968 compute coresﬁ- || :
« 512 GB of shared fast HBM2E
memorym -
<icache- coherentH :

« 4x AMD Instinct™ MI250X GPU chips,
each with two GPU devices (GCDs)

- 62 X 4 x 2 = 496 GPU devices——

- Connected by AMD Infinity Fabric®
links.

n, Red, Gray, and Blue lin e AMD Infinity Fabric™ Links
Re d nd Green links t tw b -directional rings
Blue Infinity Fal F bric L k provides coherent GCD-CPU connection

Orange lines are PCle® Gen4 with ESM

Data from; https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

Why should we care?

- Application scaling + programming < system architecture

- E.g.: calculate the histogram of a very large dataset in a small number of bins.

Shared memory

2 | B CPU

CPU

Netw ods

CPU

Memocy

Distributed memor

Hybrid

Mem

Mem

--------- CPU

CPU

Netw ode

n'=l)
00
| @

) 'Memi

@

etwork

Programmer vs. runtime/OS vs. job scheduler

- Programmer exposes parallelism at How to split and program the
application level tasks? How is data accessed?
- Job = application + dataset Knowledge of node architecture is
- Application = set of tasks essential for effective optimization.
- Tasks = execute in some sequential order and/or in
parallel

- Runtime/OS map the tasks on resources What runs where and when?

- In both space and time Decisions by a runtime system

and/or OS; require deep knowledge

- Possibly with programmer’s restrictions system architecture.

- (Job) Scheduler ensures jobs are allocated What resources are allocated?

resources . .
.. , i Decisions by a job scheduler to
- Ideally sufficient and "localized maximize utilization/performance.

In summary

- Supercomputers are “organized” collections of compute nodes

- Compute nodes are “organized” collections of compute cores, possibly
heterogeneous

- “Organized” = architectural patterns + communication technologies

- Overall theoretical performance = “peak performance” is the sum of the parts
- The assumption is they *all* *work independently™ *in parallel*

- Performance = peak performance — X(system bottlenecks, app overhead)

PART2: WHAT'S IN ANAME NODE?

Computer systems basics.

. 2 4

But the borders

Inside the box™ are blurrier every

year.
CPUcorexn
[Register file Computer architects: how to build these?
| Cache) - Computer scientists: how to use these?
§ memory A |ALU. |
‘ Systgm bus Memory bus

PC ﬁ . !
. 110
Bus interface < > bridge < >

l ; Expansion slots for
other devices such

USB Graphics Disk as network adapters
controller adapter/card controller

T T A
[]ouse Keyboard Display

) e

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Main
memory

Processor basic operation

A processor’s inner workings

Bus
Addresses Memory

Instructions
Data

Data

Instructions

7

) . o Information
- CPU = executes the “application transfer

- Manages the execution progress (PC)
- Fetches needed instructions and data (addresses)
- Executes (ALU) operations and manages results

- Memory = stores the executable code of the application and the data
- Receives request + address, replies with data (a bit vector)

- Bus = facilitates information (=bits) movement

The CPU

- Computations are executed by the ALU
- Integer, single/double precision arithmetic, ...
- Comparisons, logical operations, ...

- ALU runs at its own “clock speed” / frequency
- Defines how many cycles/s can be executed by the CPU
- Each operation takes 1 or more cycles

- Higher performance CPUs

- Make a faster/smarter ALU
- More operations per cycle

- Make faster CPUs
- More cycles/s

- Multiple cores
- Even more operations per cycle!

Bus

Addresses

Data

Instructions

Information
transfer

Memory

Instructions
Data

The memory

- Typically organized as linear spaces

Bus

Addresses

Data

- Some word-size granularity

- Code and data are stored in memory

- Everything that lives in memory has an “address”

- Visible at assembly level
- Accessible via pointers/variable names/... from the program itself

- Memory operations are slow!
- Off-chip
- Request read/write
- Search and find

Instructions

Information
transfer

Memory

Instructions
Data

e
The CPU-Memory Gap

- Flat memory model
- All accesses = same latency
- Memory latency slower to improve than processor speed

100,000
0,000 |rresmnusnsssssnsaansnacasnsnaacesasnsssannsnsssnansnsnsansssansnnnasansonsansansasaassnsasanasssavssasasassansassns@unl@ireonsssssenn 1
Q 1,000 frererermemerneri s e .
S
g Processor
B 100 e e A s IR E R A DG FOWS. - L
: : every year
... which means we wait longer for Y |
any access to the (DRAM) memory! ..
1 1 1 L 1
1980 1985 1990 1995 2000 2005 2010

Vaar

-
The CPU-Memories Gap

100.000.000,0
10.000.000,0 Disk

1.000.000,0
100.000,0 SSD
A
_ 10.0000 —The-gap-widens-between-DRAM,; —¢—Disk seek time
(/2] . .
£ disk, and CPU speeds. 4~ SSD access time
g 1.000,0 —-DRAM access time
(= D AR —e—SRAM access time
100,0 1 UNAIVI
—{1-CPU cycle time

10,0 w -O—Effective CPU cycle time
Data takes longer and longer to load \ompu

to the CPU!

. These gaps are the main
1985 1990 1995 2000 2003 2005 2010 2015 .
Year reason for using a memory
hierarchy.

Memory hierarchy

- A single memory for the entire system is not efficient!

- Several memory spaces

- Large size, low cost, high latency — main memory
- Small size, high cost, low latency — caches / registers

- Main idea: Bring some of the data closer to the processor
- Smaller latency => faster access
- Smaller capacity => not all data fits!

- Who can benefit?

- Applications with locality in their data accesses
-+ Spatial locality
« Temporal locality

This data is "cached” — that

IS, stored in a cache.

Memory hierarchy and caches

- Cache: A smaller, faster storage device that acts as a staging area for a
subset of the data in a larger, slower device.

- Memory hierarchy

- Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)

- For each k, the faster, smaller device at level k is a cache for the larger, slower device at
level k+1.

- How/why do memory hierarchies work?

- Locality => data at level k is used more often than data at level k+1.
- Level k+1 can be slower, and thus larger and cheaper.

LO: CPU registers hold words

MemOry hierarChy / Regs retrieved from the L1 cache.

retrieved from the L2 cache.

L1/ L1 cache L1 cache holds cache lines

Smaller, (SRAM)
faster,
d : L2 cache L2 cache holds cache lines

an L2: : ¢ o

costlier (SRAI\/I) retrieved from L3 cache

(per byte)

stor_age L3: L3 cache L3 cache holds cache lines
devices (SRAM) retrieved from main memory.
Larger, _ . :
slower, L4: Main memory Main memory holds disk
and (DR AM) blocks retrieved from

local disks.

cheaper
(per byte)
storage | 5. Local secondary storage Local disks hold files
devices (local disks) retrieved from disks

on remote servers

LG: Remote secondary storage
(e.g., Web servers)

e
Caching in the Memory Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Memory hierarchy

- Challenges
- Size: no space for every memory address
- Organization: what gets loaded & where ?
- Policies: who's in, who’s out, when, why?

- Performance
- Hit = access found data in fast memory => low latency
- Miss = data not in fast memory => high latency + penalty

- Metric: hit ratio (H) = the fraction of accesses that hit => the higher the ratio, the better the
performance!

-
Locality

- Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

- Temporal locality: Q

- Recently referenced items are likely
to be referenced again in the near future

- Spatial locality:

- Items with nearby addresses tend (2
to be referenced close together in time

Locality Example

sum = 0O;

for (1 = 0; 1 < n; 1i++)
sum += al[i];

return sum;

- Data references

- Reference array elements in succession (stride-1 reference pattern).
- Reference variable sum each iteration.

- Instruction references
- Reference instructions in sequence.
- Cycle through loop repeatedly.

Spatial locality
Temporal locality

Spatial locality

Temporal locality

Qualitative estimates of locality

- Question: Does this function have good locality with respect to array a?

Matrix

int sum array cols(int a[M] [N]) _

{

int i, j, sum = 0;

for (jJ = 0; jJ < N; Jj++) R maior in mem
for (1 = 0; 1 < M; 1++) ow-major | emory

return sum;

" Every read from the matrix fetches a cache line => assume 4 elements)

Assume row-major order and N,M very large => reading a[0][0] will bring In
blue elements, while reading a[1][0] will need red elements.

_ This is poor locality — not reusing the same or close-by elements.)

Qualitative estimates of locality

- Question: Does this function have good locality with respect to array a?

Matrix

int sum array rows (int a[M] [N]) _
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (J = 0; j < N; j++) Row-major in memory

o el I
return sum;

" Every read from the matrix fetches a cache line => assume 4 elements)

Assume row-major order and N,M very large => reading a[0][0] will bring In
blue elements and reading a[0][1]..a[0][3] will need blue elements.

_ This is great locality — reusing the same or close-by elements.)

Qualitative estimates of locality

- Question: Does this function have good locality with respect to array a?

int sum array rows(int a[M] [N]) Matrix

{ I

int i, j, sum = 0;

for (1 = 0; 1 < M/2; 1i++)

for (jJ = 0; j < N/4; J++) o
sum += al[i*2]1[7*4]; Row-major in memory

" Every read from the matrix fetches a cache line => assume 4 elements)

Assume row-major order and N,M very large => reading a[0][0] will bring In
blue elements, while reading such scattered data from a further will need

\ _ different colors. This is non-perfect locality — depends on sizes ...)

Matrix Multiplication et (os pens ey

for

sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * bl[k]l[j];

c[1i][J] = sum;

Good vs bad locality / caching ...

100 - }
: } ijk / jik
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = ali] [k];
for (3J=0; j<n; J++)
clil[J] += r * blk][]];

} kij / ikj

for (3=0; j<n; J++) {
for (k=0; k<n; k++) {

Cycles per inner_loop iteration
o

r = blk][]];
1 T T T T T T T T T T T T . . for (:L:O; :|_<1’1; l++)
50 100 150 200 250 300 350 400 450 500 550 600 650 700 c[i][j] += al[i]l[k] * r;
Array size (n))

} jki / kji

Main challenges

- Compute and memory performance grow at different speeds
- Caching is the current way
- Technology will eventually improve latency and bandwidth

- For high performance
- Take care of the data size

- Organize data in memory to allow for high performance = memory layout
- Make use of caching = memory access patterns

Memory operations are the main bottleneck in most HPC today!

Check your data memory layout and access patterns to improve locality!!

In summary: Computing systems basics ...

- ... are essential for the building HPC systems
- ... and for programming them

- Be literate in these topics ©
- Caching
- Processing
- Data representation
- Instructions

- ... else you will have trouble programming these machines efficiently.

