
TRANSFORMERS:
AGE OF PARALLEL MACHINES

Ana Lucia Varbanescu, University of Twente, NL
a.l.varbanescu@utwente.nl

(a biased introduction to computer architecture for supercomputing)

mailto:a.l.varbanescu@utwente.nl

What’s in a name?
• @AI enthusiasts: this is not about the AI transformers models [1]

• @Movie enthusiasts: this is a word-play on the transformer movies [2]

• @All (the others): this is about how computer architecture and computing
systems have been transformed in the past 15 years

[1] Vaswani et al. “Attention Is All You Need” - https://arxiv.org/abs/1706.03762
[2] https://www.imdb.com/list/ls069544665/

Assumptions
• We need computing systems for high-performance computing

• … thus we focus on how machines are built to provide high-performance
• … and we talk about that in the context of applications

• Main goal: best possible performance for our applications in computational
science & engineering

• What else is out there (but we won’t cover)?
• Real-time systems – guarantees are everything
• Embedded systems – efficiency and scale is everything
• Shared (large) systems (e.g., cloud computing) – sharing is caring everything
• Computing continuum – a mix of everything from IoT through Edge/Fog to Cloud

Agenda (ambitious)
• Part 1 : The anatomy of supercomputers

• Part 2 : What’s in a name node?

• Part 3 : Diversity in parallelism

• Part 4 : One more word about performance

• Part 5 : Summary and beyond
• Famous last words …

PART1: (SUPER)COMPUTING
MACHINES
The anatomy of supercomputers

Computer Systems
Simplistic definition
A mix of hardware and software (systems) used to execute applications.

Traditional goals:
• High(er)-performance systems
• Low(er)-power systems
• More efficient systems
• Higher availability systems
• Reliable systems
• Programmable systems
• ….

Computer Systems: examples

Supercomputers
• The most powerful computers used for science, technology/engineering and even

artificial intelligence

• Typically built as extremely large computer systems, with hundreds of thousands of
“basic” components and many billion transistors

• All the processors in a supercomputer can perform computations at the same time =>
parallel computing.
• Faster progress than sequential systems …
• …iff parallel code exists.

Adapted from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

How do we build supercomputers?
• We “replicate” architectural patterns from nodes to blades to racks/cabinets.
• We interconnect each of these components with fast and/or efficient networks.

Image from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

Node: CPU and/or GPU

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

(Parallel) Systems Models
• Why do we need parallel system models?

• Provide an abstraction of the real machine
• Dictate the properties of “dedicated” programming models
• Enable the selection of an appropriate programming model

• Organization-based classification
• Shared Memory
• Distributed Memory
• Virtual shared Memory
• Hybrids

• Processing-based classification
• Single/Multi Instruction, Single/Multi Data (items)

Parallel Machine Models
• Shared Memory

• Multiple compute nodes
• One single shared address space
• Typical example: multi-cores

• Distributed Memory
• Multiple compute nodes
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory
• Typical example: clusters

• Hybrids
• Multiple compute nodes, typically heterogeneous
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers

Shared memory

Distributed memory

Hybrid

Parallel Machine Models
• Shared Memory

• Multiple compute nodes
• One single shared address space
• Typical example: multi-cores

• Distributed Memory
• Multiple compute nodes
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory
• Typical example: clusters

• Hybrids
• Multiple compute nodes, typically heterogeneous
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers

Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, …

Programming: message passing
Programming models: MPI, Big-data models, …

Programming: very diverse, depending on the
hardware configuration

Shared memory

Distributed memory

Hybrid

Examples
• Multi-core CPUs ?

• Shared memory with respect to system memory
• Hybrid when taking caches into account

• Clusters ?
• Distributed memory
• Could be shared if middleware for virtual shared space is provided

• Supercomputers ?
• Usually hybrid

• GPUs ?
• Architectures with GPUs?

• Distributed for traditional, off-chip GPUs
• Shared for new APUs

Main challenge: scaling to ExaFLOPS and beyond
• Peak performance = sum of capabilities of all machines

• E.g.: 100 nodes x 128 cores x 100GFLOPs/core

• Scaling options:
• More nodes = scale out
• More powerful nodes = scale up (or acceleration/heterogeneity)

• Limitations to actual performance
• Memory, I/O, networking bottlenecks
• Load-imbalance
• Non-uniform behaviour
• Programmability

Hybrid

How to scale-up/-out?
• Shared Memory model <= typical for scale-up, limited for scale-out

• Interconnect scalability problems & uniform accesses

• Programming challenge: RD/WR Conflicts

• Distributed Memory model <= typical for scale-out, inefficient for scale-up

• Data distribution is mandatory

• Programming challenge: remote accesses, consistency
• Virtual Shared Memory model <= increased programmability and overhead

• Significant virtualization overhead

• Easier programming

• Hybrid models <= trade-offs at different levels!

• Local/remote data more difficult to trace

Example: IBM’s BLUGENE/L

Example: IBM’s BlueGene/Q

Example: FUGAKU

Example: SUMMIT

Example: Dardel’s CPU partition
• 1278 compute nodes
• 2x AMD EPYC™ Zen2 2.25 GHz 64-core processors/node

• 128 physical CPU cores/node
• 2 hardware threads per core => 256 virtual CPU cores/node

• Different memory sizes
• 700 × 256 GB (NAISS thin nodes)
• 268 × 512 GB (NAISS large nodes)
• 8 × 1024 GB (NAISS huge nodes)
• 18 × 2048 GB (NAISS giant nodes)
• 36 × 256 GB (KTH industry/business research nodes)
• 248 × 512 GB (KTH industry/business research nodes)

Image from: https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
Data from: https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

Example: Dardel’s GPU partition
• 62 nodes
• 1z AMD EPYC™

• 64 cores (special version of 7A53 (Trento)
• => 3968 compute cores

• 512 GB of shared fast HBM2E
memory
• cache-coherent

• 4x AMD Instinct™ MI250X GPU chips,
each with two GPU devices (GCDs)
• 62 x 4 x 2 = 496 GPU devices

• Connected by AMD Infinity Fabric®
links.

Data from: https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

Why should we care?
• Application scaling + programming ó system architecture

• E.g.: calculate the histogram of a very large dataset in a small number of bins.

Shared memory Distributed memory Hybrid

Programmer vs. runtime/OS vs. job scheduler
• Programmer exposes parallelism at

application level
• Job = application + dataset
• Application = set of tasks
• Tasks = execute in some sequential order and/or in

parallel

• Runtime/OS map the tasks on resources
• In both space and time
• Possibly with programmer’s restrictions

• (Job) Scheduler ensures jobs are allocated
resources
• Ideally sufficient and ”localized”

How to split and program the
tasks? How is data accessed?

Knowledge of node architecture is
essential for effective optimization.

What runs where and when?
Decisions by a runtime system
and/or OS; require deep knowledge
system architecture.

What resources are allocated?
Decisions by a job scheduler to
maximize utilization/performance.

In summary
• Supercomputers are “organized” collections of compute nodes

• Compute nodes are “organized” collections of compute cores, possibly
heterogeneous

• “Organized” = architectural patterns + communication technologies

• Overall theoretical performance = “peak performance” is the sum of the parts
• The assumption is they *all* *work independently* *in parallel*

• Performance = peak performance – S(system bottlenecks, app overhead)

PART2: WHAT’S IN A NAME NODE?
Computer systems basics.

Inside the box*

Main
memory

I/O
bridgeBus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk
controller

Graphics
adapter/card

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

Computer architects: how to build these?
Computer scientists: how to use these?

But the borders
are blurrier every

year.

Write your
program

Store your
program

Load your
program

Execute your
program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache
memory

Processor basic operation

A processor’s inner workings

• CPU = executes the “application”
• Manages the execution progress (PC)
• Fetches needed instructions and data (addresses)
• Executes (ALU) operations and manages results

• Memory = stores the executable code of the application and the data
• Receives request + address, replies with data (a bit vector)

• Bus = facilitates information (=bits) movement

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data

…

Addresses

Data

Instructions

Information
transfer

Bus

The CPU
• Computations are executed by the ALU

• Integer, single/double precision arithmetic, …
• Comparisons, logical operations, …

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU
• Each operation takes 1 or more cycles

• Higher performance CPUs
• Make a faster/smarter ALU
• More operations per cycle

• Make faster CPUs
• More cycles/s

• Multiple cores
• Even more operations per cycle!

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data

…

Addresses

Data

Instructions

Information
transfer

Bus

The memory
• Typically organized as linear spaces

• Some word-size granularity

• Code and data are stored in memory
• Everything that lives in memory has an “address”

• Visible at assembly level
• Accessible via pointers/variable names/… from the program itself

• Memory operations are slow!
• Off-chip
• Request read/write
• Search and find

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data

…

Addresses

Data

Instructions

Information
transfer

Bus

The CPU-Memory Gap
• Flat memory model

• All accesses = same latency
• Memory latency slower to improve than processor speed

The gap grows
every year… which means we wait longer for

any access to the (DRAM) memory!

The CPU-Memories Gap

0,0

0,1

1,0

10,0

100,0

1.000,0

10.000,0

100.000,0

1.000.000,0

10.000.000,0

100.000.000,0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

The gap widens between DRAM,
disk, and CPU speeds.

SRAM

These gaps are the main
reason for using a memory
hierarchy.

Data takes longer and longer to load
to the CPU!

Memory hierarchy
• A single memory for the entire system is not efficient!
• Several memory spaces

• Large size, low cost, high latency – main memory
• Small size, high cost, low latency – caches / registers

• Main idea: Bring some of the data closer to the processor
• Smaller latency => faster access
• Smaller capacity => not all data fits!

• Who can benefit?
• Applications with locality in their data accesses

• Spatial locality
• Temporal locality

This data is "cached” – that
is, stored in a cache.

Memory hierarchy and caches
• Cache: A smaller, faster storage device that acts as a staging area for a

subset of the data in a larger, slower device.

• Memory hierarchy
• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)
• For each k, the faster, smaller device at level k is a cache for the larger, slower device at

level k+1.

• How/why do memory hierarchies work?
• Locality => data at level k is used more often than data at level k+1.

• Level k+1 can be slower, and thus larger and cheaper.

Memory hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Caching in the Memory Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Memory hierarchy
• Challenges

• Size: no space for every memory address
• Organization: what gets loaded & where ?
• Policies: who’s in, who’s out, when, why?

• Performance
• Hit = access found data in fast memory => low latency
• Miss = data not in fast memory => high latency + penalty
• Metric: hit ratio (H) = the fraction of accesses that hit => the higher the ratio, the better the

performance!

Locality
• Principle of Locality: Programs tend to use data and instructions with

addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

Locality Example

• Data references
• Reference array elements in succession (stride-1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in

blue elements, while reading a[1][0] will need red elements.
This is poor locality – not reusing the same or close-by elements.

Row-major in memory

Matrix

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in

blue elements and reading a[0][1]..a[0][3] will need blue elements.
This is great locality – reusing the same or close-by elements.

Row-major in memory

Matrix

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M/2; i++)
 for (j = 0; j < N/4; j++)
 sum += a[i*2][j*4];
 return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in
blue elements, while reading such scattered data from a further will need

different colors. This is non-perfect locality – depends on sizes …

Row-major in memory

Matrix

Matrix Multiplication
Good vs bad locality / caching …

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];
 c[i][j] = sum;

 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];

 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }

}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];

 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }

}

ijk / jik

jki / kji

kij / ikj

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
yc

le
s

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

ijk / jik

jki / kji

kij / ikj

Main challenges
• Compute and memory performance grow at different speeds

• Caching is the current way
• Technology will eventually improve latency and bandwidth

• For high performance
• Take care of the data size
• Organize data in memory to allow for high performance = memory layout
• Make use of caching = memory access patterns

Memory operations are the main bottleneck in most HPC today!
Check your data memory layout and access patterns to improve locality!!

In summary: Computing systems basics …
• … are essential for the building HPC systems
• … and for programming them

• Be literate in these topics J
• Caching
• Processing
• Data representation
• Instructions

• … else you will have trouble programming these machines efficiently.

