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What’s in a name? 
• @AI enthusiasts: this is not about the AI transformers models [1]

• @Movie enthusiasts: this is a word-play on the transformer movies [2]

• @All (the others): this is about how computer architecture and computing 
systems have been transformed in the past 15 years

[1] Vaswani et al. “Attention Is All You Need” - https://arxiv.org/abs/1706.03762
[2] https://www.imdb.com/list/ls069544665/



Assumptions
• We need computing systems for high-performance computing 

• … thus we focus on how machines are built to provide high-performance 
• … and we talk about that in the context of applications 

• Main goal: best possible performance for our applications in computational 
science & engineering 

• What else is out there (but we won’t cover)? 
• Real-time systems – guarantees are everything 
• Embedded systems – efficiency and scale is everything 
• Shared (large) systems (e.g., cloud computing) – sharing is caring everything 
• Computing continuum – a mix of everything from IoT through Edge/Fog to Cloud 



Agenda (ambitious)
• Part 1 :  The anatomy of supercomputers

• Part 2 : What’s in a name node? 

• Part 3 :  Diversity in parallelism

• Part 4 :  One more word about performance 

• Part 5 :  Summary and beyond 
• Famous last words … 



PART1: (SUPER)COMPUTING 
MACHINES 
The anatomy of supercomputers



Computer Systems 
Simplistic definition
A mix of hardware and software (systems) used to execute applications.
 
Traditional goals:
• High(er)-performance systems 
• Low(er)-power systems 
• More efficient systems 
• Higher availability systems 
• Reliable systems 
• Programmable systems 
• ….



Computer Systems: examples



Supercomputers
• The most powerful computers used for science, technology/engineering and even 

artificial intelligence

• Typically built as extremely large computer systems, with hundreds of thousands of 
“basic” components and many billion transistors 

• All the processors in a supercomputer can perform computations at the same time => 
parallel computing. 
• Faster progress than sequential systems … 
• …iff parallel code exists. 

Adapted from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078


How do we build supercomputers? 
• We “replicate” architectural patterns from nodes to blades to racks/cabinets.
• We interconnect each of these components with fast and/or efficient networks.

Image from: https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078

Node: CPU and/or GPU

https://www.pdc.kth.se/about/what-does-pdc-do-and-how/introduction-to-supercomputers-1.764078


(Parallel) Systems Models 
• Why do we need parallel system models? 

• Provide an abstraction of the real machine 
• Dictate the properties of “dedicated” programming models 
• Enable the selection of an appropriate programming model 

• Organization-based classification
• Shared Memory
• Distributed Memory
• Virtual shared Memory
• Hybrids 

• Processing-based classification 
• Single/Multi Instruction, Single/Multi Data (items)



Parallel Machine Models 
• Shared Memory

• Multiple compute nodes 
• One single shared address space
• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory 
• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers 

Shared memory

Distributed memory

Hybrid



Parallel Machine Models 
• Shared Memory

• Multiple compute nodes 
• One single shared address space
• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory 
• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers 

Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, … 

Programming: message passing
Programming models: MPI, Big-data models, … 

Programming: very diverse, depending on the 
hardware configuration

Shared memory

Distributed memory

Hybrid



Examples
• Multi-core CPUs ?

• Shared memory with respect to system memory 
• Hybrid when taking caches into account 

• Clusters ? 
• Distributed memory 
• Could be shared if middleware for virtual shared space is provided 

• Supercomputers ?
• Usually hybrid 

• GPUs ?
• Architectures with GPUs?

• Distributed for traditional, off-chip GPUs
• Shared for new APUs 



Main challenge: scaling to ExaFLOPS and beyond 
• Peak performance = sum of capabilities of all machines 

• E.g.: 100 nodes x 128 cores x 100GFLOPs/core 

• Scaling options: 
• More nodes = scale out 
• More powerful nodes = scale up (or acceleration/heterogeneity)

• Limitations to actual performance 
• Memory, I/O, networking bottlenecks 
• Load-imbalance 
• Non-uniform behaviour
• Programmability 

Hybrid



How to scale-up/-out? 
• Shared Memory model <= typical for scale-up, limited for scale-out

• Interconnect scalability problems & uniform accesses 

• Programming challenge: RD/WR Conflicts 

• Distributed Memory model <= typical for scale-out, inefficient for scale-up 

• Data distribution is mandatory 

• Programming challenge: remote accesses, consistency
• Virtual Shared Memory model <= increased programmability and overhead 

• Significant virtualization overhead

• Easier programming

• Hybrid models <= trade-offs at different levels! 

• Local/remote data more difficult to trace 



Example: IBM’s BLUGENE/L 



Example: IBM’s BlueGene/Q



Example: FUGAKU



Example: SUMMIT



Example: Dardel’s CPU partition
• 1278 compute nodes
• 2x AMD EPYC™ Zen2 2.25 GHz 64-core processors/node

• 128 physical CPU cores/node 
• 2 hardware threads per core => 256 virtual CPU cores/node 

• Different memory sizes 
• 700 × 256 GB (NAISS thin nodes)
• 268 × 512 GB (NAISS large nodes)
• 8 × 1024 GB (NAISS huge nodes)
• 18 × 2048 GB (NAISS giant nodes)
• 36 × 256 GB (KTH industry/business research nodes)
• 248 × 512 GB (KTH industry/business research nodes)

Image from: https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
Data from: https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.nextplatform.com/2019/08/15/a-deep-dive-into-amds-rome-epyc-architecture/
https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338


Example: Dardel’s GPU partition 
• 62 nodes 
• 1z AMD EPYC™

• 64 cores (special version of 7A53 (Trento)
• => 3968 compute cores 

• 512 GB of shared fast HBM2E 
memory
• cache-coherent 

• 4x AMD Instinct™ MI250X GPU chips, 
each with two GPU devices (GCDs)
• 62 x 4 x 2 = 496 GPU devices

• Connected by AMD Infinity Fabric® 
links.

Data from: https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338

https://www.pdc.kth.se/hpc-services/computing-systems/about-the-dardel-hpc-system-1.1053338


Why should we care? 
• Application scaling + programming ó system architecture

• E.g.: calculate the histogram of a very large dataset in a small number of bins. 

Shared memory Distributed memory Hybrid



Programmer vs. runtime/OS vs. job scheduler
• Programmer exposes parallelism at 

application level 
• Job = application + dataset 
• Application = set of tasks 
• Tasks = execute in some sequential order and/or in 

parallel  

• Runtime/OS map the tasks on resources 
• In both space and time 
• Possibly with programmer’s restrictions 

• (Job) Scheduler ensures jobs are allocated 
resources 
• Ideally sufficient and ”localized” 

How to split and program the 
tasks? How is data accessed? 

Knowledge of node architecture is 
essential for effective optimization. 

What runs where and when?
Decisions by a runtime system 
and/or OS; require deep knowledge 
system architecture. 

What resources are allocated?
Decisions by a job scheduler to 
maximize utilization/performance.



In summary 
• Supercomputers are “organized” collections of compute nodes 

• Compute nodes are “organized” collections of compute cores, possibly 
heterogeneous 

• “Organized” = architectural patterns + communication technologies

• Overall theoretical performance = “peak performance” is the sum of the parts
• The assumption is they *all* *work independently* *in parallel*  

• Performance = peak performance – S(system bottlenecks, app overhead) 



PART2: WHAT’S IN A NAME NODE? 
Computer systems basics. 



Inside the box*

Main
memory

I/O 
bridgeBus interface

ALU.

Register file

CPU core x n

System bus Memory bus

Disk 
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Graphics
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USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

Computer architects: how to build these?
Computer scientists: how to use these?

But the borders 
are blurrier every 

year.

Write your 
program

Store your 
program

Load your 
program

Execute your 
program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache 
memory



Processor basic operation



A processor’s inner workings

• CPU = executes the “application”
• Manages the execution progress (PC)
• Fetches needed instructions and data (addresses) 
• Executes (ALU) operations and manages results 

• Memory = stores the executable code of the application and the data
• Receives request + address, replies with data (a bit vector)

• Bus = facilitates information (=bits) movement 

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 

…

Addresses

Data

Instructions

Information 
transfer

Bus



The CPU
• Computations are executed by the ALU

• Integer, single/double precision arithmetic, … 
• Comparisons, logical operations, … 

• ALU runs at its own “clock speed” / frequency
• Defines how many cycles/s can be executed by the CPU  
• Each operation takes 1 or more cycles 

• Higher performance CPUs 
• Make a faster/smarter ALU 
• More operations per cycle 

• Make faster CPUs 
• More cycles/s 

• Multiple cores 
• Even more operations per cycle!  

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 

…

Addresses

Data

Instructions

Information 
transfer

Bus



The memory 
• Typically organized as linear spaces

• Some word-size granularity  

• Code and data are stored in memory 
• Everything that lives in memory has an “address” 

• Visible at assembly level 
• Accessible via pointers/variable names/… from the program itself 

• Memory operations are slow!
• Off-chip 
• Request read/write
• Search and find

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions 
Data 
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Addresses

Data

Instructions
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The CPU-Memory Gap
• Flat memory model 

• All accesses = same latency 
• Memory latency slower to improve than processor speed

The gap grows 
every year… which means we wait longer for 

any access to the (DRAM) memory!



The CPU-Memories Gap

0,0

0,1

1,0

10,0

100,0

1.000,0

10.000,0

100.000,0

1.000.000,0

10.000.000,0

100.000.000,0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e 
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

The gap widens between DRAM, 
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These gaps are the main 
reason for using a memory 
hierarchy.

Data takes longer and longer to load 
to the CPU! 



Memory hierarchy 
• A single memory for the entire system is not efficient!  
• Several memory spaces

• Large size, low cost, high latency – main memory 
• Small size, high cost, low latency – caches / registers

• Main idea: Bring some of the data closer to the processor
• Smaller latency => faster access 
• Smaller capacity  => not all data fits! 

• Who can benefit? 
• Applications with locality in their data accesses

• Spatial locality 
• Temporal locality 

This data is "cached” – that 
is, stored in a cache. 



Memory hierarchy and caches
• Cache: A smaller, faster storage device that acts as a staging area for a 

subset of the data in a larger, slower device.

• Memory hierarchy
• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)
• For each k, the faster, smaller device at level k is a cache for the larger, slower device at 

level k+1.

• How/why do memory hierarchies work?
• Locality => data at level k is used more often than data at level k+1. 

• Level k+1 can be slower, and thus larger and cheaper.



Memory hierarchy Regs
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Caching in the Memory Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache
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L2 cache
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Parts of files

4-KB pages

64-byte blocks
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Web proxy 
server
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Compiler0CPU core
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Memory hierarchy
• Challenges 

• Size: no space for every memory address
• Organization: what gets loaded & where ?
• Policies: who’s in, who’s out, when, why? 

• Performance 
• Hit = access found data in fast memory => low latency
• Miss = data not in fast memory => high latency + penalty 
• Metric: hit ratio (H) = the fraction of accesses that hit => the higher the ratio, the better the 

performance!



Locality
• Principle of Locality: Programs tend to use data and instructions with 

addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend 

to be referenced close together in time



Locality Example

• Data references
• Reference array elements in succession (stride-1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality



Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements 
Assume row-major order and N,M very large => reading a[0][0] will bring in 

blue elements, while reading a[1][0] will need red elements. 
This is poor locality – not reusing the same or close-by elements.

Row-major in memory

Matrix



Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements 
Assume row-major order and N,M very large => reading a[0][0] will bring in 

blue elements and reading a[0][1]..a[0][3] will need blue elements. 
This is great locality – reusing the same or close-by elements.

Row-major in memory

Matrix



Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M/2; i++)
        for (j = 0; j < N/4; j++)
            sum += a[i*2][j*4];
    return sum;
}

Every read from the matrix fetches a cache line => assume 4 elements 
Assume row-major order and N,M very large => reading a[0][0] will bring in 
blue elements, while reading such scattered data from a further will need 

different colors. This is non-perfect locality – depends on sizes …

Row-major in memory

Matrix



Matrix Multiplication
Good vs bad locality / caching … 

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {
   sum = 0.0;
   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];
   c[i][j] = sum;

 }
} 

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
  r = a[i][k];

  for (j=0; j<n; j++)
   c[i][j] += r * b[k][j];   
 }

}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
   r = b[k][j];

   for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
 }

}
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Main challenges
• Compute and memory performance grow at different speeds 

• Caching is the current way 
• Technology will eventually improve latency and bandwidth 

• For high performance 
• Take care of the data size 
• Organize data in memory to allow for high performance = memory layout 
• Make use of caching = memory access patterns

Memory operations are the main bottleneck in most HPC today!
Check your data memory layout and access patterns to improve locality!!



In summary: Computing systems basics … 
• … are essential for the building HPC systems 
• … and for programming them 

• Be literate in these topics J 
• Caching 
• Processing 
• Data representation 
• Instructions 

• … else you will have trouble programming these machines efficiently.


