
PDC Summer School August 2023, KTH, Stockholm, Sweden.

Enabling HPC software
productivity
with the TAU performance system
Jean-Baptiste BESNARD
<jbbesnard@paratools.fr>

mailto:jbbesnard@paratools.fr

Instrumentation
Various means of capturing program’s state

Direct Observation

Direct Performance Observation

Execution actions exposed as events

• In general, actions reflect some execution state

• presence at a code location or change in data

• occurrence in parallelism context (thread of execution)

• Events encode actions for observation

Observation is direct

• Direct instrumentation of program code (probes)

• Instrumentation invokes performance measurement

• Event measurement = performance data + context

Performance experiment

• Actual events + performance measurements

Instrumentation

int main() 
{ 
 int i; 
 
 for (i=0; i < 3; i++) 
 foo(i); 
 
 return 0; 
} 
 
void foo(int i) 
{

 
 if (i > 0) 
 foo(i – 1); 
 
}

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

Measurement code is inserted such that every event of interest is captured directly

• Can be done in various ways

Advantage:

• Much more detailed information

Disadvantage:

• Processing of source-code / executable 

necessary

• Large relative overheads for small functions

Three Instrumentation Techniques for
Wrapping External Libraries

Pre-processor based substitution by re-defining a call (e.g., read)

Preloading a library at runtime

Linker based substitution

Preprocessor based substitution

Pre-processor based substitution by re-defining a call

• Compiler replaces read() with tau_read() in the body of the source code

Advantages:

• Simple to instrument

• Preprocessor based replacement

• A header file redefines the calls

• No special linker or runtime flags required

Disadvantages

• Only works for C & C++ for replacing calls in the body of the code.

• Incomplete instrumentation: fails to capture calls in uninstrumented libraries (e.g., libhdf5.a)

Preloading a wrapper library
Preloading a library at runtime

• Tool defines read(), gets address of global read() symbol (dlsym), internally calls timing calls
around call to global read

• tau_exec tool uses this mechanism to intercept library calls

Advantages

• No need to re-compile or re-link the application source code

• Drop-in replacement library implemented using LD_PRELOAD environment variable under

Linux, Cray CNL, IBM BG/P CNK, Solaris…

Disadvantages

• Only works with dynamic executables. Default compilation mode under Cray XE6 and IBM BG/
P is to use static executables

• Not all operating systems support preloading of dynamic shared objects (DSOs)

Linker based substitution

Linker based substitution

• Wrapper library defines __wrap_read which calls __real_read and linker is passed -Wl,-wrap, read

Advantages

• Tool can intercept all references to a given call

• Works with static as well as dynamic executables

• No need to recompile the application source code, just re-link the application objects and libraries with

the tool wrapper library

Disadvantages

• Wrapping an entire library can lengthen the linker command line with multiple –Wl,-wrap,<func>
arguments. It is better to store these arguments in a file and pass the file to the linker

• Approach does not work with un-instrumented binaries

Indirect Performance Observation

Program code instrumentation is not used

Performance is observed indirectly

•Execution is interrupted

• can be triggered by different events

•Execution state is queried (sampled)

• different performance data measured

•Event-based sampling (EBS)

Performance attribution is inferred

•Determined by execution context (state)

•Observation resolution determined by interrupt period

•Performance data associated with context for period

Indirect Observation

Sampling

Running program is periodically interrupted to take measurement

• Timer interrupt, OS signal, or HWC overflow

• Service routine examines return-address stack

• Addresses are mapped to routines using symbol table information

Statistical inference of program behavior

• Not very detailed information on highly volatile metrics

• Requires long-running applications

Works with unmodified executables

int main() 
{ 
 int i; 
 
 for (i=0; i < 3; i++) 
 foo(i); 
 
 return 0; 
} 
 
void foo(int i) 
{

 
 if (i > 0) 
 foo(i – 1); 
 
}

Performance Data Measurement

Direct via Probes

• Exact
measurement

• Fine-grain control

• Calls inserted

into code

• No code modification

• Minimal effort

• Relies on debug

symbols (-g)

Call
START(‘potential’)

// code

Call
STOP(‘potential’) Indirect via Sampling

Measurement Verbosity

Profiling and Tracing

Profiling Tracing
Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline

How much data do you want?
Limited 
Profile

Flat  
Profile

Loop 
Profile

Callsite

Profile

Callpath 
Profile

Trace

O(KB) O(TB)

Inclusive vs. Exclusive values
■ Inclusive: Information of all sub-

elements aggregated into single value

■ Exclusive: Information cannot be

subdivided further

Inclusive Exclusive

int foo()

{

 int a;

 a = 1 + 1;

 bar();

 a = a + 1;

 return a;

}

Inclusive Measurements

Exclusive Time

