
Applied GPU Programming – Part 2

Ivy Peng
Assistant Professor in Computer Science

Scalable Parallel System (ScaLab)
Department of Computer Science, KTH

Shared Memory

2

Recap: Memory Hierarchy in GPUs

3

CUDA Hardware model
• CUDA GPUs contain numerous

fundamental computing units called
cores
• Each core includes and ALU and

FPU
• Cores are collected into groups

called streaming multiprocessors
(SMs)

• Kepler K20 has 192 CUDA cores
per SM and 15 SMs = 2880 cores!

• Each SM has fast cache shared
memory

5

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

!!!!!!!

"
"
"
"
"
"
"
"
"
"

#####

$
$
$
$
$

Lecture 1 – p. 10

Memory Hierarchy in GPUs

4

Slower but larger

Faster but smaller

Memory Hierarchy in GPUs

5

Slower but larger

Faster but smaller

Embarrassingly Parallel Problems
So far, we have only worked with independent
tasks that didn’t require data from other threads.
This kind of problems are also called
embarrassingly parallel problems.

However, most applications have interdependent
threads. We will deal with them now.

6

T0

T5T0

T5

Embarrassingly
parallel

Interdependent
parallel

1D Computational Grid

Example: 2nd Order Derivative on 1D Grid
Problem: we have a function u(x)= sin(x) defined on discrete points of a 1D
grid with grid spacing h. The second order derivative at the point xi can be
calculated as

(d2/dx2 u)|i = (ui+1 – 2ui +ui-1)/h2

We want to implement a code to calculate this using CUDA

7

x1 x2 x3 …

h
u(x1) u(x2) u(x3)

Two types of GPU memory so far: Register and Global

So far, we have used two types of memories without identifying them:

• Register memory where the local variables for each thread are
stored.
• Register memory is as close to the SM as possible, so it is

fastest but its scope is local only to a single thread.
• Global memory is the GPU memory that has been allocated with

cudaMalloc().
• It provides large capacity but it is far from the GPU so it is slow.

• However, this memory is accessible by all threads.

8

Question: is x a register or global variable ?

9

int main()
{
 const float ref = 0.5f;

 // Declare a pointer for an array of floats
 float *d_out = 0;

 // Allocate device memory to store the output array
 cudaMalloc(&d_out, N*sizeof(float));

 // Launch kernel to compute and store distance values
 distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);

 cudaFree(d_out); // Free the memory
 return 0;
}

#include <stdio.h>
#define N 64
#define TPB 32

__device__ float scale(int i, int n)
{
 return ((float)i)/(n - 1);
}

__device__ float distance(float x1, float x2)
{
 return sqrt((x2 - x1)*(x2 - x1));
}

__global__ void distanceKernel(float *d_out, float ref, int len)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
float x = scale(i, len);
 d_out[i] = distance(x, ref);
 printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);
}

Question: is x visible by all the threads?

Question: is d_out a register or global variable ?

10

int main()
{
 const float ref = 0.5f;

 // Declare a pointer for an array of floats
 float *d_out = 0;

 // Allocate device memory to store the output array
 cudaMalloc(&d_out, N*sizeof(float));

 // Launch kernel to compute and store distance values
 distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);

 cudaFree(d_out); // Free the memory
 return 0;
}

#include <stdio.h>
#define N 64
#define TPB 32

__device__ float scale(int i, int n)
{
 return ((float)i)/(n - 1);
}

__device__ float distance(float x1, float x2)
{
 return sqrt((x2 - x1)*(x2 - x1));
}

__global__ void distanceKernel(float *d_out, float ref, int len)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 float x = scale(i, len);
d_out[i] = distance(x, ref);
 printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);
}

Question: is d_out visible by all the threads?

Going back to our initial problem
Problem: we have a function u(x)= sin(x) defined on discrete
points of a 1D grid with grid spacing h. The second order derivative at
the point xi can be calculated as

(d2/dx2 u)|i = (ui+1 – 2ui +ui-1)/h2

Question: Should u be register or global?

11

CUDA code

12

int main() {
const float PI = 3.1415927;
const int N = 150;
const float h = 2 * PI / N;
float x[N] = { 0.0 };
float u[N] = { 0.0 };
float result_parallel[N] = { 0.0 };

for (int i = 0; i < N; ++i) {
x[i] = 2 * PI*i / N;
u[i] = sinf(x[i]);

}
ddParallel(result_parallel, u, N, h);
}

// second order derivative
void ddParallel(float *out, const float *in, int n, float h) {
 float *d_in = 0, *d_out = 0;

 cudaMalloc(&d_in, n*sizeof(float)); // on global memory
 cudaMalloc(&d_out, n*sizeof(float)); // on global memory
 cudaMemcpy(d_in, in, n*sizeof(float), cudaMemcpyHostToDevice);

 ddKernel<<<(n + TPB - 1)/TPB, TPB>>>(d_out, d_in, n, h);

 cudaMemcpy(out, d_out, n*sizeof(float), cudaMemcpyDeviceToHost);
 cudaFree(d_in); cudaFree(d_out);
}

Question: is d_in visible by all threads?

#include <stdio.h>
#define TPB 64

__global__
void ddKernel(float *d_out, const float *d_in, int size, float h)
{
 const int i = threadIdx.x + blockDim.x*blockIdx.x;
 if (i >= size) return;
 d_out[i] = (d_in[i - 1] - 2.f*d_in[i] + d_in[i + 1]) / (h*h);

}

Efficiency of this approach

13

Global variables is not the most efficient
approach because:
• Memory traffic and

synchronization: Thousands of
threads try to read and write values
to and from the same arrays
• d_in[i] gets requested by 3 threads

with index i-1, i, and i+1 respectively
• Access to global memory is relatively

slow because far from the GPU.

GPU Shared Memory
• GPU shared memory (SMEM) bridge

the gap in memory speed between
global memory and register.
• Much faster than global memory
• Much larger than register

• SMEM can be accessed efficiently by
all threads in a thread block
• Since Volta architecture, L1 and

SMEM are unified
• Question: what is the difference

between L1 and SMEM

14

How to use Shared Memory (SMEM)
(1) Break the large global array into tiles
(2) Allocate tiles in SMEM
(3) Fill tiles
(4) Threads compute using tiles

15

d_in[]

s_in[] s_in[] s_in[]

Block 0 Block 1 Block 2

3 tiles
Global Memory

Shared Memory

Halo/Ghost Cells

We divide the global array in smaller arrays of equal size
Problem: to compute (ui+1 – 2ui +ui-1)/h2 on the boundary cells of the tile requires to
know the values on adjacent parts.
Solution: include array elements at the boundary of the adjacent parts in the shared array

16

d_in[]

s_in[] s_in[] s_in[]

Halo
cell

Halo
cell

Halo
cell

Halo
cell

Question: what is the size of the shared array if we divide
global array of size N by the number of blocks?

How to declare shared variables – 1. Fixed Size
Shared variables are declared in the kernel function.

We declare shared arrays using the __shared__ qualifier.

If you create your shared array with a fixed size, the array can be
created simply prepending __shared__ to the type of the array, e.g:

__shared__ float s_in[34];

__shared__ float s_in[blockDim.x + 2];

17

How to declare shared variables – 2. Dynamic
If we allocate the array dynamically, the declaration requires the
keyword extern as follows:
 extern __shared__ float s_in[];

18

Specify the size of the shared memory allocation in bytes as the third
argument within kernel<<< … >>> when launching a kernel

int smemSize = (TPB + 2)*sizeof(float);
aKernel <<<(n+TPB-1)/TPB, TPB, smemSize>>>(args)

Indexing when Using Shared Arrays
The use of shared (to the block) array make indexing little bit more
complicated. To keep the bookkeeping simple, a good approach is to

• maintain the usual index i (which we call global index because it
identifies the corresponding element of the array in global
memory)

• to introduce a local index s_idx to keep track of where things are
stored in the shared memory.

20

Indexing with Halo Cells
We can introduce the radius (RAD) of the stencil, that is the number of ghost cells
on boundary.

When handling a stencil with radius RAD, in addition to one element for each
thread in the block, the shared array must also include 2*RAD halo cells
added to each end.

The first thread in the block need to leave room for RAD neighbors and therefore
get local index s_idx = RAD. The general relation between the local index and
thread index is

s_idx = threadIdx.x + RAD;

21

Halo/Ghost Cells

22

d_in[]

s_in[] s_in[] s_in[]

Halo
cell

Halo
cell

Halo
cell

Halo
cell

Question: what is the value of RAD?

Filling the Shared Arrays
__global__
void ddKernel(float *d_out, const float *d_in, int
size, float h) {

 // global index
 const int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i >= size) return;
 // local index

 const int s_idx = threadIdx.x + RAD;

 // declared shared
 extern __shared__ float s_in[];

// fill
s_in[s_idx] = d_in[i];

…

23

Once the shared array is
allocated, we are ready to
transfer the data from global
memory to shared memory.

Each thread requests the entry in
the input array whose index
matches the thread’s global
index.

Filling the shared arrays: Halo cells
The values for the halo cells still need to be obtained and stored:

Thread 0 has s_idx = RAD, so:
• s_idx-RAD is 0 and the leftmost neighbor gets stored in the leftmost halo

cell at the beginning of the shared array
• s_idx+blockDim.x is blockDim.x and the immediate neighbor to the

right gets stored in the leftmost halo cell at the end of the array

24

// fill
 s_in[s_idx] = d_in[i];
 // Halo cells
 if (threadIdx.x < RAD) {
 s_in[s_idx - RAD] = d_in[i - RAD];
 s_in[s_idx + blockDim.x] = d_in[i + blockDim.x];
 }

Halo
cell

Halo
cell

Synchronization of Shared Arrays

we can’t assume that all the input data has
been loaded in the shared memory array
before threads execute the statement using
shared arrays.

To ensure that all the data has been properly
stored, we employ the CUDA function:

__synchthreads();

This forces all the threads in the block to
complete the previous statements before
any thread in the block proceeds further.

25

…
 // Regular cells
 s_in[s_idx] = d_in[i];
 // Halo cells
 if (threadIdx.x < RAD) {
 s_in[s_idx - RAD] = d_in[i - RAD];
 s_in[s_idx + blockDim.x] =
 d_in[i + blockDim.x];
 }
__syncthreads();

 // use shared array
 …

Question: what is the difference between
__synchthreads() and
cudaDeviceSynchronize()?

Shared Memory - Put everything together

26

__global__ void ddKernel(float *d_out, const float *d_in, int
size, float h) {
 const int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i >= size) return;

 const int s_idx = threadIdx.x + RAD;
extern __shared__ float s_in[];

 // Regular cells
 s_in[s_idx] = d_in[i];
 // Halo cells
 if (threadIdx.x < RAD) {
 s_in[s_idx - RAD] = d_in[i - RAD];
 s_in[s_idx + blockDim.x] = d_in[i + blockDim.x];
 }
__syncthreads();

 d_out[i] = (s_in[s_idx-1]-2.f*s_in[s_idx]+s_in[s_idx+1])/(h*h);
}

#define TPB 64
#define RAD 1 // radius of the stencil
…

void ddParallel(float *out, const float *in, int n, float h) {
 float *d_in = 0, *d_out = 0;
 cudaMalloc(&d_in, n * sizeof(float));
 cudaMalloc(&d_out, n * sizeof(float));
 cudaMemcpy(d_in, in, n * sizeof(float), cudaMemcpyHostToDevice);

 // Set shared memory size in bytes
 const size_t smemSize = (TPB + 2 * RAD) * sizeof(float);
 ddKernel<<<(n + TPB - 1)/TPB,TPB,smemSize>>>(d_out, d_in, n, h);

 cudaMemcpy(out,d_out,n*sizeof(float),cudaMemcpyDeviceToHost);
 cudaFree(d_in);
 cudaFree(d_out);
}

Atomic/Reduction Operation

27

Reduction Operation
In a reduction operation, all elements of an input array are combined to obtain a
single output

28

When do you need reductions ? dot products, image similarity measures, integral
properties, and histograms require reduction

Parallel reduction: parallel dot product
this is the serial CPU code to calculate the dot product of
two arrays, a and b, of size N:

for (int i = 0; i < N; ++i) {
cpu_res += a[i] * b[i];

}

29

How to parallelize with CUDA

• Move a and b to GPU memory
• Create a d_res[] array on the GPU to hold the result of

single element multiplication d_res[i] = a[i]*b[i]
• Move d_res[] to res[] in the CPU memory
• Sum up all the elements of res[]in one scalar value sum.

30

Question: Can we do better ? Any better strategy?

Possible solution: tiles and shared

31

The traffic to global memory can be reduced by:
• a tiling approach that breaks the large input vectors up to in

N/#Blocks titles.
Each tile would consist of TPB-sized arrays in SMEM.

Question: do we need halo/ghost cells?
• updating d_res once per block

The Shared “Strategy”: Create array and fill it

• Create a shared memory array to store the product of
corresponding entries in the tiles of the input arrays. Fill the
array:

 __shared__ int s_prod[TPB];
 s_prod[s_idx] = d_a[idx] * d_b[idx];

Question: What do we need to do next?

• Synchronize to ensure that the shared array is completely
filled before proceeding!

32

CUDA Code
#include <stdio.h>
#define TPB 64

void dotLauncher(int *res, const int *a, const int *b, int n) {
 int *d_res;
 int *d_a = 0;
 int *d_b = 0;

 cudaMalloc(&d_res, sizeof(int));
 cudaMalloc(&d_a, n*sizeof(int));
 cudaMalloc(&d_b, n*sizeof(int));

 cudaMemset(d_res, 0, sizeof(int));
 cudaMemcpy(d_a, a, n*sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, n*sizeof(int), cudaMemcpyHostToDevice);

 dotKernel<<<(n + TPB - 1)/TPB, TPB>>>(d_res, d_a, d_b, n);
 cudaMemcpy(res, d_res, sizeof(int), cudaMemcpyDeviceToHost);

 cudaFree(d_res);
 cudaFree(d_a);
 cudaFree(d_b);
}

33

__global__ void dotKernel(int *d_res, const int *d_a, const
int *d_b, int n) {

 const int idx = threadIdx.x + blockDim.x * blockIdx.x;
 if (idx >= n) return;

 const int s_idx = threadIdx.x;

 __shared__ int s_prod[TPB];
 s_prod[s_idx] = d_a[idx] * d_b[idx];
 __syncthreads();

 if (s_idx == 0) {
 int blockSum = 0;
 for (int j = 0; j < blockDim.x; ++j) {
 blockSum += s_prod[j];
 }
 printf("Block_%d, blockSum = %d\n", blockIdx.x, blockSum);
 *d_res += blockSum;

 }

} Question: Is this code correct? Question: why the third argument is missing?

Code Correctness

Thread 0 in each block reads a value
of d_res from global memory, adds
its value of blockSum and stores the
results back into the memory location
where d_res is stored.

34

__global__ void dotKernel(int *d_res, const int *d_a, const
int *d_b, int n) {

 const int idx = threadIdx.x + blockDim.x * blockIdx.x;
 if (idx >= n) return;

 const int s_idx = threadIdx.x;

 __shared__ int s_prod[TPB];
 s_prod[s_idx] = d_a[idx] * d_b[idx];
 __syncthreads();

 if (s_idx == 0) {
 int blockSum = 0;
 for (int j = 0; j < blockDim.x; ++j) {
 blockSum += s_prod[j];
 }
 printf("Block_%d, blockSum = %d\n", blockIdx.x, blockSum);
 *d_res += blockSum;

 }

}

Problem: the outcome of these operations
depends on the sequence in which they are
performed by each thread!

Question: Have you seen this problem before?

Race Condition

This situation, in which the order of operations whose sequencing is
uncontrollable, is called a race condition, and the race condition results
in undefined behavior (most of times results in data corruption).

35

CUDA Atomic Functions
The solution is to use CUDA atomic
functions (we don’t have critical session in
CUDA).

Atom in ancient Greek means uncuttable
or indivisible. An atomic function performs
read-modify-write sequence of
operations as an indivisible unit.

36

Using atomicAdd() to solve the race condition

37

__global__ void dotKernel(int *d_res, const int *d_a, const int *d_b, int n) {
 const int idx = threadIdx.x + blockDim.x * blockIdx.x;
 if (idx >= n) return;
 const int s_idx = threadIdx.x;

 __shared__ int s_prod[TPB];
 s_prod[s_idx] = d_a[idx] * d_b[idx];
 __syncthreads();

 if (s_idx == 0) {
 int blockSum = 0;
 for (int j = 0; j < blockDim.x; ++j) {
 blockSum += s_prod[j];
 }
 printf("Block_%d, blockSum = %d\n", blockIdx.x, blockSum);

atomicAdd(d_res, blockSum);
 }

}

Other CUDA Atomic Operations

Together with atomicAdd(), CUDA offers 10 other atomic
functions: atomicSub(), atomicExch(), atomicMin(),
atomicMax(), atomicInc() , atomicDec(),
atomicCAS() (CAS = compare and swap) and three bitwise
functions atomicAnd(), atomicOr() and atomicXor().

Problem: Atomic operations force some serialization and slow
down things a bit. Use only when really needed!

38

How is my code performing?

39

Understand your code

NVProf, Nsight

40

