CUDA Programming — Part 2

vy Peng
Assistant Professor in Computer Science
Scalable Parallel System (Scalab)
Department of Computer Science, KTH

Recap — GPU Architecture

Two Metrics of Processor Performance
*Task latency = time elapsed between the initiation and completion of some task
*Task throughput = total amount of work completed per unit time

Latency-Oriented Architecture Throughput-Oriented Architecture
- | o

ContrOI ALU ALU : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

o | || [] | [1]

m [[[[TTTTTTTTITTIT]

R WL

m T T]

m [[[[TTTTTTTITTT]

m T T TTTITTITTIT1]

m LTI TTITITITTITIT]

L1 cache /
shared memory

GPU

~000CJ000-000co0

L1 cache /
shared memory

~nonr-1nna-naneEnn
—ooocJooo-ooocod
—ooocIJooo-ooocod

DRAM

ALU
ALU

ooooooooooo
L1 cache /
shared memory

ALU
ALU

CPU

ooooocoocoo
L1 cache /
shared memory

Control

—000CJ000-000C00
i inin e ininainl
—ooocJooo-ooocod
—ooocJooo-ooocod
i inin e ininainl
—ooocJooo-ooocod
—ooocJooo-ooocod
i inin e ininainl
—ooocJooo-ooocod
—ooocJooo-ooocod
i inin e ininainl
_ooocJooo-ooocod
B
\DDDHuDDD ooocoo
—oooc3d
\DDDHuDDD ooocoo
1aanaaa NI I
—ooocJooo-ooocod

te-

ith little
lot of

parallelism but lower clock

in compu
frequency
GPU consists of one or more SMs, each

IoONS Wi

synchronization
Power eff

iciency

very good
hundreds of cores

ts
one comprising

heavy applicat

Lots of cores, fewer control
uni

GPU v.s. CPU architecture

)
| -
-
wid
(&)
()
=
i e
O
.
<
-
a
O
|

Q
(4]
(&)
)
14

Recap - CUDA

It is an extension of the C language that provide basic
mechanisms to:

« Create allocate variable on GPU memory

* Move data from CPU to GPU memory and vice-versa

« Define kernel and launch a kernel (which qualifier to use?)
« Synchronize threads

Question: Which CUDA functions you used in the lab?

Recap - Execution Configuration

To choose the specific execution configuration that will produce the best
performance involve both art and science

* To choose some multiple of 32 is reasonable since it matches
up somehow with the number of CUDA cores in an SM

» There are limits: a single block cannot contain more than
1,024 threads

« Forlarge problems, reasonable to test are 128, 256 and 512

Question: Have you tried different execution configurations in the lab? Which one
gave you the best performance?

Questions?

Scale an array and compute an array of distances from a reference point to
each of N points uniformly spaced along a line segment.

0 N
= — e
0 1
Sedle % = -l o
Calculate
Distance ©ut =’l\ | GPU

Transform a serial example: dist

#include <math.h> //Include standard math library containing sqrt.
#define N 64 // Specify a constant value for array length.

é{oétsggé{ggiﬁgngfiggttg)convert integers 0,1,...,N-1 to evenly spaced floats
return ((Float)i) / (n - 1); the CPU version,

’ uses a single For
Float distanceCfloas x1, float xay o Loop that scales the
b et sqrtC(x2 - xD*(x2 - x1)); loop index to create
} an input location and
{ o computes the

5}02E082§[21r2f22é2ié value from which distances are measured. (jiE;tEir1(:EE fr()rT] tf]EB

S e reference location

{

float x = scale(i, N);
out[i] = distance(x, ref);

return 0;

1. Create the CUDA source file

#include <math.h>
#define N 64

float scale(int i, int n)

« Create the file kernel.cu {
. return ((float)i) / (n - 1);
where you will have CUDA)
source COde 9 CU DA COdeS Eloat distance(float x1, float x2)
have eXtenS|On .Cu) return sqrt((x2 - x1)*(x2 - x1));
« Copy and paste the content of int mainO
main.cpp into kernel.cu © float outDN] = {0.01;
const float ref = 0.5;
for (int 1 = @; 1 < N; ++i)
{
float x = scale(i, N);
out[i] = distance(x, ref);
}
return 0;

}

2.1 Modify kernel.cu

#include <math h>

e Delete #include <math.h>

. B
because CUDA internal files already #define N 64

include math.h, and insert sl o
<stdio.h> to enable printing the float scaleCint i, int m{
output , return ((float)i) / (n - 1);

float distance(float x1, float x2){

e Add #define TPB 32, to indicate return sqrt((x2 - X1 (x2 - x1));

the number of threads per block 1
that will be used in your kernel launch

2.2 Modify kernel.cu

* Copy the_ Ioop bOdy outside .. distanceKernel(..){ One single function to be run on GPU
the main () IN A distanceKernel () SCCI].G(...);

function comprising scaie) - distance(..);
and distance ()

| -
* Replace the for loop with the " 'F(féz?éutm _ (0.0); Noloop... grid instead!

kernel launch const float ref = 0.5;
distanceKernel<<<N/TPB, TPB>>>(d_out,ref,N);
distanceKernel<<<N/TPB, TPB>>>(d out,ref,N); return @’
}

3.1 Create Kernel Definition

__XxXX__ void distanceKernel(float *d_out,
float ref, int len)

{

¥

Question: global |, device , or host ?

Hint: We call this function from the host and want to run on
GPU

3.2 Create Kernel Definition

xxX__ float scale(int 1, int n)

{
return ((float)i)/(n - 1);

¥

Question: global |, device , or host ?

Hint: We call this function from the GPU and want to run on
GPU

3.3 Create Kernel Definition

__XxX__ float distance(float x1, float x2)

{
return sgqrt((x2 - x1)*(x2 - x1));

¥

Question: global |, device , or host ?

Hint: We call this function from the GPU and want to run on
GPU

4. Get the global thread ID using index variables

__global__ void distanceKernel(float *d_out, float ref, int len)
{

const int 1 = blockIdx.x*blockDim.x + threadIdx.x;

const float x = scale(i, len);

d_out[i] = distance(x, ref);

printf("1 = %2d: dist from %f to %f is %f.\n", 1, ref, x, d_out[1]);

}

Inside the kernel add the formula for computing index i (to replace the
loop index of the same name that is now removed) using built-in index
and dimension variables that CUDA provides with every kernel launch:

const int 1 = blockIdx.x*blockDim.x + threadIdx.x

5. Create results array (d_out) on the GPU

Question: Which CUDA function do we use?

int main(Q) Did we forget anything?

{

// Declare a pointer for an array of floats
float *d_out = 0;

// Allocate device memory for d_out
cudaMalloc(&d_out, N*sizeof(float));

// Launch kernel to compute
distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);
return(0);

#include <stdio.h>
#define N 64
#define TPB 32 {
__device__ float scale(int i, int n)

return ((float)i)/(n - 1);
}
__device__ float distance(float x1, float x2)
{

return sqrt((x2 - x1)*(x2 - x1));

__global__ void distanceKernel(float *d_out, float ref, int len)
{

const int i = blockIdx.x*blockDim.x + threadIdx.x;
const float x = scale(i, len);
d_out[i] = distance(x, ref); }

Putting everything together

int mainQ)

const float ref = 0.5f;

// Declare a pointer for an array of floats
float *d_out = 0;

// Allocate device memory to store the output array
cudaMalloc(&d_out, N*sizeof(float));

// Launch kernel to compute and store distance values
distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);

cudaFree(d_out); // Free the memory
return 0;

] Putting everything together

Compile it:

nvcc kernel.cu —-o dist vl

Back to CUDA — CUDA Vector Types

CUDA extends the standard C data types, like int and float, to be
vector with 2, 3 and 4 components, like int2, int3, int4, float2,
float3 and float4. Other vector types are also supported.

For example, you can declare an integer vector d with three components
and initialize with 128, 1 and 1 element in the x, y and z direction:

int3 d = 1nt3(128, 1, 1);

CUDA Vector types

Vector types CUDA extends the standard C data types of length up to 4.
floatd4d £ = (floatd4) (1.0f£, 2.0f, 3.0f, 4.0f%f);

Individual components are accessed with the suffixes .x, .y, .z,
and .w. Accessing components beyond those declared for the
vector type is an error.

float3 pos;
pos.z = 1.0f; // is legal
pos.w = 1.0f; // is illegal

CUDA dim3 type for Dimension Variables

The dim3 type is equivalent to uint3 with unspecified entries set
to 1.

CUDA uses the vector type dim3 for the dimension variables,
gridDim and blockDim.

We use dim3 variables for specifying execution configuration.

CUDA Type dim3

CUDA uses the vector type dim3 for the dimension variables, gridDim and
blockDim.

The dim3 type is equivalent to uint3 with unspecified entries set to 1.
As you probably noticed in the Lab1 for the lab, we could use either:

dim3 grid(1,1,1); // 1 block in the grid
dim3 block(32,1,1); // 32 threads per block

Or set block and thread per block as scalar quantity in the <<< = >>>
(execution configuration)

Type of blockIdx and threadIdx

CUDA uses the vector type uint3 for the index
variables, blockIdx and threadIdx.

A uint3 variable is a vector with three unsigned integer
components.

We used threadIdx.x and blockIdx.x to retrieve
indices in 1D grid.

2-Dimensional Grids

Why do we need higher dimensions CUDA grids?

Several applications points regularly distributed on a 2D plane. A first example can
be a matrix. A second example involves digital image processing.

A digital raster imagine consists of a collection of picture elements (pixel)
arrlanged in a uniform 2D rectangular grid with each pixel having an intensity
value.

Example of 3x3 .bmp image file (see lab today)

Header
(0,00 B0:;1) 4 (0,2) (0,3) N(OG4)= (0,5) (0,6) HO;7)~ (0,8)
(1,00 NE&1) Y (1,2) (1,3) NE4) (1,5) (1,6) M) (1,8)

(2,0) B&HN (2,2) (2,3) M&4)N (2,5) (2,6) H&ON (2,8)

2D Grid Kernel — Thread per block [TX,TY]

Computing data for an image of W columns and H rows

We can organize the computation into 2D blocks with TX threads in the x-
direction and TY threads in the y-direction.

dim3 DimBlock(TX, TY);
dim3 DimBlock(TX, TY, 1);

dim3 DimGrid((W-1)/TX + 1, (H-1)/TY+1);
dim3 DimGrid((W-1)/TX + 1, (H-1)/TY+1, 1);

kernel<<<DimGrid, DimBlock>>>(....); H v

2D Grid Kernel — Number of blocks in x and y
Questions: how do we choose the number of blocks in x and y ? If
we follow the 1D example, what would be N or the ARRAY SIZE
equivalent?

We compute the number of blocks (bx and by) needed in each direction exactly as
in the 1D case:

int bx = (W + TX - 1)/TX;
int by = (H + TY - 1)/TY;

The syntax for specifying the grid size (in blocks) is

dim3 gridSize = dim3 (bx, by);

2D Grid Kernel Launch

We are ready now to launch (no difference with 1D grid):

kernelName<<<gridSize, blockSize>>>(args)

Determine global indices

To identify our pixel in the image we will
use to global indices c and r.

Question: How you calculate ¢ and r for
the red pixel? (same as 1D grid, with .y direction)

int ¢ = blockIdx.x*blockDim.x + threadIdx.x;
int r = blockIdx.y*blockDim.y + threadIdx.y;

Flattening global indices to 1D global index

In several cases, it is convenient to express our 2D data as

1D data (flattening): use simply a 1D array of length Ww*H Row-major order
0 1 2 3
We place values in the 1D array in row-major order: we o EEEE
store the data from row 0, followed by data from row 1 and . B
SO on. (“—‘—'“)
2 S~

Question: Why do flattening in row-major order instead of
column-major order?

« We calculate position at [r, c] v
- We flatten r and c as: ammEEERzEEEEEEEE (TREEEEEEEEEEE

* int 1 = r*W + c;

CUDA code for distance between points in 2D

#define W 32

#define H 32

#define TX 8 // number of threads per block along x-axis

#define TY 8 // number of threads per block along y-axis < W

v

ref-point
N I

int divUp(int a, int b) { return (a + b - 1) / b; }

int main(Q) {
float *out = (float*)calloc(W*H, sizeof(float)); // set all the points to @
float *d_out = NULL;
cudaMalloc(&d_out, W*H*sizeof(float));

float2 pos = { 1.0, 0.0}; // ref. point r
dim3 blockSize(TX, TY);

dim3 gridSize(divUp(W, TX), divUp(H, TY)); H
distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos); v

cudaMemcpy(out, d_out, W*H*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_out);

free(out);

return 0;

CUDA Kernel and device code

__global__ void distanceKernel(float *d_out, int w, int h, floatZ pos)
{

const int c

blockIdx.x * blockDim.x + threadIdx.x; // column
const int r = blockIdx.y * blockDim.y + threadldx.y; // row
const int 1 = ¢ + r*w;
1if ((c >=w) || (r >= h))

return;
d_out[1] = distance(c, r, pos); // compute and store result

__device__ float distance(int c, int r, float2 pos)
{

return sqrtf((c - pos.x)*(c - pos.x) + (r - pos.y)*(r - pos.y));
ks

3D Grids

An execution configuration in 3D will require to define the number of threads
in the x, y and z direction, i.e., TX, TY, TZ

dim3 blockSize (TX, TY, TZ);

As usual, the block grid size is then calculate depending on the input size:

int bx = (W + blockSize.x - 1)/blockSize.x;
int by = (H + blockSize.y - 1) /blockSize.y;
int bz = (D + blockSize.z - 1)/blockSize.z;

Indices 3D

In addition to row (r) and column (c) global indices, we need a new
integer variable to have a global index in the stack (s for stack or
Stratum):

int s = blockIdx.z*blockDim.z + threadIdx.z;

The flattened 1D index becomes:

int 1 = ¢ + r*w + s*w*h;

Q&A

