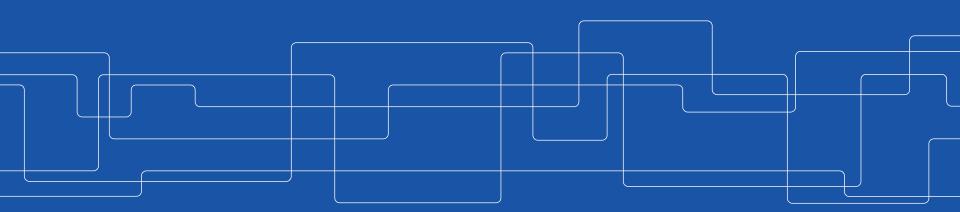


CUDA Programming for Nvidia GPU

Ivy Peng Assistant Professor in Computer Science Scalable Parallel System (ScaLab) Department of Computer Science, KTH



High-Level Programming Interfaces

- **OpenMP**: compiler directives and library for accelerators
- **OpenACC**: compiler directives and library for NVIDIA GPUs

- **Thrust**: C++ template library resembling C++ STL.
- **OpenCV**: Computer vision library using GPU
- CUDA-based libraries for math: cuBLAS, cuFFT, cuDNN, ...
- TensorFlow

Compiler + runtime library

Libraries atop CUDA

KTH vetenskap och konst

Low-Level Programming GPUs

- OpenCL (Open Computing Language): based on C, not only for GPUs but also for other "accelerators" (DSP, FPGA, ...) and integrated GPUs.
- CUDA (compute unified device architecture): extension to C language. Only for NVIDIA GPUs, most mature programming environments
- Heterogeneous-Computing Interface for Portability (**HIP**) for AMD GPUs
 - C++ dialect designed to ease conversion of CUDA applications to portable C++ code.

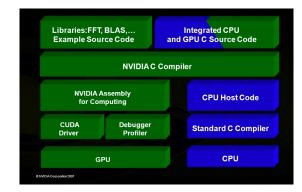
CUDA (Compute Unified Device Architecture) is **NVIDIA**'s program development environment:

- based on C/C++ with some extensions
 - FORTRAN support provided by compiler from PGI
- Indexing math and synchronization are the main conceptual difficulties

CUDA Components

Installing CUDA on a system, there are **3 components**:

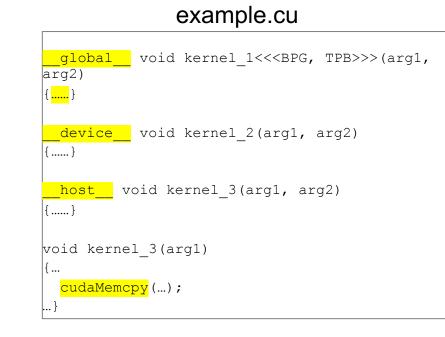
- 1. Driver low-level software that controls the graphics card
- 2. Toolkit
 - nvcc compiler
 - Tracing tools
 - profiling and debugging tools
 - several libraries for math, deep learning libraries
- 3. SDK
 - lots of demonstration examples
 - some error-checking utilities



CUDA Programming

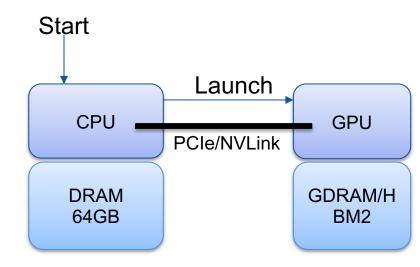
Terminology:

- host = CPU and its memory (host memory)
- device = GPU and its memory (device memory)
- Programming in 3 steps:
- Define where (host or device) to launch a tasks
- Define data exchange between host and device
- Define computation tasks



CUDA Parallelism Model

Launching a kernel on the GPU from the CPU to create a computational grid of threads



CUDA makes this distinction by prepending one of the following function type qualifiers:

- __global___ is the qualifier for kernels (which can be called by the host and executed on device)
- <u>host</u> functions called from the host and executed on the host (default qualifier, often omitted)
- __device__ functions are called from the device and execute on the device (a function that is called from a kernel needs the __device__ qualifier)

Question: which qualifier do you have before the function you call **from the GPU** and you want to run **on GPU**:

- __global__
- ___host___
- __device_
- ?

Question: which qualifier do you have before the function you call **from the CPU** and you want to run on **GPU**:

- __global__
- __host___
- __device_

?

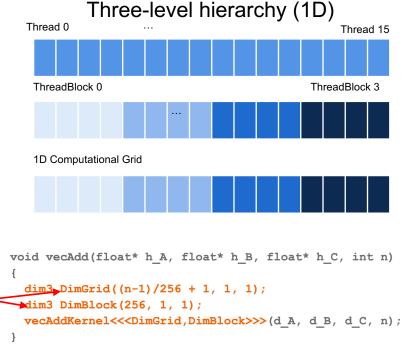
CUDA Parallelism Model

Threads are organized in a three-level hierarchy:

- Thread
- ThreadBlock (1D, 2D or 3D)
- ThreadBlock Grid (1D, 2D or 3D)

How to determine their values for your problem?

- Start with the total number threads you need
 - E.g., 1D array of N elements -> N threads
- Threads per Block is typically 32, 64,128 or 256
 - Is your problem 1D, 2D, 3D?
 - Now you can calculate Grid



Launch a Kernel in CUDA

Kernel is a kind of **special function executed on the GPU** Kernel **launch** \cong regular function call with addition of number of threads

```
aKernel<<<BPG, TPB>>>(arg1, arg2, ...)
```

To specify a kernel launch, we start with kernel name (aKernel) and end with argument list between ()

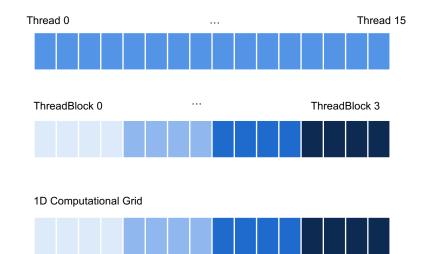
Now for the CUDA extension: we specify the dimensional of the computational grid, the **grid dimensions** and **block dimension** between triple angle brackets (<<<BPG, TPB>>>).

Execution Configuration: Tell how Many Threads we Need

BPG = number of blocks in the grid TPB = number of threads in the block

Together they constitute the **execution configuration** and specify the **dimensions of the kernel launch**

What it is BPG and TPB in this case?



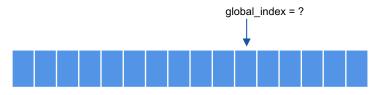
CUDA Built-in Variables

CUDA provides build-in dimension and index variables when in the kernel

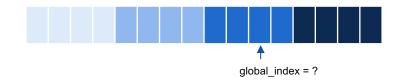
- Dimension variables
 - gridDim = number of blocks in the grid
 - blockDim = number of threads in each block
- Index variables
 - blockIdx = index of the block in the grid
 - threadIdx = index of the thread within the block

Question: How do I calculate my global thread ID (1D grid)?

Using threadIdx, blockIdx, and what do I need also?

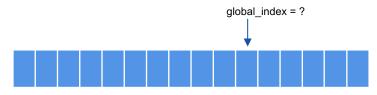


blockIdx = ? threadIdx = ?

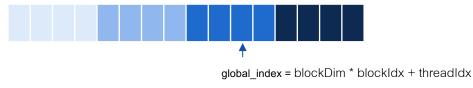


Question: How do I calculate my global thread ID (1D grid)?

Using threadIdx, blockIdx, and what do I need also?



blockIdx = 2 threadIdx = 2



= 4 * 2 + 2

Data Transfer between host and device

- Kernels execute on the GPU and do not, in general, have access to data stored on the host side
- Kernels cannot return a value, so the return type is always void, and kernel declarations starts as

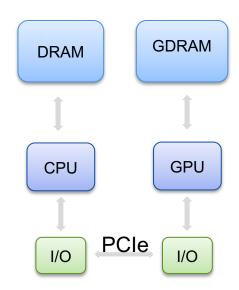
__global___void aKernel(arg1, arg2, ...)

• How do I get the results from my kernel ??

Data Transfer between host and device

The CUDA runtime API provides these functions for transferring input data to the device and transferring results back to the host:

- cudaMalloc() allocates device memory
- cudaMemcpy() transfers data to or from a device
 - cudaMemcpy(void* dest, void* src, size_t size, cudaMemcpyHostToDevice) host mem → GPU mem
 - cudaMemcpy(void* dest, void* src, size_t size, cudaMemcpyDeviceToHost)
 GPU mem → host mem
- cudaFree() frees device memory that is no longer in use



Data Transfer between host and device

Question: how I get my result from the kernel?

Data Transfers are Synchronous

By default, data transfers are synchronous (the function does not return until the data transfer is complete), so cudaMemcpy() stalls the program execution

• GPU cannot continue to other operations until data transfer is finished, and data transfer is slow.

Synchronous v.s. Asynchous

```
main() {
    syncKernel(arg1, arg2, ...)
    asyncKerne2(arg1, arg2, ...)
    syncKerne3(arg1, arg2, ...)
```

KTH vetenskap och konst

Kernel Launching is Asynchronous

- As soon as the kernel is launched, the CPU returns from the call of kernel without waiting for the completion of the kernel.
- In practice, the CPU launches the kernel and right away executes what is after the kernel launch without waiting for the kernel to finish

```
main() {
    syncKernel(arg1, arg2, ...)
    asyncGPUKerne2(arg1, arg2, ...)
    syncKerne3(arg1, arg2, ...)
```

Asynchronicity might create problems ...

Example: a code that launches a kernel (=GPU) to print to screen and then ends.

In such situation, after starting the GPU threads, control returns to the application and the application exits.

```
int main() {
    syncKernel(arg1, arg2, ...)
    asyncGPUKerne2(arg1, arg2)
    return 0;
}
```

At application exit, it's ability to send output to the standard output is terminated by the OS \rightarrow the output generated by the kernel has nowhere to go!

Thread Synchronization

Kernels enable multiple computations in parallel, but **they don't ensure the order of execution** (asynchronous). CUDA provides functions to synchronize :

- cudaDeviceSynchronize() effectively synchronizes all threads in a grid → waits for all the threads in the kernel to complete before proceed.
- _____synchThreads() synchronizes threads within a block

Q & A