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High-Level Programming Interfaces

• OpenMP: compiler directives and library for accelerators 
• OpenACC: compiler directives and library for NVIDIA GPUs
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• Thrust: C++ template library resembling C++ STL. 
• OpenCV: Computer vision library using GPU
• CUDA-based libraries for math: cuBLAS, cuFFT, cuDNN, …
• TensorFlow



Low-Level Programming GPUs

• OpenCL (Open Computing Language): based on C, not only for GPUs 
but also for other “accelerators” (DSP, FPGA, …) and integrated GPUs.

• CUDA (compute unified device architecture): extension to C 
language. Only for NVIDIA GPUs, most mature programming 
environments

• Heterogeneous-Computing Interface for Portability (HIP) for AMD GPUs
– C++ dialect designed to ease conversion of CUDA applications to 

portable C++ code.
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CUDA
CUDA (Compute Unified Device Architecture) is NVIDIA’s 
program development environment: 

• based on C/C++ with some extensions
• FORTRAN support provided by compiler from PGI 

• Indexing math and synchronization are the main 
conceptual difficulties
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CUDA Components
Installing CUDA on a system, there are 3 components: 
1. Driver low-level software that controls the graphics 

card 
2. Toolkit 

• nvcc compiler 
• Tracing tools
• profiling and debugging tools 
• several libraries for math, deep learning libraries

3. SDK 
• lots of demonstration examples 
• some error-checking utilities 
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CUDA Programming

Terminology: 
• host = CPU and its memory (host 

memory)
• device = GPU and its memory 

(device memory)
Programming in 3 steps:
• Define where (host or device) to 

launch a tasks
• Define data exchange between 

host and device
• Define computation tasks
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__global__ void kernel_1<<<BPG, TPB>>>(arg1, 
arg2)
{……}

__device__ void kernel_2(arg1, arg2)
{……}

__host__ void kernel_3(arg1, arg2)
{……}

void kernel_3(arg1)
{…

cudaMemcpy(…); 
…}

example.cu



CUDA Parallelism Model

Launching a kernel on the 
GPU from the CPU to 

create a computational 
grid of threads
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How to declare a function called by host but executed on device?

CUDA makes this distinction by prepending one of the 
following function type qualifiers:
• __global__ is the qualifier for kernels (which can be 

called by the host and executed on device)
• __host__ functions called from the host and executed 

on the host (default qualifier, often omitted)
• __device__ functions are called from the device and 

execute on the device (a function that is called from a 
kernel needs the __device__ qualifier)
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Question: which qualifier do you have before 
the function you call from the GPU and you 
want to run on GPU:
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• __global__
• __host__
• __device__
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Question: which qualifier do you have before 
the function you call from the CPU and you 
want to run on GPU:
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CUDA Parallelism Model

Threads are organized in a three-level hierarchy:
• Thread 
• ThreadBlock (1D, 2D or 3D)
• ThreadBlock Grid (1D, 2D or 3D)

How to determine their values for your problem?
• Start with the total number threads you need

• E.g., 1D array of N elements -> N threads
• Threads per Block is typically 32, 64,128 or 256

• Is your problem 1D, 2D, 3D?
• Now you can calculate Grid
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Launch a Kernel in CUDA 
Kernel is a kind of special function executed on the GPU
Kernel launch ≅ regular function call with addition of number of threads

aKernel<<<BPG, TPB>>>(arg1, arg2, …) 

To specify a kernel launch, we start with kernel name (aKernel) and 
end with argument list between () 

Now for the CUDA extension: we specify the dimensional of the 
computational grid, the grid dimensions and block dimension 
between triple angle brackets (<<<BPG, TPB>>>).
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Execution Configuration: Tell how Many Threads we Need

BPG = number of blocks in the grid
TPB = number of threads in the block

Together they constitute the execution configuration and 
specify the dimensions of the kernel launch
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What it is BPG and TPB in this case?

14

Thread 0

ThreadBlock 0 ThreadBlock 3

1D Computational Grid

…

Thread 15…



CUDA Built-in Variables

CUDA provides build-in dimension and index variables when in the kernel 
• Dimension variables

• gridDim   = number of blocks in the grid
• blockDim = number of threads in each block

• Index variables
• blockIdx   = index of the block in the grid
• threadIdx = index of the thread within the block
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Question: How do I calculate my global 
thread ID (1D grid)?
Using threadIdx, blockIdx,and what do I need also?
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Question: How do I calculate my global 
thread ID (1D grid)?
Using threadIdx, blockIdx,and what do I need also?
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global_index = ?

blockIdx = 2
threadIdx = 2

global_index = blockDim * blockIdx + threadIdx

             = 4 * 2 + 2 



• Kernels execute on the GPU and do not, in general, have 
access to data stored on the host side

• Kernels cannot return a value, so the return type is always 
void, and kernel declarations starts as

        __global__ void aKernel(arg1, arg2, …)

• How do I get the results from my kernel ??
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Data Transfer between host and device



Data Transfer between host and device
The CUDA runtime API provides these functions for 
transferring input data to the device and transferring 
results back to the host:
• cudaMalloc()allocates device memory
• cudaMemcpy()transfers data to or from a device

• cudaMemcpy(void* dest, void* src, size_t 
size,cudaMemcpyHostToDevice)  host mem à  GPU mem

• cudaMemcpy(void* dest, void* src, size_t size, 
cudaMemcpyDeviceToHost) GPU mem à host mem 

• cudaFree()frees device memory that is no 
longer in use
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Data Transfer between host and device
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Question: how I get my result from the 
kernel?



Data Transfers are Synchronous
By default, data transfers are synchronous (the function 
does not return until the data transfer is complete), so 
cudaMemcpy()stalls the program execution 

• GPU cannot continue to other operations until data transfer is 
finished, and data transfer is slow.

21

Synchronous v.s. Asynchous
main(){

syncKernel(arg1, arg2, …)
asyncKerne2(arg1, arg2, …)
syncKerne3(arg1, arg2, …)

}



Kernel Launching is Asynchronous

• As soon as the kernel is launched, the CPU returns from 
the call of kernel without waiting for the completion of 
the kernel.

• In practice, the CPU launches the kernel and right away 
executes what is after the kernel launch without waiting for 
the kernel to finish
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main(){
syncKernel(arg1, arg2, …)
asyncGPUKerne2(arg1, arg2, …)
syncKerne3(arg1, arg2, …)

}



Asynchronicity might create problems …
Example: a code that launches a kernel (=GPU) 
to print to screen and then ends.

In such situation, after starting the GPU 
threads, control returns to the application and 
the application exits.

At application exit, it’s ability to send output to the 
standard output is terminated by the OS à the 
output generated by the kernel has nowhere to 
go!
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int main(){
syncKernel(arg1, arg2, …)
asyncGPUKerne2(arg1, arg2)
return 0;

}



Thread Synchronization
Kernels enable multiple computations in parallel, but they 
don’t ensure the order of execution (asynchronous). CUDA 
provides functions to synchronize :
• cudaDeviceSynchronize()effectively synchronizes all 

threads in a grid à waits for all the threads in the kernel 
to complete before proceed.

• __synchThreads()synchronizes threads within a 
block
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