
CUDA Programming for Nvidia GPU

Ivy Peng
Assistant Professor in Computer Science

Scalable Parallel System (ScaLab)
Department of Computer Science, KTH

High-Level Programming Interfaces

• OpenMP: compiler directives and library for accelerators
• OpenACC: compiler directives and library for NVIDIA GPUs

2

Compiler
+ runtime

library

Libraries
atop

CUDA

• Thrust: C++ template library resembling C++ STL.
• OpenCV: Computer vision library using GPU
• CUDA-based libraries for math: cuBLAS, cuFFT, cuDNN, …
• TensorFlow

Low-Level Programming GPUs

• OpenCL (Open Computing Language): based on C, not only for GPUs
but also for other “accelerators” (DSP, FPGA, …) and integrated GPUs.

• CUDA (compute unified device architecture): extension to C
language. Only for NVIDIA GPUs, most mature programming
environments

• Heterogeneous-Computing Interface for Portability (HIP) for AMD GPUs
– C++ dialect designed to ease conversion of CUDA applications to

portable C++ code.

3

CUDA
CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

• based on C/C++ with some extensions
• FORTRAN support provided by compiler from PGI

• Indexing math and synchronization are the main
conceptual difficulties

4

CUDA Components
Installing CUDA on a system, there are 3 components:
1. Driver low-level software that controls the graphics

card
2. Toolkit

• nvcc compiler
• Tracing tools
• profiling and debugging tools
• several libraries for math, deep learning libraries

3. SDK
• lots of demonstration examples
• some error-checking utilities

5

CUDA Programming

Terminology:
• host = CPU and its memory (host

memory)
• device = GPU and its memory

(device memory)
Programming in 3 steps:
• Define where (host or device) to

launch a tasks
• Define data exchange between

host and device
• Define computation tasks

6

__global__ void kernel_1<<<BPG, TPB>>>(arg1,
arg2)
{……}

__device__ void kernel_2(arg1, arg2)
{……}

__host__ void kernel_3(arg1, arg2)
{……}

void kernel_3(arg1)
{…

cudaMemcpy(…);
…}

example.cu

CUDA Parallelism Model

Launching a kernel on the
GPU from the CPU to

create a computational
grid of threads

7

GPUCPU

DRAM
64GB

GDRAM/H
BM2

PCIe/NVLink

Start

Launch

How to declare a function called by host but executed on device?

CUDA makes this distinction by prepending one of the
following function type qualifiers:
• __global__ is the qualifier for kernels (which can be

called by the host and executed on device)
• __host__ functions called from the host and executed

on the host (default qualifier, often omitted)
• __device__ functions are called from the device and

execute on the device (a function that is called from a
kernel needs the __device__ qualifier)

8

Question: which qualifier do you have before
the function you call from the GPU and you
want to run on GPU:

9

• __global__
• __host__
• __device__

?

Question: which qualifier do you have before
the function you call from the CPU and you
want to run on GPU:

10

• __global__
• __host__
• __device__

?

CUDA Parallelism Model

Threads are organized in a three-level hierarchy:
• Thread
• ThreadBlock (1D, 2D or 3D)
• ThreadBlock Grid (1D, 2D or 3D)

How to determine their values for your problem?
• Start with the total number threads you need

• E.g., 1D array of N elements -> N threads
• Threads per Block is typically 32, 64,128 or 256

• Is your problem 1D, 2D, 3D?
• Now you can calculate Grid

11

Three-level hierarchy (1D)
Thread 0 Thread 15

ThreadBlock 0 ThreadBlock 3

1D Computational Grid

…

…

Launch a Kernel in CUDA
Kernel is a kind of special function executed on the GPU
Kernel launch ≅ regular function call with addition of number of threads

aKernel<<<BPG, TPB>>>(arg1, arg2, …)

To specify a kernel launch, we start with kernel name (aKernel) and
end with argument list between ()

Now for the CUDA extension: we specify the dimensional of the
computational grid, the grid dimensions and block dimension
between triple angle brackets (<<<BPG, TPB>>>).

12

Execution Configuration: Tell how Many Threads we Need

BPG = number of blocks in the grid
TPB = number of threads in the block

Together they constitute the execution configuration and
specify the dimensions of the kernel launch

13

What it is BPG and TPB in this case?

14

Thread 0

ThreadBlock 0 ThreadBlock 3

1D Computational Grid

…

Thread 15…

CUDA Built-in Variables

CUDA provides build-in dimension and index variables when in the kernel
• Dimension variables

• gridDim = number of blocks in the grid
• blockDim = number of threads in each block

• Index variables
• blockIdx = index of the block in the grid
• threadIdx = index of the thread within the block

15

Question: How do I calculate my global
thread ID (1D grid)?
Using threadIdx, blockIdx,and what do I need also?

16

global_index = ?

blockIdx = ?
threadIdx = ?

global_index = ?

Question: How do I calculate my global
thread ID (1D grid)?
Using threadIdx, blockIdx,and what do I need also?

17

global_index = ?

blockIdx = 2
threadIdx = 2

global_index = blockDim * blockIdx + threadIdx

 = 4 * 2 + 2

• Kernels execute on the GPU and do not, in general, have
access to data stored on the host side

• Kernels cannot return a value, so the return type is always
void, and kernel declarations starts as

 __global__ void aKernel(arg1, arg2, …)

• How do I get the results from my kernel ??

18

Data Transfer between host and device

Data Transfer between host and device
The CUDA runtime API provides these functions for
transferring input data to the device and transferring
results back to the host:
• cudaMalloc()allocates device memory
• cudaMemcpy()transfers data to or from a device

• cudaMemcpy(void* dest, void* src, size_t
size,cudaMemcpyHostToDevice) host mem à GPU mem

• cudaMemcpy(void* dest, void* src, size_t size,
cudaMemcpyDeviceToHost) GPU mem à host mem

• cudaFree()frees device memory that is no
longer in use

19

GPUCPU

DRAM GDRAM

I/O I/OPCIe

Data Transfer between host and device

20

Question: how I get my result from the
kernel?

Data Transfers are Synchronous
By default, data transfers are synchronous (the function
does not return until the data transfer is complete), so
cudaMemcpy()stalls the program execution

• GPU cannot continue to other operations until data transfer is
finished, and data transfer is slow.

21

Synchronous v.s. Asynchous
main(){

syncKernel(arg1, arg2, …)
asyncKerne2(arg1, arg2, …)
syncKerne3(arg1, arg2, …)

}

Kernel Launching is Asynchronous

• As soon as the kernel is launched, the CPU returns from
the call of kernel without waiting for the completion of
the kernel.

• In practice, the CPU launches the kernel and right away
executes what is after the kernel launch without waiting for
the kernel to finish

22

main(){
syncKernel(arg1, arg2, …)
asyncGPUKerne2(arg1, arg2, …)
syncKerne3(arg1, arg2, …)

}

Asynchronicity might create problems …
Example: a code that launches a kernel (=GPU)
to print to screen and then ends.

In such situation, after starting the GPU
threads, control returns to the application and
the application exits.

At application exit, it’s ability to send output to the
standard output is terminated by the OS à the
output generated by the kernel has nowhere to
go!

23

int main(){
syncKernel(arg1, arg2, …)
asyncGPUKerne2(arg1, arg2)
return 0;

}

Thread Synchronization
Kernels enable multiple computations in parallel, but they
don’t ensure the order of execution (asynchronous). CUDA
provides functions to synchronize :
• cudaDeviceSynchronize()effectively synchronizes all

threads in a grid à waits for all the threads in the kernel
to complete before proceed.

• __synchThreads()synchronizes threads within a
block

24

25

Q & A

