
Introduction: GPU Architecture

Ivy Peng
Assistant Professor in Computer Science

Scalable Parallel System (ScaLab)
Department of Computer Science, KTH



Scalable Parallel System (KTH-ScaLab)

• Converged Cloud and HPC systems
• Kubernetes 
• Architecture
• Workflows

• Memory Systems
• Heterogeneous memory
• Disaggregated memory

• Heterogeneous Computing
• GPU
• RISC-V
• Quantum Computing

Who are we?

2



Intended Learning Outcomes (ILO)

At the end of this course, you will be able to:

1. Describe the architecture of recent AMD and 
Nvidia GPUs

2. Compile and run CUDA and HIP kernels on 
GPUs on a cluster

3. Use profiling tools to measure and analyze the 
performance of CUDA and HIP codes

4. Transform and implement a serial kernel into 
CUDA and HIP code on GPU

3



• For AMD GPU: you will be given access 
to the PDC Dardel Supercomputer with 
an allocation
• You will learn how you connect and 

run jobs on supercomputers as part 
of this course

• For Nvidia GPU: Google Colab on 
Google Cloud

Course Organization: Computer Resources

4



Outline

5

Thursday – part 1 GPU Architecture: AMD and Nvidia
CUDA Programming
Hands-on

Thursday – part 2 CUDA Programming
Hands-on

Friday – part 3 AMD GPU
Hands-on

Friday – part 4 HIP Programming
Hands-on



Graphical Processing Unit (GPU)

GPU = specialized accelerator for processing 
images in video frame for display devices. 

GPUs are used in game consoles, embedded 
systems (like systems on cars for automatic 
driving), computers, and supercomputers.
• Since 2012, GPUs are the main workforce 

for training deep-learning networks 

Some important GPU vendors: NVIDIA, AMD, 
...

6



Integrated GPU v.s. Dedicated GPU

• The main difference lies in the memory: 
• Integrated GPU shares the system memory 

with CPU
• Dedicated GPU has its own memory

• Integrated GPU is often found in laptops, more 
power efficient, e.g., Intel HD or Iris Graphics. 

• Dedicated GPUs are often removable and need 
more power, and provide higher performance

• In HPC, we focus on dedicated GPUs Source: bit-tech.net

7



CPU has tens of massive cores, CPU excels at irregular control-
intensive work
• Lots of hardware for control, fewer ALUs 
GPU has thousands of small cores, GPU excels at regular math-
intensive work
• Lots of ALUs, little hardware for control

GPU v.s. CPU Architecture

8

GPU vs CPU !
Central Processing Unit Graphic Processing Unit 

GPU devotes more transistors to data processing  

Chip Design ALU: Arithmetic Logic Unit 

GPU vs CPU !
Central Processing Unit Graphic Processing Unit 

GPU devotes more transistors to data processing  

Chip Design ALU: Arithmetic Logic Unit CPU GPU

PCIe



GPU Hardware Model for Nvidia GPUs

The fundamental computing entity is
• Streaming Processor (SP) or CUDA core

A Streaming Multiprocessor (SM):
• A collection of 8/32/192 CUDA Cores 

(depends on SM architecture)
• Has some fast cache shared memory
• Can synchronize

9

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Uppsala University

Hardware model

Fundamental entity:
I CUDA core or Streaming

Processor (SP)
Streaming Multiprocessor (SM):

I A collection of CUDA cores (8 / 32 / 192)
I All cores in one SM run the same instructions
I Has some fast, shared cache memory
I Can synchronize

Karl Ljungkvist | karl.ljungkvist@it.uu.se 2016-02-25 | 8/59



10

Nvidia A100 GPU



AMD Graphics Core Next (GNC) Architecture

11



AMD Graphics Core Next (GNC) Architecture

12

L1 Cache LDS (local data share/shared memory)

SIMD

register files



Recent Nvidia GPU Architecture
• Nvidia Volta Architecture, tensor cores, mixed precision

• the GA100 GPU has 128 SMs, 64 FP32 CUDA Cores/SM
• Nvidia Ampere Architecture, 3rd gen NVLink
• Nvidia Hopper Architecture

13

Questions: how many cores in GA100?

Questions: how many cores per node on Dardel host?
2 x 13 x 192 = 4992!

2 x 64 = 128



GPU is Throughput-oriented Architecture

• GPUs focus on executing many computation in parallel to 
maximizing the total throughput
• GPUs do not target to minimize the latency of a single task

GPU vs CPU !
Central Processing Unit Graphic Processing Unit 

GPU devotes more transistors to data processing  

Chip Design ALU: Arithmetic Logic Unit 

GPU vs CPU !
Central Processing Unit Graphic Processing Unit 

GPU devotes more transistors to data processing  

Chip Design ALU: Arithmetic Logic Unit CPU GPU



GPU Design Motivation: Process Pixels in Parallel

1. Data parallel
– In 1080i and 1080p videos, 1920 x 1080 

pixels = 2M pixels per video frame à 
compute intensive

– Lots of parallelism at low clock speed à 
power efficient

2. Computation on each pixel is independent from 
computation on other pixels

– No need for synchronization
3. Good data-locality = access to data is regular

– No need for large caches

15



Mapping computation tasks to GPU hardware

(1)Define computation tasks – done by you
(2)Schedule computational tasks on GPU cores – done by CUDA runtime

– Intuitively, higher throughput when more GPU cores are busy – How?

16

GPU vs CPU !
Central Processing Unit Graphic Processing Unit 

GPU devotes more transistors to data processing  

Chip Design ALU: Arithmetic Logic Unit GPU
Matrix A

…
alpha*A[0][0]+beta

…

computation task 0

…
alpha*A[4][4]+beta

…

computation task 1

(1) (2)



Hardware Multithreading
• Computation can be divided into a collection of 

many concurrent sequential tasks that executed 
across many threads
• E.g., decompose a large matrix

• Thread can be seen as virtualized scalar 
processor with a program counter, register file 
and associate processor state

• Multithreading can be implemented in software 
(OS) or hardware
• E.g., hyper-threading on Intel processor

• Throughput-oriented architectures have 
implemented in hardware



SIMD Execution

Parallel processors employ some of 
form of Single-Instruction, Multiple 
Data (SIMD) execution to increase 
the throughput:
• Issuing a single instruction in a 

SIMD machine applies the given 
operation to potentially many data 
operands

• E.g. : a large matrix



How to improve GPU utilization?
• Increase # of CUDA cores

• High-end GPUs have a large number of cores
• Define computation tasks with low dependency and synchronization

• If task 0 needs to wait for task 1, adding CUDA cores won’t help
• Define many tasks to oversubscribe

• Define #tasks >> #cores



Hardware Multithreading Hides Latency
Long-latency operations of a single-thread can be hidden or covered by ready-to-run 
work from another thread, examples:
• Thread 1 cannot run because waiting data from DRAM
• Thread 2 can run because all its required operands are ready
• Switch to run thread 2 while overlapping data fetching for thread 1 



21

Q & A


