Introduction: GPU Architecture

vy Peng
Assistant Professor in Computer Science
Scalable Parallel System (Scalab)
Department of Computer Science, KTH

Who are we?

Scalable Parallel System (KTH-ScalLab)

& kth-scalab.github.io Q@ Y O @ ncognito

+ Converged Cloud and HPC systems
* Kubernetes
* Architecture
* Workflows

« Memory Systems W . 4
* Heterogeneous memory YR HTYY v n'y-;,] " H
« Disaggregated memory ’ '

* Heterogeneous Computing People Research Projects Events
- GPU

Scalab is a research group focusing on designing and optimizing algorithms, software, and computer
® RlSC-V architecture to improve the scalability of future computing systems and accelerate scientific discovery.
Our research revolve around large-scale parallel systems, including high-performance computing and
data centers. Our main research areas include:

* Quantum Computing

Intended Learning Outcomes (ILO)

At the end of this course, you will be able to:

1. Describe the architecture of recent AMD and
Nvidia GPUs

2. Compile and run CUDA and HIP kernels on
GPUs on a cluster

3. Use profiling tools to measure and analyze the
performance of CUDA and HIP codes

4. Transform and implement a serial kernel into
CUDA and HIP code on GPU

For AMD GPU: you will be given access
to the PDC Dardel Supercomputer with

an allocation

* You will learn how you connect and
run jobs on supercomputers as part
of this course

For Nvidia GPU: Google Colab on
Google Cloud

Outline

Thursday — part 1 GPU Architecture: AMD and Nvidia
CUDA Programming
Hands-on

Thursday — part 2 CUDA Programming
Hands-on

Friday — part 3 AMD GPU
Hands-on

Friday — part 4 HIP Programming
Hands-on

Graphical Processing Unit (GPU)

GPU = specialized accelerator for processing
images in video frame for display devices.

: <ANVIDIA.
GPUs are used in game consoles, embedded W
systems (like systems on cars for automatic ;
driving), computers, and supercomputers. £ AMDZ1
* Since 2012, GPUs are the main workforce UL RADEON

for training deep-learning networks /G p U S

Some important GPU vendors: NVIDIA, AMD,

Integrated GPU v.s. Dedicated GPU

« The main difference lies in the memory:

» Integrated GPU shares the system memory
with CPU

* Dedicated GPU has its own memory CPUs with integrated graphics

« Integrated GPU is often found in laptops, more
power efficient, e.g., Intel HD or Iris Graphics.

« Dedicated GPUs are often removable and need
more power, and provide higher performance

« |n HPC, we focus on dedicated GPUs

Discrete graphics card

GPU v.s. CPU Architecture

CPU GPU

Control

ALU ALU

ALU ALU

S

EEEEEEEE

CPU has tens of massive cores, CPU excels at irreqular control-
intensive work

 Lots of hardware for control, fewer ALUs

GPU has thousands of small cores, GPU excels at reqular math-
intensive work

 Lots of ALUs, little hardware for control

GPU Hardware Model for Nvidia GPUs

The fundamental computing entity is —
Streaming Processor (SP) or CUDA core

A Streaming Multiprocessor (SM):

* Acollection of 8/32/192 CUDA Cores
(depends on SM architecture)

Has some fast cache shared memory
. SFU| |SFU
« Can synchronize

PCle x16 3.0 host interface

GDDR-5 RAM

GDDR-5 RAM

Memory Controller

Processo e
e g processo
L1 cache L1 cache L1 cache
ea g 0Cesso
L1 cache L1 cache L1cache
Processo e
¢ g processo
L1 cache L1cache L1 cache
o g processo
L1 cache L1 cache L1 cache

Memory Controller

L2 cache

Memory Controller

Processo e
ea g processo
L1 cache L1cache L1 cache
e processo
L1 cache L1 cache L1 cache
Processo e
e g processo
L1cache L1 cache L1 cache
ea g processo
L1 cache L1 cache L1 cache

Memory Controller

GDDR-5 Memory

GDDR-5 Memory

High speed hub

/\ . . »
Ulc
SM
L1 Instruction Cache
LO Instruction Cache LO Instruction Cache |
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
TENSOR CORE TENSOR CORE
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32INT32 [FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU
LO Instruction Cache Lo ion Cache |
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32 INT32 |FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
TENSOR CORE TENSOR CORE
INT32INT32 [FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

192KB L1 Data Cache / Shared Memory

Tex Tex

Tex Tex

AMD Graphics Core Next (GNC) Architecture

Command Processor
CuU CuU CuU Cu
Cu Cu CuU CuU
CuU Cu CuU CuU
CuU CuU Workload Workload CuU CuU
CuU CU Manager Manager CcU CU
CuU CuU Cu CuU
CuU CuU CuU CuU
Cu CuU CuU CuU
Cu CuU CuU CuU
Cu CuU CuU CuU
Cu CuU CuU CuU
CuU CuU Workload Workload CU CU
CuU CU Manager Manager CcuU CuU
Cu CuU CuU CuU
Cu CuU CuU CuU
Cu CuU Cu Cu

AMD Graphics Core Next (GNC) Architecture

Command Processor

CU CU CU CU
cu CcuU CU ~—_CU
cu cu cuU

CuU CuU Workload Workload CU CU
CuU CU Manager Manager CuU CcU
CuU CuU CuU CuU
CuU CuU CuU CuU

Recent Nvidia GPU Architecture

* Nuvidia Volta Architecture, tensor cores, mixed precision
 the GA100 GPU has 128 SMs, 64 FP32 CUDA Cores/SM

« Nvidia Ampere Architecture, 3@ gen NVLink
* Nvidia Hopper Architecture

Questions: how many cores in GA1007?
2x13 x 192 =4992!

Questions: how many cores per node on Dardel host?
2x64 =128

GPU is Throughput-oriented Architecture

« GPUs focus on executing many computation in parallel to
maximizing the total throughput

* GPUs do not target to minimize the latency of a single task
CPU GPU

Control ALU ALU

ALU ALU

m]
|
m [[[T]
o][]
)
m | []]
]
m [[[T]]
]
m |]
)
m [[]]
|
m [[[1]]

GPU Design Motivation: Process Pixels in Parallel

1. Data parallel
— In 1080i and 1080p videos, 1920 x 1080
pixels = 2M pixels per video frame -
compute intensive
— Lots of parallelism at low clock speed -
power efficient
2. Computation on each pixel is independent from
computation on other pixels
— No need for synchronization
3. Good data-locality = access to data is regular

— No need for large caches

Mapping computation tasks to GPU hardware

(1)Define computation tasks — done by you
(2)Schedule computational tasks on GPU cores — done by CUDA runtime
— Intuitively, higher throughput when more GPU cores are busy — How?

Matrix A computation task 0O
= o
(1, 1a|pha*A[O][O]+beta
computation task 1
‘ ’ ;j alpha*A[4][4]+beta
N 17

(
\

)
/

Hardware Multithreading

Computation can be divided into a collection of
many concurrent sequential tasks that executed
across many threads

« E.g., decompose a large matrix
Thread can be seen as virtualized scalar

processor with a program counter, register file
and associate processor state

Multithreading can be implemented in software
(OS) or hardware

 E.g., hyper-threading on Intel processor

Throughput-oriented architectures have
implemented in hardware

code

data

files

registers

registers

registers

stack

stack

stack

?

3

;

SIMD Execution

Parallel processors employ some of

form of Single-Instruction, Multiple One SIMD operation with four lanes

Data (SIMD) execution to increase

the throughput: Ax Bx Cx

* Issuing a single instruction in a A, B, Ga
SIMD machine applies the given + =
operation to potentially many data Ar Bz Cz
operands - - o

« E.g.:alarge matrix

* |ncrease # of CUDA cores

« High-end GPUs have a large number of cores

How to improve GPU utilization?

« Define computation tasks with low dependency and synchronization
 If task 0 needs to wait for task 1, adding CUDA cores won'’t help

« Define many tasks to oversubscribe

 Define #tasks >> #cores
Matrix A

/

|~

(1)

P

L

/

™~
|

p—

— computation task 0

~—

—— computation task 1

~—

alpha*A[0][0]+beta

alpha*A[4][4]+beta

—_—

—
—

—r

GPU

"

Hardware Multithreading Hides Latency

Long-latency operations of a single-thread can be hidden or covered by ready-to-run

work from another thread, examples:

 Thread 1 cannot run because waiting data from DRAM
 Thread 2 can run because all its required operands are ready
« Switch to run thread 2 while overlapping data fetching for thread 1

Matrix A — computation task 0 —_
/f -
(1), J aipha*A[0][0]+beta
A o ves B
— computation task 1 —
// \\ .
() »— alpha*A[4][4]+beta
\\. /' ees

~—

GPU

.

—

