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Who are we?
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Scalab is a research group focusing on designing and optimizing algorithms, software, and computer
® RlSC-V architecture to improve the scalability of future computing systems and accelerate scientific discovery.
Our research revolve around large-scale parallel systems, including high-performance computing and
data centers. Our main research areas include:

*  Quantum Computing



Intended Learning Outcomes (ILO)

At the end of this course, you will be able to:

1. Describe the architecture of recent AMD and
Nvidia GPUs

2. Compile and run CUDA and HIP kernels on
GPUs on a cluster

3. Use profiling tools to measure and analyze the
performance of CUDA and HIP codes

4. Transform and implement a serial kernel into
CUDA and HIP code on GPU




For AMD GPU: you will be given access
to the PDC Dardel Supercomputer with

an allocation

* You will learn how you connect and
run jobs on supercomputers as part
of this course

For Nvidia GPU: Google Colab on
Google Cloud




Outline

Thursday — part 1 GPU Architecture: AMD and Nvidia
CUDA Programming
Hands-on

Thursday — part 2 CUDA Programming
Hands-on

Friday — part 3 AMD GPU
Hands-on

Friday — part 4 HIP Programming
Hands-on



Graphical Processing Unit (GPU)

GPU = specialized accelerator for processing
images in video frame for display devices.

: <ANVIDIA.
GPUs are used in game consoles, embedded W
systems (like systems on cars for automatic ;
driving), computers, and supercomputers. £ AMDZ1
* Since 2012, GPUs are the main workforce UL RADEON

for training deep-learning networks /G p U S

Some important GPU vendors: NVIDIA, AMD,




Integrated GPU v.s. Dedicated GPU

« The main difference lies in the memory:

» Integrated GPU shares the system memory
with CPU

* Dedicated GPU has its own memory CPUs with integrated graphics

« Integrated GPU is often found in laptops, more
power efficient, e.g., Intel HD or Iris Graphics.

« Dedicated GPUs are often removable and need
more power, and provide higher performance

« |n HPC, we focus on dedicated GPUs

Discrete graphics card



GPU v.s. CPU Architecture

CPU GPU
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CPU has tens of massive cores, CPU excels at irreqular control-
intensive work

 Lots of hardware for control, fewer ALUs

GPU has thousands of small cores, GPU excels at reqular math-
intensive work

 Lots of ALUs, little hardware for control




GPU Hardware Model for Nvidia GPUs

The fundamental computing entity is —
Streaming Processor (SP) or CUDA core

A Streaming Multiprocessor (SM):

* Acollection of 8/32/192 CUDA Cores
(depends on SM architecture)

Has some fast cache shared memory
. SFU| |SFU
« Can synchronize




PCle x16 3.0 host interface
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AMD Graphics Core Next (GNC) Architecture
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AMD Graphics Core Next (GNC) Architecture

Command Processor

CU CU CU CU
cu CcuU CU ~—_CU
cu cu cuU

CuU CuU Workload Workload CU CU
CuU CU Manager Manager CuU CcU
CuU CuU CuU CuU
CuU CuU CuU CuU




Recent Nvidia GPU Architecture

* Nuvidia Volta Architecture, tensor cores, mixed precision
 the GA100 GPU has 128 SMs, 64 FP32 CUDA Cores/SM

« Nvidia Ampere Architecture, 3@ gen NVLink
* Nvidia Hopper Architecture

Questions: how many cores in GA1007?
2x13 x 192 =4992!

Questions: how many cores per node on Dardel host?
2x64 =128



GPU is Throughput-oriented Architecture

« GPUs focus on executing many computation in parallel to
maximizing the total throughput

* GPUs do not target to minimize the latency of a single task
CPU GPU
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GPU Design Motivation: Process Pixels in Parallel

1. Data parallel
— In 1080i and 1080p videos, 1920 x 1080
pixels = 2M pixels per video frame -
compute intensive
— Lots of parallelism at low clock speed -
power efficient
2. Computation on each pixel is independent from
computation on other pixels
— No need for synchronization
3. Good data-locality = access to data is regular

— No need for large caches




Mapping computation tasks to GPU hardware

(1)Define computation tasks — done by you
(2)Schedule computational tasks on GPU cores — done by CUDA runtime
— Intuitively, higher throughput when more GPU cores are busy — How?
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Hardware Multithreading

Computation can be divided into a collection of
many concurrent sequential tasks that executed
across many threads

« E.g., decompose a large matrix
Thread can be seen as virtualized scalar

processor with a program counter, register file
and associate processor state

Multithreading can be implemented in software
(OS) or hardware

 E.g., hyper-threading on Intel processor

Throughput-oriented architectures have
implemented in hardware
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SIMD Execution

Parallel processors employ some of

form of Single-Instruction, Multiple One SIMD operation with four lanes

Data (SIMD) execution to increase

the throughput: Ax Bx Cx

* Issuing a single instruction in a A, B, Ga
SIMD machine applies the given + =
operation to potentially many data Ar Bz Cz
operands - - o

« E.g.:alarge matrix




* |ncrease # of CUDA cores

« High-end GPUs have a large number of cores

How to improve GPU utilization?

« Define computation tasks with low dependency and synchronization
 If task 0 needs to wait for task 1, adding CUDA cores won'’t help

« Define many tasks to oversubscribe

 Define #tasks >> #cores
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Hardware Multithreading Hides Latency

Long-latency operations of a single-thread can be hidden or covered by ready-to-run

work from another thread, examples:

 Thread 1 cannot run because waiting data from DRAM
 Thread 2 can run because all its required operands are ready
« Switch to run thread 2 while overlapping data fetching for thread 1

Matrix A — computation task 0 —_
/f -
(1), J aipha*A[0][0]+beta
A o ves B
— computation task 1 —
// \\ .
( ) »— alpha*A[4][4]+beta
\\. /' ees

~—

GPU

.

—






