IVERSITY or
EIAWARE.

Intro to OpenACC

Lecture 3

Sunita Chandrasekaran
Associate Professor, University of Delaware
PDC Summer School, Aug 2023

Materials also prepared by Dr. Felipe Cabarcas,
Postdoctoral Fellow, UDEL

NIVERSITYox
EIAWARE

Methods for Programming GPUs

Directive-based/Abstract
Kernel-based Languages Programming Models

AMDZ1
ROCM OpenMP

a SYCL.
OpenCL G

< NVIDIA OpenACGC
CUDA " kokkos

Libraries

ST

heEEle

NIVERSITYox
EIAWARE

_—
C++

<Serial Code>
#pragma acc parallel

{
}

<Parallel Code>

—

Compiler

e

Serial Code

RISC-V
x86

ARM

Parallel Code

FPGA

DNA
¢ PTX

|

Directive-Based GPU Programming Models

EXE

NIVERSITYox
EIAWARE

OpenACC functionality

CPU Parallel Hardware

\

R S eEEE e,
ST T T T It rtrtrto
T T T T T T O
mEEEEEE EEEEEE
T T T T T T
T T T T T T T o
T T I T T BT I
T T T T rErrrr—
T Tl T Trrrrmo
T I T T T T rrrr
mEEEEEE EEEEEe
T I T T T BT I T I
mEEEEEE EEEEEe,
T I T T T BT I T

R S e R R
> r1TrTrTT B Trrrrer

o, The programmer will
int main(){ //' give hints to the
compiler about which
parts of the code to

Compiler parallelize.

{ The compiler will then
<parallel code> generate parallelism for

} the target parallel

hardware.

<sequential code>

#pragma acc kernels «—

Hint

}

GAUSSIAN 16

Using OperACC allowed us to continue
development of our fundamental
algorithms and software ca 3
simultaneously with the GPU-related
work. 1n the end, we could use the
same code base for SMP, cluster/
network and GPU paralleitsm. PGI's
cormpilers wero essential to the success

of our e*forts.

The CAAR project provided us with
carly avcess (o Summit hardware
access 10 PG
of these were critical to our success
PGI's DpenACC s
best able and 15
much moee it
model approaches.

he

mpetitive wi

arvmins

DUe to AMAant’s law, we need to port
more parts of aur code %o the GRU 1f were
90ing 1o speed ft up. BUE the sheer
wmber of routines poses & chatlenge
OPeNACC directives give us a low-cost
approach to getting at least some speed
UP OUt of these second-tier routnes. In
mary cases Its completely sufficlent
because with the curment algorithas, GRU
performance is bandwidth-bound.

SANJEEVINI

In an academic environment
maintenance and spaagup of existing
codes is a tedious task. OpanACC

provides 4 great patiom for
COMPUIBBONS! SCIENtSIS 10 AcCCOMPIIS
tasks wihout invotving & lot of
#ftorts or manpowe” In Speeaing up the
entire computationa task.

We've effectively used
OpenACC for heterogencous
computing in ANSYS Fluent
with impressive performance.
We're now applying this work
to more of our models and
new platforms.

Porting our unstiuctured C++
CFD solver FINE/Open to GPUs
using OpenACC would have
been impossible two of three
years ago, but OpenACC has
ceveloped enough that we're
now getting some really good
results

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs.

IBM-CFD

VASP

For VASP, OpenACC is the way
forward for GPU acoeration.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU developr
efforts. We're excited to collaborate
with NVIDIA and PGI
adopter of CUDA Unified Memory.

and maintenance

s an carly

SYNOPSYS

« N

Using OpenACC, we've GPU-
accelerated the Synopsys TCAD
Sentaurus Device EMW simulator
to speed up optical simuations of
image sensors. GPUs are key to
improving simulation throughput
in the design of advanced image
sensors.

PWscf (Quantum
ESPRESSO)

CUDA Fortran gves us the Al

of both worlds

COSMO
£

OpenACC made it practical to
develop for GPU-based hardware
while retaining a single source for
almost all the COSMO physics
code.

MPAS-A

Our team has boen evaluating
OpenACC as a pathway to
performance portability for the Moded
for Prediction (WPAS) atmospheric
model. Using this approach on the
MPAS dynamical core, we have
achieved performance on a single
P100 GPU exuivalent 10 2.7 dual
socketed Intel Xeon nodes on our new
Cheyenne supercomputer

GAMERA
P 1L 45 4} P

With OpenACC and a compute
node based on NVIDIA's Tesla
P100 GPU, we achieved more
than a 14X speed up over a K
Computer node running our
earthquake disaster simulation
code

MAS
e

N

Adding OpenACL. 1nto MAS has given us
the ablity to migrate medium-stzed
simulations from a mti node CPU
chunter 10 a sigle multi-GPU server

The: implementation yselderd a portable
single-sousce cade for both CPU and
GPU runs. Futuro work will add
QpENALC to the remaining model
features, cnabling GPU accolerated
realistic solar storm modeting.

NIVERSITY o
EIAWARE

Incremental

0 Maintain existing
sequential code

0 Add annotations to
expose parallelism

0 After verifying
correctness, annotate
more of the code

Why OpenACC

Single Source '

0 Rebuild the same code
on multiple
architectures

0 Compiler determines
how to parallelize for
the desired machine

0 Seguential code is
maintained

Low Learning Curve

0 OpenACC is meantto
be easy to use, and
easy to learn

0 Programmer remains
in familiar C, C++, or
Fortran

0 No reason to learn low-

leve| details of the
hardware.

NIVERSITYox
EIAWARE

Target Platforms (OpenACC)

e Intel and AMD’s x86 (multicore systems)
— Haswell, Broadwell, Skylake, Icelake

 NVIDIA compilers (nvc) target NVIDIA GPUs
— All NVIDIA GPUs

 Mentor Graphics compilers (GNU GCC) target both NVIDIA
and AMD GPUs (to an extent)

— AMD Radeon Tahiti (HD 7900), Cape Verde (HD 7700), Spectre
(Kaveri APU)

* IBM OpenPOWERS, 9, 10...

NIVERSITYor
EIAWARE

OpenACC syntax

Syntax for using OpenACC directives in code

#pragma acc directive clauses l$acc directive clauses
<code> <code>

I A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

I A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

[l “acc” informs the compiler that what will come is an OpenACC directive
| Directives are commands in OpenACC for altering our code.

| Clauses are specifiers or additions to directives.

NIVERSITYor
EIAWARE

OpenACC parallel loop directive

Parallelizing a single loop

#pragma acc parallel

{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = ©;
}

!$acc parallel
!$acc loop
doi=1, N

a(i) = o
end do
!$acc end parallel

Use a parallel directive to mark
a region of code where you
want parallel execution to
occur

The loop directive is used to
instruct the compiler to
parallelize the iterations of the
next loop to run across the
parallel gangs

NIVERSITYox
EIAWARE

OpenACC parallel loop directive

Parallelizing a single loop

#pragma acc parallel loop
for(int 1 = 0; j < N; 1i++)
ali] = 9;

e This pattern is so common

that you can do all of this in
a single line of code

In this example, the parallel
loop directive applies to the
next loop

This directive both marks
the region for parallel

execution and distributes
the iterations of the loop.

When applied to a loop with
a data dependency, parallel
loop may produce incorrect
results

10

NIVERSITYox
EIAWARE

OpenACC parallel loop directive

Parallelizing multiple loops

#pragma acc parallel loop
for(int 1 = 9; i < N; i++)
ali] = 9;

#pragma acc parallel loop
for(int j = @; j < M; j++)
b[j] = ©;

To parallelize multiple loops, each loop
should be accompanied by a parallel
directive

Each parallel loop can have different loop
boundaries and loop optimizations

Each parallel loop can be parallelized in a
different way

This is the recommended way to
parallelize multiple loops. Attempting to
parallelize multiple loops within the same
parallel region may give performance
issues or unexpected results

11

NIVERSITYor
EIAWARE

OpenACC kernels

Compiler directed parallelization
CPU Parallel Hardware

I The compiler will analyze the loops and parallelize

I The kernels directive instructs the compiler to
search for parallel loops in the code

\ NALAL 22 those it finds safe and profitable to do so

\
< tial code> i ' ' '
sequentlal code I The kernels directive can be applied to regions

#pragma acc kernels containing multiple loop nests

{

<for loop>

<for loop>

¥

12

NIVERSITYor
EIAWARE

OpenACC kernels

Parallelizing a single loop

e |nthis example, the kernels
directive applies to the next for

#pragma acc kernels |00p

for(int i = 0; j < N; i++)) _
al[i] = o; * The compiler will take the loop,

and attempt to parallelize and

optimize the loop

! k 1 . .

dfa?: L e |f the compiler decides that the
a(i) = 0

end do loop is not parallelizable, it will
$acc end kernels not parallelize the loop

13

NIVERSITYor
EIAWARE

OpenACC kernels

Parallelizing multiple loops

#pragma acc kernels

e [n this example, we mark a region

for(int i = 8; i < N; i++)

a[i] = @ of code with the kernels directive
T int j = 8; J M; 3 . .
R e The compiler will attempt to

parallelize all loops within the

1% k i i
ace e{“f; = kernels region
a(i) = @
end do e Each loop can be
29 5t l parallelized/optimized in a

!$ae<?<(:j gr?d kernels different Way

IVERSITY or
EIAWARE.

Kernels Parallel

I Compiler decides what to parallelize wi I Programmer decides what to parallelize
direction from user and communicates that to the compiler

I Compiler guarantees correctness I Programmer guarantees correctness

] Can cover multiple loop nests ' Must decorate each loop nest

en fully optimized, both will give similar performance.

15

NIVERSITYor
EIAWARE

Three levels of parallelism

e Gang

— Like work crews they are completely
independent of each other and may
operate in parallel or even at different
times

e Worker

— Individual painters they can operate on
their own but may also share resources
with other workers in the same gang

e \ector
— Paint roller is the vector P

— where the width of the roller represents
the vector length. »

NIVERSITYox
EIAWARE

3 levels of parallelism

* Gang OpenACC gang is a threadblock
— gang will apply gang-level parallelism to the loop
 Worker OpenACC worker is effectively a warp (a
group of threads)

— worker will apply worker parallelism to the loop
* Vector OpenACC vector is a CUDA thread
— vector will apply vector-level parallelism to the loop

NIVERSITYor
EIAWARE

3 levels of parallelism

* Gang OpenACC gang is a threadblock 22222

Thread
Block

’ 32 Threads ‘
| 32Threads |

 Worker OpenACC worker is effectively a [z |
warp (a group of threads) s

Multiple warps

&<

* Vector OpenACC vector is a thread Multiple threads

NIVERSITYox
EIAWARE

3 levels of parallelism

Other important takeaways

e Gangs can have more than 1 worker and share
resources like cache

e Multiple gangs work independently of each other
e Gangs have to be at the outermost level of parallelism
e Vector at the innermost level

veadd

NIVERSITYor
EIAWARE

OpenACC execution model

ware Hardware
Softwa e Threads are executed on
streaming
Scalar muItiprocessors (SMS)
Thread Processor

e Thread blocks do not
migrate nor can be split

22222222 across SMs

e e Several concurrent |
Block thread blocks can reside

R R

grid of thread blocks

e A kernelislaunched as a
Grid Device

NIVERSITYox
EIAWARE

Syntax for gang worker vector

e Qutermost loop must be a gang

* Innermost loop must be a vector

e A worker loop can appear in between

(o] '’N w (V) =

#pragma acc parallel loop gang
for (i=0; i<N; i++)

#pragma acc loop vector

for (j=0; j<M; j++)

)

NIVERSITYox
EIAWARE

Syntax for gang worker vector

® Additionally, you can specify the no. of gangs, workers and vector
length to use for the loop

® Vector of 128 informs the compiler to use a vector length of 128 for
the loop

1 #pragma acc kernels

2 i

3 #pragma acc loop gang

" for (i=0; i<N; i++)

5 #pragma acc loop vector(128)
6 for (j=0; j<M; j++)

7 >

8 g

#pragma acc parallel loop gang vector \
device_type(acc_device_nvidia) vector_length(128) \
device_type(acc_device_radeon) vector_length(256)

for (i=0; i<N; i++)

il

NIVERSITYox
EIAWARE

A little detour — vector length
advantages

e \What are vector processors/vector length?

— A single vector instruction performs a great deal of work -
meaning less fetches and fewer branches (and in turn
fewer mispredictions).

— Vector instructions access memory a block at a time which
results in very low memory latency

— Less memory access = faster processing time.

— Each result is independent of previous results - allowing
high clock rates.

ACK: https://www.cs.uic.edu/~ajayk/c566/VectorProcessors. pdf

NIVERSITYox
EIAWARE

A little detour — vector length
disadvantages

e What are vector processors NOT good at?

— Works well only with data that can be executed in highly or
completely parallel manner

— Needs large blocks of data to operate on to be efficient because
of the recent advances increasing speed of accessing memory

— Severely lacking in performance compared to normal processors
on scalar data

— High price of individual chips due to limitations of on-chip
memory

— Increased code complexity needed to vectorize the data

— High cost in design and low returns compared to superscalar
microprocessors

ACK: https://www.cs.uic.edu/~ajayk/c566/VectorProcessors. pdf

NIVERSITYor
EIAWARE

OpenACC directives and clauses

Directives
e Parallel
e kernel

e Parallel loop (work
sharing directive)

Data Scoping
clauses

copyin
copyout
copy
create
delete
present

25

NIVERSITY o
EIAWARE

OpenACC directives and clauses

Data Scoping

clauses
° Copyin ® private
e copyout e firstprivate

* num_gangs
® CO

Py e num_workers

e create

e vector length
e delete

e reduction
* present and more...

NIVERSITYox
EIAWARE

Data Construct

* This gives the programmer additional control over how and
when data is created and destroyed on a GPU and when data
is copied between CPU and GPU.

e Without the data directive, OpenACC will make assumptions
about whether data is already on the device or not.

* By using the data construct you help to ensure correctness,
and also improve performance by avoiding unnecessary data
copies.

 The data directive may be used in conjunction with many
other directives including parallel and loop.

e The data construct can accept 7 clauses

27

NIVERSITYox
EIAWARE

OpenACC Data Clauses

copyin(list) - Allocates memory on GPU and
copies data from host to GPU when entering
region.

copyout(list) - Allocates memory on GPU and
copies data to the host when exiting region.

copy(list) - Allocates memory on GPU and
copies data from host to GPU when entering
region and copies data to the host when
exiting region.

create(list) - Allocates memory on GPU but
does not copy.

delete(list) - Deallocate memory on the GPU
without copying. (Unstructured Only)

present(list) - Data is already present on GPU
from another containing data region.

#pragma acc data copyout(a[@:N]), copyin(b[@:N])

{
#pragma acc parallel loop present(a,b)
for (int i=0; i<N; i++)
alil = b[i]l + 1;
}

const int N=100;
#pragma acc data copy(al[@:N])
{
#pragma acc parallel loop present(a)
for (int i=0; i<N; i++)
ali]l = ali]l + 1;

I

#pragma acc data copyout(a[0:N]), create(b[0:N])
i
#pragma acc parallel loop
for (int i=0; i<N; i++)
bli] = 1 % 2.0;

28

NIVERSITYox
EIAWARE

OpenACC Data Clauses

create(list) - Allocates memory on GPU but does not copy.

#pragma acc data copyout(a[@:N]), create(b[0:N])
{

#pragma acc parallel loop
for (int i=@; i<N; i++)
bl[il = 1 * 2.0;

present(list) - Data is already present on GPU from another
containing data region.

#pragma acc parallel loop present(a,b)
for (int i=0; i<N; i++)
alil = b[i] + 1;

29

NIVERSITYox
EIAWARE

OpenACC update directive

The data must exist on
both the CPU and device
for the update directive to

work.

#pragma acc update
device(A[O:N])

CPU Memory device Memory

#pragma acc update self(A[O:N])

NIVERSITYor
EIAWARE

OpenACC update directive

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data
region

Clauses:
self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self (x[0:count])
#pragma acc update device (x[0:count])

NIVERSITYor
EIAWARE

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)
max Maximum value reduction(max:maximum)
min Minimum value reduction(min:minimum)
& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

| | Logical or reduction(]|:val)

32

