
Intro to OpenACC
Lecture 3

Sunita Chandrasekaran
Associate Professor, University of Delaware

PDC Summer School, Aug 2023

Materials also prepared by Dr. Felipe Cabarcas,
Postdoctoral Fellow, UDEL

OpenACC functionality

Why OpenACC

Target Platforms (OpenACC)

• Intel and AMD’s x86 (multicore systems)
– Haswell, Broadwell, Skylake, Icelake

• NVIDIA compilers (nvc) target NVIDIA GPUs
– All NVIDIA GPUs

• Mentor Graphics compilers (GNU GCC) target both NVIDIA
and AMD GPUs (to an extent)
– AMD Radeon Tahiti (HD 7900), Cape Verde (HD 7700), Spectre

(Kaveri APU)

• IBM OpenPOWER 8, 9, 10…

OpenACC syntax

OpenACC parallel loop directive

• Use a parallel directive to mark
a region of code where you
want parallel execution to
occur

• The loop directive is used to
instruct the compiler to
parallelize the iterations of the
next loop to run across the
parallel gangs

Parallelizing a single loop

9

OpenACC parallel loop directive
• This pattern is so common

that you can do all of this in
a single line of code

• In this example, the parallel
loop directive applies to the
next loop

• This directive both marks
the region for parallel
execution and distributes
the iterations of the loop.

• When applied to a loop with
a data dependency, parallel
loop may produce incorrect
results

Parallelizing a single loop

10

• To parallelize multiple loops, each loop
should be accompanied by a parallel
directive

• Each parallel loop can have different loop
boundaries and loop optimizations

• Each parallel loop can be parallelized in a
different way

• This is the recommended way to
parallelize multiple loops. Attempting to
parallelize multiple loops within the same
parallel region may give performance
issues or unexpected results

OpenACC parallel loop directive

Parallelizing multiple loops

11

OpenACC kernels

12

• In this example, the kernels
directive applies to the next for
loop

• The compiler will take the loop,
and attempt to parallelize and
optimize the loop

• If the compiler decides that the
loop is not parallelizable, it will
not parallelize the loop

OpenACC kernels

Parallelizing a single loop

13

• In this example, we mark a region
of code with the kernels directive

• The compiler will attempt to
parallelize all loops within the
kernels region

• Each loop can be
parallelized/optimized in a
different way

OpenACC kernels

Parallelizing multiple loops

14

15

Three levels of parallelism

• Gang
– Like work crews they are completely

independent of each other and may
operate in parallel or even at different
times

• Worker
– Individual painters they can operate on

their own but may also share resources
with other workers in the same gang

• Vector
– Paint roller is the vector
– where the width of the roller represents

the vector length.

3 levels of parallelism
• Gang OpenACC gang is a threadblock
– gang will apply gang-level parallelism to the loop

• Worker OpenACC worker is effectively a warp (a
group of threads)
– worker will apply worker parallelism to the loop

• Vector OpenACC vector is a CUDA thread
– vector will apply vector-level parallelism to the loop

3 levels of parallelism
• Gang OpenACC gang is a threadblock

• Worker OpenACC worker is effectively a

warp (a group of threads)

• Vector OpenACC vector is a thread

Multiple warps

Multiple threads

3 levels of parallelism
Other important takeaways
• Gangs can have more than 1 worker and share

resources like cache
• Multiple gangs work independently of each other
• Gangs have to be at the outermost level of parallelism
• Vector at the innermost level

OpenACC execution model

• Threads are executed on
streaming
multiprocessors (SMs)

• Thread blocks do not
migrate nor can be split
across SMs

• Several concurrent
thread blocks can reside
on 1 multiprocessor

• A kernel is launched as a
grid of thread blocks

Syntax for gang worker vector

• Outermost loop must be a gang
• Innermost loop must be a vector
• A worker loop can appear in between

Syntax for gang worker vector
• Additionally, you can specify the no. of gangs, workers and vector

length to use for the loop
• Vector of 128 informs the compiler to use a vector length of 128 for

the loop

A little detour – vector length
advantages

• What are vector processors/vector length?
– A single vector instruction performs a great deal of work -

meaning less fetches and fewer branches (and in turn
fewer mispredictions).

– Vector instructions access memory a block at a time which
results in very low memory latency

– Less memory access = faster processing time.
– Each result is independent of previous results - allowing

high clock rates.

ACK: https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf

A little detour – vector length
disadvantages

• What are vector processors NOT good at?

– Works well only with data that can be executed in highly or
completely parallel manner

– Needs large blocks of data to operate on to be efficient because
of the recent advances increasing speed of accessing memory

– Severely lacking in performance compared to normal processors
on scalar data

– High price of individual chips due to limitations of on-chip
memory

– Increased code complexity needed to vectorize the data
– High cost in design and low returns compared to superscalar

microprocessors

ACK: https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf

OpenACC directives and clauses

Data Scoping
clauses
• copyin
• copyout
• copy
• create
• delete
• present

Directives
• Parallel
• kernel
• Parallel loop (work

sharing directive)

25

OpenACC directives and clauses

Data Scoping
clauses
• copyin
• copyout
• copy
• create
• delete
• present

Directives
• Parallel
• kernel
• Parallel loop (work

sharing directive)

• private
• firstprivate
• num_gangs
• num_workers
• vector_length
• reduction
and more…

26

Data Construct

• This gives the programmer additional control over how and
when data is created and destroyed on a GPU and when data
is copied between CPU and GPU.

• Without the data directive, OpenACC will make assumptions
about whether data is already on the device or not.

• By using the data construct you help to ensure correctness,
and also improve performance by avoiding unnecessary data
copies.

• The data directive may be used in conjunction with many
other directives including parallel and loop.

• The data construct can accept 7 clauses
27

OpenACC Data Clauses
• copyin(list) - Allocates memory on GPU and

copies data from host to GPU when entering
region.

• copyout(list) - Allocates memory on GPU and
copies data to the host when exiting region.

• copy(list) - Allocates memory on GPU and
copies data from host to GPU when entering
region and copies data to the host when
exiting region.

• create(list) - Allocates memory on GPU but
does not copy.

• delete(list) - Deallocate memory on the GPU
without copying. (Unstructured Only)

• present(list) - Data is already present on GPU
from another containing data region.

28

OpenACC Data Clauses

• create(list) - Allocates memory on GPU but does not copy.

• present(list) - Data is already present on GPU from another
containing data region.

29

OpenACC update directive

B*
AA

CPU Memory device Memory

#pragma acc update
device(A[0:N])

B*
#pragma acc update self(A[0:N])

The data must exist on
both the CPU and device
for the update directive to

work.

OpenACC update directive
update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data
region

Clauses:

 self: makes host data agree with device data

 device: makes device data agree with host data

#pragma acc update self(x[0:count])
 #pragma acc update device(x[0:count])

32

