
Intro to OpenMP
(shared memory programming)

Lecture 5

Sunita Chandrasekaran
Associate Professor, University of Delaware

PDC Summer School
Aug 2023

3 Ways to Program CPU-GPU
Heterogeneous Architecture

Applications

Standard
Languages &

Libraries
Kokkos, alpaka,

Raja
Accelerated Standard

C++ and Fortran

Platform-Specific
Programming
Languages

CUDA, OpenCL

Maximize Performance for
Most Important Kernels,

e.g., with CUDA or OpenCL

Directives
OpenACC
OpenMP

Incremental
Performance

Optimization with
OpenACC and OpenMP

Interoperability Needed Across Models

Accelerated
Standard C++ and

Fortran

Maximize Performance
for Most Important
Kernels, e.g., with
CUDA or OpenCL

Incremental
Performance
Optimization

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC/OpenMP syntax

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that instructs the compiler to
compile the code.

▪ “acc” informs the compiler that what will come is an OpenACC directive
▪ “omp” informs the compiler that what will come is an OpenMP directive
▪ Directives are commands in OpenACC for altering our code.
▪ Clauses are specifiers or additions to directives.

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

C/C++

#pragma omp directive clauses
<code>

Fortran

!$omp directive clauses
<code>

Advanced OpenMP Tutorial – OpenMP Overview4

n De-facto standard Application Programming Interface (API) to write
shared memory parallel
applications in C,
C++, and Fortran

n Consists of Compiler Directives,
Runtime routines
and Environment
variables

n Version 5.0 has been released
at SC 2018

n Version 5.2 has been released
at SC 2021

What is OpenMP?

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization

Slide Courtesy: Christian Terboven, Michael Klemm, Bronis R. de Supinski

OpenMP Programming Model
Fork-Join Parallelism:

◆ The Primary thread spawns a team of threads as needed.

◆ Parallelism added incrementally until performance goals are met: i.e. the
sequential program evolves into a parallel program.

Parallel RegionsPrimary
Thread in
red

A Nested
Parallel
region

Sequential Parts

Advanced OpenMP Tutorial – OpenMP Overview6

n The work is distributed over the threads
n Must be enclosed in a parallel region
n Must be encountered by all threads in

the team, or none at all
n No implied barrier on entry
n Implied barrier on exit (unless the nowait

clause is specified)
n A work-sharing construct does not launch

any new threads

The Worksharing Constructs

#pragma omp for
{

}

#pragma omp sections
{

}

#pragma omp single
{

}

Slide Courtesy: Christian Terboven, Michael Klemm, Bronis R. de Supinski

Example: Hello world

• Write a multithreaded program where each
thread prints “hello world”.

void main()
{

 int ID = 0;
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

Example: Hello world Solution

Tell the compiler to pack code into a function, fork the threads, and join when done …

#include “omp.h”
void main()
{
#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

OpenMP include file
Parallel region with default
number of threads

Runtime library function to
return a thread ID.

End of the Parallel region

What would actually
be printed from this
parallel program?

Example output: Hello world

#include “omp.h”
void main()
{
#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)
hello (3) hello(2) world(3)

world(2)

OpenMP include file
Parallel region with default
number of threads

Runtime library function to
return a thread ID.

End of the Parallel region

Tell the compiler to pack code into a function, fork the threads, and join when done …

What is happening under the hood?

A shared memory program

Data Scoping Clauses

One can selectively change storage attributes for
variables using the following clauses
• Private
• Shared
• Default (none)

For example ….

#pragma omp parallel for
default(shared) private(a, b)

Private Clause
• The private(list) clause declares that all the variables

in list are private.
• b is a private variable. When a variable is declared private,

OpenMP replicates this variable and assigns its local copy to
each thread.

• Note – loop iteration variable is private by default

Private Clause
• The behavior of private

variables is sometimes
unintuitive.

• Let us assume that a private
variable has a value before a
parallel region.

• However, the value of the
variable at the beginning of the
parallel region is undefined.

• Additionally, the value of the
variable is undefined also after
the parallel region.

Shared Clause

• The default
(shared) clause sets the
data-sharing attributes
of all variables in the
construct to shared.

• Shared variables where
a single copy of the
variable exist and all
threads access that
single copy

• a, b, c and n are shared
variables.

Shared Clause

• Another usage of default(shared) clause is to
specify the data-sharing attributes of the
majority of the variables and then additionally
define the private variables.

Implicit Rules
• How many variables do you see?

• The data-sharing attribute of
variables, which are declared
outside the parallel region, is usually
shared. What are those variables?

• The loop iteration variables,
however, are private by default.

• The variables which are declared
locally within the parallel region are
private.

4

n, a

i

b

Default (none)

• The default(none) clause forces a programmer to explicitly
specify the data-sharing attributes of all variables.

• A distracted programmer might write the following piece of
code

Default (none)
• And get the following errors

Default (none)

• The reason for the unhappy compiler is that the programmer
used default(none) clause and then she/he forgot to explicitly
specify the data-sharing attribute of a.

• The correct version of the program would be

Some practices to remember

• always write parallel regions with
the default(none) clause
– Compiler might give you an error, but then that

will make you revisit your code
• declare private variables inside parallel

regions whenever possible
– This guideline improves the readability of the

code and makes it clearer.

Data Scoping Clauses

One can selectively change storage attributes for variables using
the following clauses
• Private
• Shared
• Default (none)
• Lastprivate
• Firstprivate

For example ….

#pragma omp parallel for default(shared) private(a, b)

Lastprivate

• firstprivate and lastprivate are just different
variations of private
– lastprivate Keep the last value of the variable, after

the parallel region
–When a lastprivate variable is passed to a parallelized

for loop,
• threads work on uninitialized copies but,
• at the end of the parallelized for loop, the thread in charge

of the last iteration sets the value of the original variable to
that of its own copy.

#pragma omp parallel for lastprivate(val)
(you will use ‘for’ if you have a for loop, you won’t need the ‘for’ if you are not using
lastprivate in a for loop)

https://www.rookiehpc.com/openmp/docs/parallel.php
https://www.rookiehpc.com/openmp/docs/for.php
https://www.rookiehpc.com/openmp/docs/lastprivate.php

firstprivate

• Firstprivate
– a clause that contains the variables that each thread in the

OpenMP parallel region will have an identical copy of
– These copies are INITIALIZED with the value of the original

variable passed to the clause
• By contrast, private variables DO NOT

– While the threads work on initialized copies, whatever
modification is made to their copies is not reflected onto
the original value of that variable after the parallel region

#pragma omp parallel for firstprivate(val)
(you will use ‘for’ if you have a for loop, you won’t need the ‘for’ if you are not using
lastprivate in a for loop)

https://www.rookiehpc.com/openmp/docs/parallel.php
https://www.rookiehpc.com/openmp/docs/for.php
https://www.rookiehpc.com/openmp/docs/lastprivate.php

What we have covered so far with
OpenMP

Data Scoping
clauses
• Private
• Shared
• Default (none)
• Lastprivate
• Firstprivate

Directives
• Parallel
• Parallel for (work

sharing directive)

What we have covered so far with
OpenMP

Data Scoping
clauses
• Private
• Shared
• Default (none)
• Lastprivate
• Firstprivate
Other Clauses
• Reduction

Directives
• Parallel
• Parallel for (work

sharing directive)

Synchronization
Constructs
• Critical
• Atomic
• Barrier

#pragma omp parallel for reduction (+: sum)

Reduction clause

Parallel tasks often produce some quantity that
needs to be summed or otherwise combined.

Reduction operators

OpenMP reduction clause

/* C/C++ Example */

for(i=1; i<=n; i++){
 sum = sum + a(i)
}

#pragma omp parallel for reduction (+: sum)

How do threads interact?

• OpenMP is a multi-threading, shared address model
– Threads communicate by sharing variables

• Unintended sharing of data causes race conditions
– race condition: when the program’s outcome changes as

the threads are scheduled differently.
• To control race conditions

– Use synchronization to protect data conflicts
• Synchronization is expensive so

– Change how data is accessed to minimize the need for
synchronization.

OpenMP Synchronization constructs

• High level synchronization:
– critical
– Atomic
– barrier
– ordered

• Low level synchronization
– flush
– locks (both simple and nested)

OpenMP Synchronization

• High level synchronization:
– critical
– Atomic
– barrier
– ordered

• Low level synchronization
– flush
– locks (both simple and nested)

OpenMP Critical construct

#pragma omp critical

OpenMP critical construct

• The critical construct provides a means to
ensure that multiple threads do not attempt
to update the same shared data
simultaneously.

• The enclosed code block will be executed by
only one thread at a time.

https://www.rookiehpc.com/openmp/docs/atomic.php

Downside of critical construct

• Critical clause can severely slow down
performance
– due to serialization of the execution causing

threads to “queue” to enter the critical region,
– as well as introducing large lock-management

overheads required to manage the critical region.

What’s the alternative?

#pragma omp parallel for
for (int i = 0; i < Ni; i++) {

#pragma omp critical
 sum += array[i];
}

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < Ni; i++) {
 sum += array[i];
}

OpenMP atomic construct

• The atomic construct ensures
– that a specific storage location is accessed

atomically as it name suggests,
– rather than exposing it to the possibility of

multiple, simultaneous reading and writing
threads that may result in indeterminate values.

https://www.rookiehpc.com/openmp/docs/atomic.php

OpenMP atomic construct

#pragma omp atomic

Downside of atomic construct

• Performance
• Price is synchronization
• 2 threads must synchronize to avoid race

conditions, a.k.a. threads are serialized
• Serialization of memory accesses disables

parallelism

What’s the alternative?

#pragma omp parallel for
for (int i = 0; i < Ni; i++) {

#pragma omp atomic
 sum += array[i];
}

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < Ni; i++) {
 sum += array[i];
}

So what’s the difference?

critical vs atomic
– Atomic uses hardware instructions
– Atomic does not use lock/unlock on

entering/exiting the line of code
– Lower overhead

OpenMP barrier construct
• The barrier construct, which is a stand-

alone directive, specifies an explicit
synchronization barrier at the point at
which the construct appears.

• The barrier applies to the innermost
enclosing parallel region, forcing every
thread that belong to the team of
that parallel region to complete any
pending explicit task.

• Only once all threads of that team satisfy
this criterion will they be allowed to
continue their execution beyond
the barrier.

https://www.rookiehpc.com/openmp/docs/barrier.php
https://www.rookiehpc.com/openmp/docs/barrier.php
https://www.rookiehpc.com/openmp/docs/barrier.php
https://www.rookiehpc.com/openmp/docs/parallel.php
https://www.rookiehpc.com/openmp/docs/parallel.php
https://www.rookiehpc.com/openmp/docs/task.php
https://www.rookiehpc.com/openmp/docs/barrier.php

OpenMP

Data Scoping Clauses
• Private
• Shared
• Default (none)
• Lastprivate
• Firstprivate
• Reduction

Directives
• Parallel
• Parallel for

(work
sharing
directive)

Synchronization
Constructs
• Critical
• Atomic
• Barrier

Scheduling clauses
• Static
• Dynamic
• Guided
• Auto
• Runtime variables

Why scheduling matters?

• Improve distribution of work across threads
available

• Address load imbalances and adjust work
distribution

• With a goal to keep all processors busy for about
the same amount of time and/or at best do not
leave threads to be idle

• Access memory contiguously; offers better data
locality

Static Scheduling - Definition

• static[,chunk]: Distribute statically the loop
iterations in batched of chunk size in a round-
robin fashion.

• Statically - means that the distribution is done
before entering the loop

A static schedule can be non-optimal,
however. This is the case when the different
iterations take different amounts of time.
Each loop iteration sleeps for a number of
seconds equal to the iteration number:

Static Scheduling – A sample code

Dynamic Scheduling - Definition

• dynamic[,chunk]: Distribute the loop iterations
among the threads by batches of chunk size
with a first-come-first-served policy, until no
batch remains.

• If not specified, chunk is set to 1

Here, OpenMP assigns one iteration to each thread.
When the thread finishes, it will be assigned the next
iteration that hasn’t been executed yet.

Dynamic Scheduling – A sample code

Scheduling summary – Part 1

• The default for schedule is implementation
defined.
– On many environments it is static but can also

be dynamic or could very well be auto.
• For loops where each iteration takes roughly

equal time a.k.a balanced loops – what
scheduling would you use?
– static schedules work best, as they have little

overhead.
• Choosing the best schedule depends on

understanding your loop.

Scheduling summary – Part 2

• For loops where each iteration can take very
different amounts of time or varying workloads,
what scheduling would you use?
– dynamic schedules, work best as the work will be split

more evenly across threads
• Specifying chunks, or using a guided schedule

provide a trade-off between the two.
– But beware that the first iteration might be the most

expensive
• Choosing the best schedule depends on

understanding your loop.

Scheduling summary – Part 3

• When you have iterations taking an
unpredictable amount of time, what
scheduling kind would you use?
– Dynamic
– Need load balancing

• Downside of guided scheduling
– Some threads would take excessive amount of

time at the beginning and not well balanced in
general

