
TRANSFORMERS:
AGE OF PARALLEL MACHINES

Ana Lucia Varbanescu, University of Twente, NL
A.L.Varbanescu@utwente.nl

(a biased introduction to Computer architecture)

What’s in a name?
• @AI enthusiasts: this is not about the AI transformers models [1]

• @Movie enthusiasts: this is a word-play on the transformer movies [2]

• @All (the others): this is about how computer architecture and computing
systems have been transformed in the past 15 years

[1] Vaswani et al. “Attention Is All You Need” - https://arxiv.org/abs/1706.03762
[2] https://www.imdb.com/list/ls069544665/

Assumptions
• We need computing systems for high-performance computing
• … thus we focus on how machines are build to provide high-performance
• … and we talk about that in the context of applications

• Main goal: best possible performance for our applications in computational
science & engineering

• What else is out there (but we won’t cover)?
• Real-time systems – guarantees are everything
• Embedded systems – efficiency and scale is everything
• Shared (large) systems (e.g., cloud computing) – sharing is caring everything
• Computing continuum – a mix of everything from IoT through Edge/Fog to Cloud

Agenda (ambitious)
• Part 1 : Introduction to computer systems
• CPUs, Memory, Caching, Accelerators

• Part 2 : Parallelism and parallel machines
• Flynn's taxonomy, SIMD/vectorization, multi-core/many-core
• Alternative architectures (FPGAs, AI-based, ...)

• Part 3 : Performance and tools
• Basic metrics, models, counters …

• Part 4 : Where to ?
• Famous last words …

PART1: COMPUTING MACHINES

Computer Systems
Simplistic definition
A mix of hardware and software (systems) used to execute applications.

Traditional goals:
• High(er)-performance systems
• Low(er)-power systems
• More efficient systems
• Higher availability systems
• Reliable systems
• Programmable systems
• ….

Out of the box

Inside the box*

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter/card

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

Computer architects: how to build these?
Computer scientists: how to use these?

But the borders
are blurrier every

year.

Write your
program

Store your
program

Load your
program

Execute your
program

*Adapted from “Computer Systems: A Programmer’s View” (Ch1) by Bryant and O’Hallaron

Cache
memory

So … why should you care?
• High-performance computing (HPC)* makes extensive use of computer systems
• … in fact, novel developments in computer systems make modern HPC possible!

• You are a responsible user
• Write *correct* applications.
• Write *efficient* applications.

• You are an innovator
• Build the next big HPC* application or machine

*Replace “HPC” with “society” for a broader, still valid statement.

Data representation & computer arithmetic

Bits & bit vectors
• All information in computer systems is represented by bits
• Numbers, text, images, code, applications …
• Why bits?

• Easy to store with bistable elements
• Reliably transmitted on noisy and inaccurate wires

• All data is represented as bit vectors
• What does this mean: 01101001101001010110100101101001

Interpretation is key!

Data types guide
interpretation

unsigned long a = 011010011010… => 1772448105
double d = 011010011010… => 2.49963182032e+25
char x[20] = 011010011010… => “i¥ii”

Why should you care?
• Correctness
• Some numbers cannot be represented (range, precision …)
• Some operations are “inaccurate” (range, precision …)
• Different data types can/cannot support certain operations

• Performance & efficiency
• Data takes memory/storage space
• Larger data takes more time/energy to process
• Some operations are faster than others

High performance and efficiency are always affected by
your choices on data representation and operations.

Processor basic operation

A processor’s inner workings

• CPU = executes the “application”
• Manages the execution progress (PC)
• Fetches needed instructions and data (addresses)
• Executes (ALU) operations and manages results

• Memory = stores the executable code of the application and the data
• Receives request + address, replies with data (a bit vector)

• Bus = facilitates information (=bits) movement

CPU

PC Registers
Code
Data
StackCondition

Codes
ALU

Memory

Instructions
Data

…

Addresses

Data

Instructions

Information
transfer

Bus

Why should you care?
Your program is compiled* and stored in memory and executed on the CPU**
Correctness
• Compilers do not fix bugs
• Debuggers help fixing bugs (and you run the debugging process…)
Performance & efficiency
• Code structure “guides” compilers to generate better executables
• Information movements takes time
• Processor resources are not infinite

High performance and efficiency are always affected by
your choices when coding and compiling.

* For most programming models, including C/C++/Fortran
** Accelerators may also be used, with similar principles (TBD)

The memory hierarchy

Memory
• Typically organized as linear spaces, with some word-size granularity

• Code and data are stored in memory
• Everything that lives in memory has an “address”
• Visible at assembly level
• Accessible via pointers/variable names/… from the program itself

• Memory operations are slow!
• Off-chip
• Request read/write
• Search and find

The CPU-Memory Gap
• Flat memory model
• All accesses = same latency
• Memory latency slower to improve than processor speed

The gap grows
~50% per year… which means we wait longer for

any access to the (DRAM) memory!

The CPU-MemoriesGap

0,0

0,1

1,0

10,0

100,0

1.000,0

10.000,0

100.000,0

1.000.000,0

10.000.000,0

100.000.000,0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

The gap widens between DRAM,
disk, and CPU speeds.

SRAM

These gaps are the main
reason for using a memory
hierarchy.

Data takes longer and longer to load
to the CPU!

Memory hierarchy
• A single memory for the entire system is not efficient!
• Several memory spaces

• Large size, low cost, high latency – main memory
• Small size, high cost, low latency – caches / registers

• Main idea: Bring some of the data closer to the processor
• Smaller latency => faster access
• Smaller capacity => not all data fits!

• Who can benefit?
• Applications with locality in their data accesses

• Spatial locality
• Temporal locality

This data is "cached” – that
is, stored in a cache.

Memory hierarchy and caches
• Cache: A smaller, faster storage device that acts as a staging area for a

subset of the data in a larger, slower device.

• Memory hierarchy
• Multiple layers of memory, from small & fast (lower levels) to large & slow (higher levels)
• For each k, the faster, smaller device at level k is a cache for the larger, slower device at

level k+1.

• How/why do memory hierarchies work?
• Locality => data at level k is used more often than data at level k+1.

• Level k+1 can be slower, and thus larger and cheaper.

Memory hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Caching in the Memory Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Memory hierarchy
• Challenges
• Size: no space for every memory address
• Organization: what gets loaded & where ?
• Policies: who’s in, who’s out, when, why?

• Performance
• Hit = access found data in fast memory => low latency
• Miss = data not in fast memory => high latency + penalty
• Metric: hit ratio (H) = the fraction of accesses that hit => the higher the ratio, the better the

performance!

Locality
• Principle of Locality: Programs tend to use data and instructions with

addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

Locality Example

• Data references
• Reference array elements in succession (stride-1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in

blue elements, while reading a[1][0] will need red elements.
This is poor locality – not reusing the same or close-by elements.

Row-major in memory

Matrix

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in

blue elements and reading a[0][1]..a[0][3] will need blue elements.
This is great locality – reusing the same or close-by elements.

Row-major in memory

Matrix

Qualitative estimates of locality
• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M/2; i++)
for (j = 0; j < N/4; j++)

sum += a[i*2][j*4];
return sum;

}

Every read from the matrix fetches a cache line => assume 4 elements
Assume row-major order and N,M very large => reading a[0][0] will bring in
blue elements, while reading such scattered data from a further will need

different colors. This is non-perfect locality – depends on sizes …

Row-major in memory

Matrix

Matrix Multiplication for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];

for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];

for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}

}

ijk / jik

jki / kji

kij / ikj

Good vs bad locality / caching …

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
yc

le
s

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

ijk / jik

jki / kji

kij / ikj

Why should you care?
Correctness
• Memory allocation and out-of-bounds errors are very common, yet difficult to spot
Performance & efficiency
• Caching is the most used method to improve memory latency
• Memory access patterns impact performance
• Data structures and in-memory layouts are essential
• Processor & memory architecture variants may “prefer” different access patterns

Memory operations are the main bottleneck in most HPC today!
Check your data memory layout and access patterns to improve locality!!

In summary: Computing systems basics …
• … are essential for the building HPC systems
• … and for programming them

• Be literate in these topics J
• Caching
• Processing
• Data representation
• Instructions

• … else you will have trouble programming these machine efficiently.

