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Agenda (ambitious)
• Part 1 :  Introduction to computer systems

• CPUs, Memory, Caching, Accelerators  

• Part 2 :  Parallelism and parallel machines 
• Flynn's taxonomy,  SIMD/vectorization, multi-core/many-core 
• Alternative architectures (FPGAs, AI-based, ...) 

• Part 3 :  Performance and tools 
• Basic metrics, models, counters … 

• Part 4 :  Where to ? 
• Famous last words … 



PART 2: PARALLELISM & MACHINES



First taxonomy: Michael Flynn (1966)

Multiple Instructions
Single Data

Single Instruction
Single Data

Single Instruction
Multiple Data

Multiple Instructions
Multiple Data



Before 2005: technology push 



Moore’s Law
• Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of 

semiconductor chips would double roughly every 18 months.
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“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965



Until early 2000s …
More transistors = more performance 

Thus, every 18 months, 
we had better and faster 
processors. 

• Higher clock-speed 
• Higher perf/cycle
• Same power
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 (CMU 15-418, Spring 2012)

Why parallelism?
▪ The answer 10 years ago

- To get performance that was faster 
than what clock frequency scaling 
would provide

- Because if you just waited until next 
year, your code would run faster on 
the next generation CPU

▪ Parallelizing your code not 
always worth the time
- Do nothing: performance doubling 

~ every 18 months



Wait … why do I care? 
• More transistors =  … ?
= more functionality 

• Think more functional units, more complex units, etc…. 

• Higher perf/clock  (aka, higher ILP) = … ?
= more operations per cycle

• Faster overall applications (when they have different operations…) 

• Higher clock frequency = …?
= more operations per time unit 

• Faster instructions => faster overall application 

• Higher power = … ?
= global warming … 

• Ideally, we want power consumption to be low



Until early 2000s …

Parallelism = interesting and “quirky”, but not main-stream
• Pro: Better performance than frequency scaling would provide.
• Con: Parallelizing code was not always worth the effort

• Do nothing: the performance will double ~ every 18 months



Around 2005: “hitting the walls”

Frequency wall

Power wall

ILP wall



Single core performance scaling
• The rate of single core performance scaling has significantly 
decreased (essentially, to 0)
• Frequency scaling limited by power
• ILP scaling tapped out
• Design complexity posing serious limitations

• No more free lunch for software developers!
• No more dramatic increase of software performance for free. 
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So what? 

Chip density can still 
increase about 2x every 
2 years

BUT
• Clock speed is not
• Power is not
• Instruction Level 

Parallelism is not
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What does this mean in practice? 



Traditionally … single core CPUs
• More transistors = more functionality 
• Improved technology = faster clocks = more speed

• Every 18 months => better and faster processors. 

Not anymore! 
We no longer gain performance by “growing” sequential 

processors … 

CPU 

Individual 
Memory (cache)

More individual 
memory (cache)

Bus interface

Off-chip 
components

Single core processor



New ways to use transistors
Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs) 
and many-core processors (GPUs).



The shift to multi-core



Multi-core CPUs



Generic multi-core CPU
Hardware threads 
SIMD units (vector lanes)

L1 and L2
dedicated 
caches 

Shared L3 cache
Main memory, I/O

Peak 
performance

Bandwidth



CPU levels of parallelism
• Instruction-level parallelism (e.g., superscalar processors) (fine)

• Multiple operations of different kinds per cycle
• Implemented/supported by the instruction scheduler

• typically in hardware 
• SIMD parallelism = data parallelism (fine)

• Multiple operations *of the same kind* per cycle  
• Run same instruction on vector data 
• Sensitive to divergence 
• Implemented by programmer OR compiler 

• Multi-Core parallelism ~ task/data parallelism (coarse)
• 10s of powerful cores 

• Hardware hyperthreading (2x)
• Local caches 
• Symmetrical or asymmetrical threading model 
• Implemented by programmer  



(1) ILP (Instruction level parallelism) 
• Multiple instructions issued & executed in the same cycle 

Instr. i
Instr. i+1
.
.
.
.
.
Instr. n

Sequential

No parallelism ILP support
Potentially 
in parallel

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Implementing ILP
• Super-scalar processors 

• “dynamic scheduling”: instruction reordering and scheduling happens in hardware 
• More complex hardware

• More area, more power …  

• Adopted in most high-end CPUs today 

• VLIW processors 
• ”static scheduling”: instruction reordering and scheduling is done by the compiler 

• Simpler hardware
• Less area, less power

• Adopted in most GPUs and embedded CPUs 

No programmer’s intervention! 



(2) SIMD (single instruction, multiple data)
• Same instruction executed on multiple data items 

a[i]   +=5
a[i+1] +=5
.
.
.
a[i+7] +=5

“vector”
(parallel)

”scalar” 
(sequential)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Scalar vs SIMD operations

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html



Implementing SIMD 
• SIMD extensions: special registers and functional units 
• Multiple generations of SIMD extensions 

• SSE4.x = 128 bits 
• AVX / AVX2 = 256 bits (most available CPUs, DAS-5 included)
• AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

Requires programmer’s (or compiler’s) 
intervention! 



SIMD programmer intervention 
• Auto-vectorization

• Typically enabled with “-O” compiler flags 
• Compiler directives 

• Specifically add directives in the code to force persuade the compiler to vectorize code  
• C or C++ intrinsics

• Wrappers around ASM instructions 
• Declare vector variables
• Name instruction
• Work on variables, not registers

• Assembly instructions
• Can write assembly to target SIMD



(3) Multi-core parallelism 
• Two (or more cores) to execute different streams of instructions. 

Requires programmer’s (or compiler’s) 
intervention and OS (operating system) support! 

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Multi-core programmer intervention
• Must define concurrent tasks to be executed in parallel

• Typically called (software) threads 
• Threads are executed per core 

• Under the OS scheduling 
• Some control can be exercised with additional programmer intervention 

for i = 1 … 3*n
 do_something(i) 

for i = 1 … n 
 do_something(i) 

for i = n+1 … 2*n 
 do_something(i) 

for i = 2*n+1 … 3*n 
 do_something(i) 

Core 0

Core 1

Core 2



Computer architecture talk



CPU features for ILP
• Instruction pipelining 

• Multiple instructions “in-flight”
• Superscalar execution 

• Multiple execution units 
• Out-of-order execution

• Any order that does not violate data dependencies 
• Branch prediction 
• Speculative execution 



Superscalar, Out-of-order
• A superscalar processor can issue and execute multiple instructions in one 

cycle. 
• The instructions are retrieved from a sequential instruction stream and are usually 

scheduled dynamically.
• An out-of-order processor can reorder the execution of operations in 

hardware.

• Superscalar, out-of-order processors can take advantage of the instruction 
level parallelism that most programs have.

• Most modern CPUs are superscalar and out-of-order.
• Intel: since Pentium (1993)



Modern CPU Design
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A real CPU … 



SkyLake ® 

Image: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Multiple execution 
units, some SIMD

Fetch & decode,
producing multiple 
uOps

Optimize, reorder,
schedule uOps



Hardware multi-threading (or hyperthreading®)

BONUS!



”Are there hardware threads?!” 
• Hardware (supported) multi-threading 

• Core manages thread context 
• Interleaved (temporal multi-threading) – employed in GPUs
• Simultaneous (co-located execution) – e.g., Intel Hyperthreading 



Why bother? 
• Interleave the processing of multiple instruction streams on the same core to 

hide the latency of stalls

• Requires replication of hardware resources
• Each thread uses its own PC to execute the instruction stream
• Requires replication of register file

• Performance improvement: higher throughput



Advantage: increased throughput



Advantage: increased throughput



Advantage: increased throughput



What about the memory? 
• Three levels of cache: L1 (separate I$ and D$, per-core), L2 (per-core), L3 

(=LLC, shared)  



Putting it all together 
• A modern CPU has a mix of all these features… 



SIMD programming

BONUS!



Vectorization/SIMD options
• Auto-vectorization

• Both gcc and icc have support for it 
• Successful for simple loops and data structures

• Compiler directives 
• Both gcc and icc allow for specific pragma’s to enable vectorization
• Pragma’s are used to “force” the compiler to vectorize

• C or C++: intrinsics
• Declare vector variables
• Name instruction
• Work on variables, not registers

• Assembly instructions
• Execute on vector registers



Using intrinsics
• https://software.intel.com/en-us/articles/introduction-to-intel-advanced-

vector-extensions
• https://software.intel.com/sites/landingpage/IntrinsicsGuide/
• Requirements: 

• Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Examples of intrinsics

0.0
0element

value
1 2 3

0.00.00.0

0.0
0element

value
1 2 3

3.02.01.0

float data[1024];
// init: data[0] = 0.0, data[1] = 1.0, data[2] = 2.0, etc.
init(data);

// Set all elements in my vector to zero.
__m128 myVector0 = _mm_setzero_ps();

// Load the first 4 elements of the array into my vector.
__m128 myVector1 = _mm_load_ps(data);

// Load the second 4 elements of the array into my vector.
__m128 myVector2 = _mm_load_ps(data+4);

4.0
0element

value
1 2 3

7.06.05.0



Examples of intrinsics
// Add vectors 1 and 2; instruction performs 4 FLOP.
__m128 myVector3 = _mm_add_ps(myVector1, myVector2);

// Multiply vectors 1 and 2; instruction performs 4 FLOP.
__m128 myVector4 = _mm_mul_ps(myVector1, myVector2);

// _MM_SHUFFLE(w,x,y,z) selects w&x from vec1 and y&z from vec2.
__m128 myVector5 = _mm_shuffle_ps(myVector1, myVector2,          

_MM_SHUFFLE(2, 3, 0, 1));

0element
value

1 2 3
4.0 = +6.0 8.0 10.0

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0

0element
value

1 2 3
0.0 = x5.0 12.0 21.0

0element
value

1 2 3
2.0 =3.0 4.0 5.0 s

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0

0element
value

1 2 3
0.0 1.0 2.0 3.0

0element
value

1 2 3
4.0 5.0 6.0 7.0



Steps for vectorization
• Identify (loop) to vectorize
• Unroll (by the intended SIMD width) 
• Use the correct intrinsics to vectorize computation
• Move data from arrays to vectors 



Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i++) {

c[i] = a[i] + b[i];
}

}



Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {

c[i+0] = a[i+0] + b[i+0];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

}
}



Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {

__m128 vecA = _mm_load_ps(a + i); // load 4 elts from a
__m128 vecB = _mm_load_ps(b + i); // load 4 elts from b
__m128 vecC = _mm_add_ps(vecA, vecB); // add four elts
_mm_store_ps(c + i, vecC); // store four elts

}
}



Many-core GPUs 



Generic GPU

Streaming
Multi-

processor
(SM)

CUDA 
cores

Special 
function units

Local 
memory



… or, using our CPU “symbols” 
• Instructions operate on 32 pieces of data at a 

time (called “warps”).
• Warp = thread issuing 32-wide vector instructions

• Up to 48 warps are simultaneously interleaved
• Over 1500 elements can be processed 

concurrently by a core

• Full board: 15 cores (SMs)!  

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” – 
http://15418.courses.cs.cmu.edu/spring2016/lectures

http://15418.courses.cs.cmu.edu/spring2016/lectures


Inside an NVIDIA GPU architecture



Inside an NVIDIA GPU architecture

• GigaThread Engine 
• SM’s = streaming multiprocessors 
• GPC = graphics processing clusters 
• TPC = texture processing clusters
• L2 cache 
• Memory controllers 
• NVLink



Inside a Streaming Multiprocessor
• Different types of cores 

• CUDA Cores (INT/FP32)
• LD/ST
• Special function units

• Register file 
• Warp scheduler 
• Data caches 
• Instruction buffers/caches
• Texture units

Maxwell



More features … 
• Different types of cores 

• Adding: DP Units (Pascal)
• Adding: Tensor units (Volta)

• … <Pascal

Volta>



GPU Integration into the host system
• Typically based on a PCI Express bus
• Transfer speed (effectively, CPU-to-GPU):

16 GT/s per lane x 16 lanes
• Can be NVLink (~10x faster) for specialized motherboards



NVIDIA GPUs (8+ years)
Fermi Kepler Maxwell Pascal Volta

GPU GTX480 GK180 GM200 GP100 GV100
Compute 
capability (CC)

2.x 3.5 5.2 6.0 7.0

SMs 16 15 24 56 80
TPCs 16 15 24 28 40
FP32 Cores / SM 32 192 128 64 64
FP64 “Cores” / SM 4 64 4 32 32
Clock[MHz] 700 875 1114 1480 1530
Peak FP32
[TFLOPs]

1.35 5.04 6.8 10.6 15.7

Peak FP64
[TFLOPs]

0.168 1.68 .21 5.3 7.8



Other players on the market 
• AMD (former ATI)

• Much better performance 
• Programmed using OpenCL (standard!)
• Poorer software drivers and infrastructure (so far) 
• A lot less libraries and tools
• Much smaller community effort 

• arm (formerly ARM J )
• Low-power devices (mobile platforms mostly) 
• Programmed using OpenCL
• Lower performance than ATI and Intel, by choice 

• Intel 
• To support own CPUs with integrated graphics 
• Programmed using OpenCL



All GPUs … 
• Have a similar architecture 

• Massively parallel 
• Simple cores 
• Complex memory system 

• Are programmed in a similar way 
• Fine-grain (SIMD/SIMT) parallelism

• Programming models ? 
• OpenCL is the de-facto standard for GPU programming
• Lots of efforts for C++
• Many other libraries and models on top of CUDA / OpenCL



GPU Levels or Parallelism 
• Data parallelism (fine-grain) 

• Write 1 thread, instantiate a lot of them 
• SIMT (Single Instruction Multiple Thread) execution

• Many threads execute concurrently
• Same instruction
• Different data elements
• HW automatically handles divergence

• Not same as SIMD because of multiple register sets, addresses, and flow paths* 
• Hardware multithreading

• HW resource allocation & thread scheduling
• Excess of threads to hide latency
• Context switching is (basically) free

• Task parallelism is “emulated” (coarse-grain) 
• Hardware mechanisms exist 
• Specific programming constructs to execute multiple tasks.  

• Heterogeneous computing 
• CPU is always present … 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



GPUs vs CPUs 



Why so different? 
• Different goals produce different designs!

• CPU must be good at everything
• GPUs focus on massive parallelism 

• Less flexible, more specialized 

• CPU: minimize latency experienced by 1 thread
• big on-chip caches
• sophisticated control logic

• GPU: maximize throughput of all threads
• # threads in flight limited by resources => lots of resources (registers, etc.)
• multithreading can hide latency => no big caches
• share control logic across many threads



CPU vs. GPU
68

Control

ALU ALU

ALU ALU

Cache

CPU
Low latency, high 
flexibility.
Excellent for irregular 
codes with 
limited parallelism.

GPU
High 

throughput. 
Excellent for 

massively 
parallel 

workloads. 



CPU vs GPU



CPU vs. GPU: the movie
• The Mythbusters

• Jamie Hyneman & Adam Savage
• Discovery Channel

• Appearance at NVIDIA’s NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI


Scaling out: Multi-node systems => supercomputers



Putting it all together
• Multiple nodes 

• Potentially grouped/clustered in islands 
• Communication network

• Latency & throughput differences compared to intra-node 
• Homogeneous vs. Heterogeneous 

• Peak Performance: summing all up 
• Energy consumption: summing it all up 



Putting it all together: IBM’s BLUGENE/L 



Putting it all together: IBM’s BlueGene/Q



Putting it all together: FUGAKU



Putting it all together: SUMMIT



Zoom-out: Parallel machine models 

BONUS!



(Parallel) Systems Models 
• Why do we need parallel system models? 

• Provide an abstraction of the real machine 
• Dictate the properties of “dedicated” programming models 
• Enable the selection of an appropriate programming model 

• Organization-based classification
• Shared Memory
• Distributed Memory
• Virtual shared Memory
• Hybrids 

• Processing-based classification 
• Single/Multi Instruction, Single/Multi Data (items)



Parallel Machine Models 
• Shared Memory

• Multiple compute nodes 
• One single shared address space
• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory 
• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers 

Shared memory

Distributed memory

Hybrid



Parallel Machine Models 
• Shared Memory

• Multiple compute nodes 
• One single shared address space
• Typical example: multi-cores 

• Distributed Memory
• Multiple compute nodes 
• Multiple, local (disjoint) address spaces
• Virtual shared memory: software/hardware layer “emulates” shared memory 
• Typical example: clusters 

• Hybrids 
• Multiple compute nodes, typically heterogeneous 
• Mixed address space(s), some shared, some global memory
• Typical example: supercomputers 

Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, … 

Programming: message passing
Programming models: MPI, Big-data models, … 

Programming: very diverse, depending on the 
hardware configuration

Shared memory

Distributed memory

Hybrid



Examples
• Multi-core CPUs ?

• Shared memory with respect to system memory 
• Hybrid when taking caches into account 

• Clusters ? 
• Distributed memory 
• Could be shared if middleware for virtual shared space is provided 

• Supercomputers ?
• Usually hybrid 

• GPUs ?
• Architectures with GPUs?

• Distributed for traditional, off-chip GPUs
• Shared for new APUs 



Major issues
• Shared Memory model

• Scalability problems (interconnect) 

• Programming challenge: RD/WR Conflicts 

• Distributed Memory model

• Data distribution is mandatory 

• Programming challenge: remote accesses, consistency
• Virtual Shared Memory model

• Significant virtualization overhead

• Easier programming

• Hybrid models

• Local/remote data more difficult to trace 



PART 2: IN SUMMARY… 



Parallelism in Computer Systems 
• Multi-core and many-cores are the current building blocks of supercomputers 
• Accelerators are here to stay 

• … and annoy us during programming … 
• Supercomputers are distributed combinations (see previous talks) of multi- 

and many-cores 

• Programming these systems is a mix of programming models 
• For efficiency, we need to understand their archtiectures 


