TRANSFORMERS:
AGE OF PARALLEL MACHINES

(a biased introduction to Computer architecture)

Ana Lucia Varbanescu, University of Twente, NL
A.L.Varbanescu@utwente.nl

Agenda (ambitious)

glasbergen.com

- Part 2 : Parallelism and parallel machines

- Flynn's taxonomy, SIMD/vectorization, multi-core/many-core
- Alternative architectures (FPGAs, Al-based, ...)

- Part 3 : Performance and tools
- Basic metrics, models, counters ...

- Part4 : Where to ?

- Famous last words ...

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”

PART 2: PARALLELISM & MACHINES

-
First taxonomy: Michael Flynn (1966)

SISD Instruction Pool SIMD Instruction Pool

—————|PU|+

Single Instruction
Multiple Data

Single Instruction

— - |pul—

PU |~

Single Data

Data Pool
Data Pool

———[PU|—

———|PU|~

MISD Instruction Pool MIMD Instruction Pool

—|PU|— Le[PU|—

Multiple Instructions
Multiple Data

—|PU|— =|PU|-

Lrod Lyl

Multiple Instructions

Data Pool
Data Pool

Single Data —|PUj —|PU]

—|pu|~ [pu|-

Before 2005: technology push

Moore’ s Law

- Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of
semiconductor chips would double roughly every 18 months.

!
=1 [B

P e, P,]
 Minllen of GomtrssB s R T Cocd

/ ",) oo
£ N \ ’ R
N 3 o
% \ § 75
\ \ X \ / « 7 N
¥ ’ . 2 R
' < B -
/i | % v SR
\ | . —

Y e N e

Until early 2000s ...

More transistors = more performance

Intel CPU Trenr15

Thus, every 18 months, 100000 | oouces: Inte), Wikipedia, K- Ojukotn)
we had better and faster
Processors.

- Higher clock-speed 1,000

- Higher perf/cycle
- Same power

100

10

| Transistors (000)

@ Clock Speed (MHz)
aPower (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000

Wait ... why do | care”

- More transistors = ... ?

= more functionality
- Think more functional units, more complex units, etc....

- Higher perf/clock (aka, higher ILP)= ... ?

= more operations per cycle
- Faster overall applications (when they have different operations...)

- Higher clock frequency = ...7

= more operations per time unit
- Faster instructions => faster overall application

- Higher power = ... ?
= global warming ...
- Ideally, we want power consumption to be low

-
Until early 2000s ...

Parallelism = interesting and “quirky”, but not main-stream
- Pro: Better performance than frequency scaling would provide.

- Con: Parallelizing code was not always worth the effort
- Do nothing: the performance will double ~ every 18 months

-
Around 2005: “hitting the walls”

10,000,000
/
Dua ore Ita] /
1,000,000 -
Intel CPU Trends
{sources: Intel, Wikipedia, K. Olukotun}
100,000
10,000
Frequency wall
1,000
100 Power wall
e
? J‘o oo
= .
1 m Transistors (000)
Py ° @ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0 [[

1970 1975 1980 1985 1990 1995 2000 2005 2010

Single core performance scaling

- The rate of single core performance scaling has significantly
decreased (essentially, to 0)
- Frequency scaling limited by power
- ILP scaling tapped out
- Design complexity posing serious limitations

- No more free lunch for software developers!
- No more dramatic increase of software performance for free.

So what?

10,000,000

/
2UdiLorele -/ Chip density can still
Intel CPU Trends A Increase about 2x every
100,000 {sources: Intel, Wikipedia, K. Olukotun} - 2 y e ar S
' BUT
1,000 \° Clock Speed is not
[336 =) /- Power is not
100 —=—2<— . Instruction Level
an A / Parallelism is not
10 / z/
/4) —
< R el

1970 1975 1980 1985 1990 1995 2004

° - What does this mean in practice?]

(Single core process?l\

Traditionally ... single core CPUs

- More transistors = more functionality

Individual
- Improved technology = faster clocks = more speed Memory (cache)
- Every 18 months => better and faster processors. More individual

memory (cache)

K Bus interface j

Off-chip
components

~N

Not anymore!
We no longer gain performance by “growing” sequential
Processors ...

_

New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs)
and many-core processors (GPUs).

The shift to multi-core

107 B o ol T -
. ransistors
6 (thousands)
10° m
10° | | Single-Thread
Performance 5
10t F | (SpecINT x 107)
4 Y :5 Frequency (MHz)
107 e =
N o 3 Typical Power
102 | b...a. B $. > . 4 (Watts)
o
1 . N Number of
100 r LA s ® - "] Logical Cores
" A m : - £ v Y wvw
10 I ‘ + * o PO G WO LU WIS ¢ o -
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond. and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Multi-core CPUs

Generic multi-core CPU

Hardware threads

) SIMD units (vector lanes
Multi-core Processor ()

Peak
performanct

L1 and L2
dedicated
caches

l\ Bus Interface

Bandwidth —>1 Chip Boundary

Shared L3 cache

Main memory, 1/0O

CPU levels of parallelism

- Instruction-level parallelism (e.g., superscalar processors) (fine)
- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler
- typically in hardware
- SIMD parallelism = data parallelism (fine)
- Multiple operations *of the same kind* per cycle
- Run same instruction on vector data
- Sensitive to divergence
- Implemented by programmer OR compliler

- Multi-Core parallelism ~ task/data parallelism (coarse)

- 10s of powerful cores
- Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer

(1) ILP (Instruction level parallelism)

- Multiple instructions issued & executed in the same cycle

No parallelism | ILP support
- Instr. 1
ALU - Instr. 1+ Exec Exec
(Execute) 1 2
Sequential -

=T

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires

http://15418.courses.cs.cmu.edu/spring2016/lectures

No programmer’s intervention!

T)
Implementing ILP

- Super-scalar processors

- “dynamic scheduling”: instruction reordering and scheduling happens in hardware

- More complex hardware
* More area, more power ...

- Adopted in most high-end CPUs today

- VLIW processors

- "static scheduling”: instruction reordering and scheduling is done by the compiler

- Simpler hardware
» Less area, less power

- Adopted in most GPUs and embedded CPUs

(2) SIMD (single instruction, multiple data)

- Same instruction executed on multiple data items

Cl|:1.+1:| +=5 ALU1| |ALU2| |ALU3| [ALU4
ALU .
(Execute) - ALU5| [ALU6| |ALU7| |ALUS

“scalar”
(sequential) . “vector”

Cl['i_ +7:| +=5 (parallel)

==

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —

http://15418.courses.cs.cmu.edu/spring2016/lectures

Scalar vs SIMD operations

SIMD Mode Scalar Mode

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html

Requires programmer’s (or compiler’s)
intervention!

Implementing SIMD

- SIMD extensions: special registers and functional units

- Multiple generations of SIMD extensions
- SSE4.x = 128 bits

- AVX/AVX2 = 256 bits (most available CPUs, DAS-5 included)
- AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

512 0
Rt 512 bits ~=-==============="=noon- >
-ommmeaee 256 bits =-------~ >

<-- 128 bits --»

ZMM31 YMM31

SIMD programmer intervention

- Auto-vectorization

- Typically enabled with “-O” compiler flags
- Compiler directives

- Specifically add directives in the code to foree persuade the compiler to vectorize code
- C or C++ intrinsics

- Wrappers around ASM instructions
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly instructions
- Can write assembly to target SIMD

Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

(3) Multi-core parallelism

- Two (or more cores) to execute different streams of instructions.

ALU ALU
(Execute) (Execute)

= || B

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires

http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

- Must define concurrent tasks to be executed in parallel
- Typically called (software) threads

- Threads are executed per core

- Under the OS scheduling
- Some control can be exercised with additional programmer intervention

Core 0
fori=1...n
do_something(i)
Core 1
fori=1...3"n fori=n+1 ... 2*n
do_something(i) do_something(i)
Core 2

fori=2*n+1 ... 3*n
do_something(i)

Computer architecture talk

e
CPU features for ILP

- Instruction pipelining
- Multiple instructions “in-flight”

- Superscalar execution
- Multiple execution units

- Out-of-order execution
- Any order that does not violate data dependencies

- Branch prediction
- Speculative execution

Superscalar, Out-of-order

- A superscalar processor can issue and execute multiple instructions in one
cycle.

- The instructions are retrieved from a sequential instruction stream and are usually
scheduled dynamically.

- An out-of-order processor can reorder the execution of operations in
hardware.

- Superscalar, out-of-order processors can take advantage of the instruction
level parallelism that most programs have.

- Most modern CPUs are superscalar and out-of-order.
- Intel: since Pentium (1993)

.
Modern CPU Design

Instruction Control
Control Instruction

: Retirement

...... Unit

. Register Instruction PINILCIETelglS
File Decode)

Cache

Operations

Register Updates Prediction OK?

Functional
Units

\ 4 \ 4 A 4 A 4 A\ 4 A\ 4

Operation Results

Addr. Addr.

Data Data

Execution

Areal CPU ...

—~| 36 Entry Reservation Station
Port 0 Port 1 Port 5

L L
A Load
Internal Results Bus 128 bits| o8

Store
128 bits

Front End Instruction
CacheTag| L1 Instruction Cache

HOP Cache 32KiB 8-Way Instruction

kyLake

16 B@cycle

Branch

Predictor Instruction Fetch & PreDecode

(BPU) (16 B window)
P rﬁp rep rip rip P
|

??S'“zi%%”eﬁ’t‘r‘.zﬁf |

- ¥+ ¥ ¥

312A>/at9

Fetch & decode,

producing multiple — 5Way Decode
Sequencer
uOps b0 || [Secoter Loecoder) pecoder) vecader Lvecader]
1-4 pOPs

Decoded Stream Buffer (DSB)
(HOP Cache)
(1.5k LOPs; 8-Way)
(64 B window) \ Mix /

Optimize, reorder, ';:::j:'ﬁ;’s Allocation Queue (IDQ) (128, 2x64 WOPs)
—
schedule uOps l I l
7 poOP poOP P pOP pOP pOP |Branch Order Buffer:

Register Alias Table (RAT) (BOB) (48-entry)

]

& Rename / Allocate / Retirement : :

: Move Elimination ReOrder Buffer (224 entries) | ones idioms | [Zeroing Idioms |
0

il + ¥ ¢ + + F ¥ %
2 [E

e . . Scheduler : ;

) Integer Physical Register Filg))) \Vector Physical Register File

§ g (180 Registers) Unified Re‘!;;v:::lréls’tahon (RS) (168 Registers)

[Port1 | rt [Ports | [Portda | [Port7]
0 0 0 0 32B/cycle

Multiple execution
units, some SIMD

g1.Ls p=uiun
Aepa-v gni9se
ayoe) 7]

Image: https://en.wikichip.org/wiki/intel/microarchitec

Hardware multi-threading (or hyperthreading®)

"Are there hardware threads?!”

- Hardware (supported) multi-threading

- Core manages thread context
- Interleaved (temporal multi-threading) — employed in GPUs

- Simultaneous (co-located execution) — e.g., Intel Hyperthreading
Issue slots

I Thread 0
B Thread 1
[Thread 2
] Thread 4

Time

e
Why bother?

- Interleave the processing of multiple instruction streams on the same core to
hide the latency of stalls

- Requires replication of hardware resources
- Each thread uses its own PC to execute the instruction stream
- Requires replication of register file

- Performance improvement: higher throughput

Advantage: increased throughput

Thread 1
. Elements0...7
Time

o o o o

1 Core (1 thread)

-
Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements16...23 Elements 24... 31

OOo0oOoOoOooo oooooooo OoOooooooo oooooooo

© o

1 Core (4 hardware threads)

Runnable

Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements 16... 23 Elements 24... 31

Oo0ooOoOOooo oooooooo oOoOoooooo oooooooo

© 4

1 Core (4 hardware threads)

Runnable

- e

Runnable
Done! b 4
Runnable

What about the memory?

.

L3 cache
(8 MB)

25 GB/sec

<)

- Three levels of cache: L1 (separate 1$ and D$, per-core), L2 (per-core), L3
(=LLC, shared)

Memory
DDR3 DRAM

(Gigabytes)

e
Putting it all together

- A modern CPU has a mix of all these features...

SIMD Exec 2 SIMD Exec 2 SIMD Exec 2 SIMD Exec 2

| . | | 110 .| 200

[- - [[I
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache

% < On-chip
Interconnect

Memory
L3 Cache Controller

Memory Bus l
(to DRAM)

SIMD programming

Vectorization/SIMD options

- Auto-vectorization
- Both gcc and icc have support for it
- Successful for simple loops and data structures

- Compiler directives
- Both gcc and icc allow for specific pragma’s to enable vectorization
- Pragma’s are used to “force” the compiler to vectorize
/- C or C++: intrinsics)
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly Instructions
- Execute on vector registers

Using intrinsics

- https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions

- https://software.intel.com/sites/landingpaqge/IntrinsicsGuide/

- Requirements:
- Using aligned data structures (aligned to the size of the vector)

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Examples of intrinsics

float data[l1l024];
// init: data[0] = 0.0, data[l] = 1.0, data[2] = 2.0, etc.
init (data) ;

// Set all elements in my vector to zero.

element 0 1 2 3
V21l 0.0 0.0 0.0 0.0

_ _ml28 myVector0 = mm setzero ps();

// Load the first 4 elements of the array into my vector.

~_ml28 myVectorl = mm load ps(data); element 0 1 2 3
\'zI-w 0.0 1.0 20 3.0

// Load the second 4 elements of the array into my vector.

128 Vector2 = load data+4) ;
_m myVector _mm_load ps(data+4) clement [OEEEEEE

\V'zI0:® 40 50 6.0 7.0

Examples of intrinsics

// Add vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector3

_mm_add ps (myVectorl, myVector2);

element 0 1 2

'zl 40 6.0 8.0 10.0

3

element 0 1 2 3
20 3.0

0.0 1.0

value

+

element 0 1 2 3

40 5.0 6.

value

// Multiply vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector4

~mm mul ps(myVectorl, myVector2);

element 0

1

2

3

\c\':3 0.0 5.0 120 21.0

element 0 1 3

value } A1) 1.0 3.0

N
(=)

X

element 0

1

2

3

value b “X1) 5.0 6 7.0

I

// MM SHUFFLE (w,x,y,z) selects w&x from vecl and y&z from vec2.

__ml28 myVector5

_mm shuffle ps(myVectorl, myVector2,

_MM SHUFFLE(2, 3, 0, 1));

element 0 1 2 3

\'elI0Y 20 3.0 40 5.0

N
(=)

element 0 1

value p A1) 1.

0

2

3
3.0

S

element 0

value b “H)

1
5.

0

2
6

7.0

I

Steps for vectorization

- Identify (loop) to vectorize
- Unroll (by the intended SIMD width)
- Use the correct intrinsics to vectorize computation

- Move data from arrays to vectors

e
Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i1=0; i<size; i++) {
c[i] = a[i] + b[i];

-
Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i=0; i<size; i += 4) {
c[i+0] = a[i+0] + b[i+O0];
c[i+l] = a[i+l] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {
~ ml28 vecA = mm load ps(a + i); // load 4 elts from a
~ ml28 vecB = mm load ps(b + i); // load 4 elts from b
~ ml28 vecC = mm add ps(vecA, vecB); // add four elts

~mm store ps(c + i, vecC); // store four elts

Many-core GPUs

Generic GPU

e t =g
4)
Host
Memory

\

©2010 The Portland Group, Inc.

Control

DMA

Device Memory

Execution Queue)
4 Y. e
P
Streaming CUDA -
Multi- cores
processor
(SM) Special = =
Local e
K / Cache Selectable Cache
+
(t Level ZtCache t t)

... or, using our CPU “symbols”

- Instructions operate on 32 pieces of data at a
time (called “warps”).
- Warp = thread issuing 32-wide vector instructions
- Up to 48 warps are simultaneously interleaved

- Over 1500 elements can be processed
concurrently by a core

- Full board: 15 cores (SMs)!

NVIDIA GTX 480 core

L]
L]

L) D
LI

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

= SIMD function unit,

control shared across 16 units
(1 MUL-ADD per clock)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —

httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires

http://15418.courses.cs.cmu.edu/spring2016/lectures

Inside an NVIDIA GPU architecture

PCI Express 3.0 Host Interface

Memory Controller
je|onuo) Aoweyy

s
2
5
o
e
2
S
b3

Jsponuon Aoweyy

Memory Controller
soponuo) owey

Memory Controller
qjonuo)) Aowey

2 2 2 ~
NVLink NVLink NVLink

e
Inside an NVIDIA GPU architecture

GigaThread Engine

SM’s = streaming multiprocessors
GPC = graphics processing clusters

TPC = texture processing clusters
L2 cache

Memory controllers

NVLink

PolyMorph Engine 2.0
Vertex Fetch Tessellator | | Viewport Transform

| I Stream Output

Instruction Cache

u u u >
n e e m n e Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
S I a r a I u I rO C S S O r Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
£ RS 1z R 2 S S 2 I

Register File (65,536 x 32-bit)

4 4 4+ 3 3 3 4 I 4 3 3 I
Core Core Core Core [Core Core LD/ST SFU |Core Core Core Core

- Different types of cores

Core Core Core Core Core Core SFU Core [Core Core Core

® CU DA Cores (I NT/ F P32) Core Core Core Core Core Core SFU [Core (Core (Core Core
° LD / ST Core (Core (Core Core Core Core SFU [Core| (Core [Core Core

Core Core Core Core Core Core SFU Core Core Core Core
° Special fu nction units Core Core Core Core Core Core SFU |Core [Core Core [Core
Core Core Core Core Core Core SFU Core Core Core Core
n L]
o Reg ISter fl Ie Core Core Core Core Core Core SFU Core [Core Core Core
Core Core Core Core Core Core SFU Core [Core Core [Core
PY Wa rp SCh edl ller Core Core Core Core Core Core SFU [Core (Core Core Core
Core Core Core Core Core Core SFU [Core [Core Core Core
PY Data CaCh eS Core Core Core Core Core Core SFU Core Core Core Core
Core Core Core Core Core Core SFU |Core Core Core Core
n
- Instruction buffers/caches
Core | Core Core Core Core Core LD/ST SFU |[Core Core Core Core
: Texture Cach
ure Cacl |
- Texture units :

64 KB Shared Memory / L1 Cache

Uniform Cache

Maxwell

L1 Instruction Cache

LO Instruction Cache LO Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

M O re fe at u re S " == Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

. Different types of cores

FP64 INT INT FP32 FP32 L. onp TENSOR FP64 INT (INT FP32 FP32 L cop TENSOR
CORE CORE CORE CORE

. Ad d i n g : D P U n itS (Pascal) FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

- Adding: Tensor units (Volta)

FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Instruction Buffer i LO Instruction Cache LO Instruction Cache

Warp Scheduler Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)

Déspatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
3 s a3 ¥ .

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

Core Core Core Core FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

Core Core Core Core FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 TENSOR TENSOR FP64 INT INT [FP32 FP32 TENSOR TENSOR

FP64 INT INT [FP32 FP32 GORE KRk FP64 INT INT FP32 FP32 GORE GORE

Core Core Core

Core Core Core

FP64 INT INT [FP32 FP32 FP64 INT INT [FP32 FP32
Core Core

= FP64 INT INT |FP32 FP32 FP64 INT INT |FP32 FP32
ore

= FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32
ore

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

GPU Integration into the host system

- Typically based on a PCI Express bus

- Transfer speed (effectively, CPU-to-GPU):
16 GT/s per lane x 16 lanes

- Can be NVLink (~10x faster) for specialized motherboards

NVIDIA GPUs (8+ years)
—mmmm

GTX480 GK180 GM200 GP100 GV100

Compute 2.X 3.5 5.2 6.0 7.0
capability (CC)

FP32 Cores / SM

FP64 “Cores” / SM

Clock[MHZ]

Peak FP32 1.35 5.04 6.8 10.6 15.7
[TFLOPS]

Peak FP64 0.168 1.68 21 9.3 7.8

[TFLOPS]

Other players on the market

- AMD (former ATI)

- Much better performance
- Programmed using OpenCL (standard!)
- Poorer software drivers and infrastructure (so far)
- Alot less libraries and tools
- Much smaller community effort

- arm (formerly ARM ©)
- Low-power devices (mobile platforms mostly)
- Programmed using OpenCL
- Lower performance than ATI and Intel, by choice

- Intel
- To support own CPUs with integrated graphics
- Programmed using OpenCL

RADEON

GRAPHICS

AMDC

Intel

GRAPHICS

e
All GPUs ...

- Have a similar architecture
- Massively parallel
- Simple cores
- Complex memory system

- Are programmed in a similar way
- Fine-grain (SIMD/SIMT) parallelism

- Programming models ?
- OpenCL is the de-facto standard for GPU programming
- Lots of efforts for C++
- Many other libraries and models on top of CUDA / OpenCL

GPU Levels or Parallelism

- Data parallelism (fine-grain)
- Write 1 thread, instantiate a lot of them

- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
« Same instruction
- Different data elements
« HW automatically handles divergence

- Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading

- HW resource allocation & thread scheduling
« Excess of threads to hide latency
« Context switching is (basically) free

- Task parallelism is “emulated” (coarse-grain)

- Hardware mechanisms exist
- Specific programming constructs to execute multiple tasks.

- Heterogeneous computing
- CPU is always present ...

*http://lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

GPUs vs CPUs

e
Why so different?

- Different goals produce different designs!
- CPU must be good at everything
- GPUs focus on massive parallelism
- Less flexible, more specialized
- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic
- GPU: maximize throughput of all threads
- # threads in flight limited by resources => lots of resources (registers, etc.)

- multithreading can hide latency => no big caches
- share control logic across many threads

CPU vs. GPU

Excellent for irregular

Low latency, high
codes with

flexibility.

CPU

limited parallelism.

ALU
ALU

o

.

f—

c

(o)
-

<
o)
I

£ 520 o
U:nlue%%
pt.Nma
568 T
UlSpH
O O o
O £
£ X =
L

e
CPU vs GPU

CPU vs. GPU memory hierarchies

L;;altshe
25 GB/sec Memory
Core 1
L2 cache ﬁ DDR3 DRAM
(256 KB)
(Gigabytes)
L3 cache
(8 MB)
L1 cache
(32KB)
CoreN (PU:
Pl Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
GFX
texture
cache
(12KB)
Core1 ——— 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
=1 |(768KB)
texture
cache
(12KB) GPU:
CoreN
scratchpad Small caches, many threads, huge memory BW
L1 cache . . .
(64KB) Rely mainly on multi-threading
| CMU 15-418/618, Spring 2016

e
CPU vs. GPU: the movie

- The Mythbusters

- Jamie Hyneman & Adam Savage
- Discovery Channel

- Appearance at NVIDIA's NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWTzrl

'~
R

P S e
e —————

MYTHBUSTERS'

https://www.youtube.com/watch?v=-P28LKWTzrI

Scaling out: Multi-node systems => supercomputers

e
Putting it all together

- Multiple nodes
- Potentially grouped/clustered in islands

- Communication network
- Latency & throughput differences compared to intra-node

- Homogeneous vs. Heterogeneous

- Peak Performance: summing all up
- Energy consumption: summing it all up

-
Putting it all together: IBM’s BLUGENE/L

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board
(32 chips, 4x4x2)
16 Compute Cards

Compute Card

(2 chips, 2x1x1) '. 180/360 TF/s

16 TB DDR

295.7TF/s
256 GB DDR

1 90/180 GFs
sl 8 GB DDR
— 56M11.2 GF/s
2.8/5.6 GF/s 0.5 GB DDR

4 MB

Putting it all together: IBM’s BlueGene/Q

4. Node Card:
32 Compute Cards,
Optical Modules, Link Chips; 5D Torus

3. Compute card:
One chip module,
16 GB DDR3 Memory,

Heat Spreader for H,O Cooling

2. Single Chip Module

5b. IO drawer:
8 10 cards w/16 GB
8 PCle Gen2 x8 slots
SD I/O torus

5a. Midplane:
16 Node Cards

6. Rack: 2 Midplanes

7. System:
96 racks, 20PF/s

*Sustained single node perf: 10x P, 20x

* MF/Watt: (6x) P, (10x) L (~2GF/W, Green 500 criteria)

» Software and hardware support for programming models
for exploitation of node hardware concurrency

© 2011 IBM Corporation

-
Putting it all together: FUGAKU

& ¢ :
a1
1 .
B, !
i
o
L P
: |’ :
//

CPU MU BoB Shelf Rack System

Figure 4. System Configuration

-
Putting it all together: SUMMIT

Compute System

Summit Overview 10.2 PB Total Memory
256 compute racks
4,608 compute nodes
Compute Rack Mellanox EDR IB fabric
‘ OpenPOWER 18 Compute Servers 200 PFLOPS
Warm water (70°F direct-cooled ~13 MW
components) ,
Compute Node RDHX for air-cooled components
2 x POWER9
c 6 x NVIDIA GV100
omponents NVMe-compatible PCle 1600 GB SSD
IBM POWER9 TR :
+ 22 Cores et [
« 4 Threads/core I
« NVLink P
g 39.7 TB Memory/rack i
25 GB/s EDR IB- (2 ports) 55 KW max porv:erlrack G > Blle Systom
512 GB DRAM- (DDR4) 250 PB storage
96 GB HBM- (3D Stacked) 2.5 TB/s read, 2.5 TB/s write

Coherent Shared Memory

NVIDIA GV100
«7TF

+ 16 GB @ 0.9 TB/s
* NVLink

¥ OAK RIDGE | e

- Nadional Laboratory | FACILITY

Zoom-out: Parallel machine models

(Parallel) Systems Models

- Why do we need parallel system models?
- Provide an abstraction of the real machine
- Dictate the properties of “dedicated” programming models
- Enable the selection of an appropriate programming model

- Organization-based classification
- Shared Memory
- Distributed Memory
- Virtual shared Memory
- Hybrids

- Processing-based classification
- Single/Multi Instruction, Single/Multi Data (items)

Parallel Machine Models

- Shared Memory
- Multiple compute nodes
- One single shared address space
- Typical example: multi-cores

- Distributed Memory

- Multiple compute nodes
- Multiple, local (disjoint) address spaces

- Virtual shared memory: software/hardware layer “emulates” shared memory

- Typical example: clusters

- Hybrids
- Multiple compute nodes, typically heterogeneous
- Mixed address space(s), some shared, some global memory
- Typical example: supercomputers

%

STl

CPU

Shared memory

====EEE CPU

Netwods

Memocy

CcPU

--------- CPU CPU

Distributed memory

Netw odc

Ty
s

* 0

Interconnection Network

Parallel Machine Models

- Shared Memory

CPU

Shared memory

===~ |EEEU CPU

Netwods

Memocy

CPU

--------- CPU CPU

Distributed memory

Netw odc

4)
Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, ...
- J
- Distributed Memory
4)
Programming: message passing
Programming models: MPI, Big-data models, ... es” shared memory
- J
- Hybrids
f >
Programming: very diverse, depending on the l"y =
hardware configuration @
- J

Examples

- Multi-core CPUs ?
- Shared memory with respect to system memory
- Hybrid when taking caches into account

- Clusters ?
- Distributed memory
- Could be shared if middleware for virtual shared space is provided

- Supercomputers ?
- Usually hybrid
- GPUs ?
- Architectures with GPUs?

- Distributed for traditional, off-chip GPUs
- Shared for new APUs

Major issues

- Shared Memory model
- Scalability problems (interconnect)
- Programming challenge: RD/WR Conflicts
- Distributed Memory model
- Data distribution is mandatory
- Programming challenge: remote accesses, consistency
- Virtual Shared Memory model
- Significant virtualization overhead
- Easier programming
- Hybrid models

- Local/remote data more difficult to trace

PART 2: IN SUMMARY....

Parallelism in Computer Systems

- Multi-core and many-cores are the current building blocks of supercomputers

- Accelerators are here to stay
- ... and annoy us during programming ...

- Supercomputers are distributed combinations (see previous talks) of multi-
and many-cores

- Programming these systems is a mix of programming models
- For efficiency, we need to understand their archtiectures

