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PART 2: PARALLELISM & MACHINES
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First taxonomy: Michael Flynn (1966)
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Before 2005: technology push



Moore’ s Law

- Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of
semiconductor chips would double roughly every 18 months.
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Until early 2000s ...

More transistors = more performance

Intel CPU Trenr15

Thus, every 18 months, 100000 | oouces: Inte), Wikipedia, K- Ojukotn)
we had better and faster
Processors.
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Wait ... why do | care”

- More transistors = ... ?

= more functionality
- Think more functional units, more complex units, etc....

- Higher perf/clock (aka, higher ILP)= ... ?

= more operations per cycle
- Faster overall applications (when they have different operations...)

- Higher clock frequency = ...7

= more operations per time unit
- Faster instructions => faster overall application

- Higher power = ... ?
= global warming ...
- Ideally, we want power consumption to be low



-
Until early 2000s ...

Parallelism = interesting and “quirky”, but not main-stream
- Pro: Better performance than frequency scaling would provide.

- Con: Parallelizing code was not always worth the effort
- Do nothing: the performance will double ~ every 18 months



-
Around 2005: “hitting the walls”
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Single core performance scaling

- The rate of single core performance scaling has significantly
decreased (essentially, to 0)
- Frequency scaling limited by power
- ILP scaling tapped out
- Design complexity posing serious limitations

- No more free lunch for software developers!
- No more dramatic increase of software performance for free.



So what?
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( Single core process?l\

Traditionally ... single core CPUs

- More transistors = more functionality

Individual
- Improved technology = faster clocks = more speed Memory (cache)
- Every 18 months => better and faster processors. More individual

memory (cache)

K Bus interface j

Off-chip
components

~N

Not anymore!
We no longer gain performance by “growing” sequential
Processors ...

\_




New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip: multi-core (CPUs)
and many-core processors (GPUs).




The shift to multi-core
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Multi-core CPUs



Generic multi-core CPU

Hardware threads
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CPU levels of parallelism

- Instruction-level parallelism (e.g., superscalar processors) (fine)
- Multiple operations of different kinds per cycle
- Implemented/supported by the instruction scheduler
- typically in hardware
- SIMD parallelism = data parallelism (fine)
- Multiple operations *of the same kind* per cycle
- Run same instruction on vector data
- Sensitive to divergence
- Implemented by programmer OR compliler

- Multi-Core parallelism ~ task/data parallelism (coarse)

- 10s of powerful cores
- Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer



(1) ILP (Instruction level parallelism)

- Multiple instructions issued & executed in the same cycle

No parallelism | ILP support
- Instr. 1
ALU - Instr. 1+ Exec Exec
(Execute) 1 2
Sequential -

=T

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires



http://15418.courses.cs.cmu.edu/spring2016/lectures

No programmer’s intervention!

T )
Implementing ILP

- Super-scalar processors

- “dynamic scheduling”: instruction reordering and scheduling happens in hardware

- More complex hardware
* More area, more power ...

- Adopted in most high-end CPUs today

- VLIW processors

- "static scheduling”: instruction reordering and scheduling is done by the compiler

- Simpler hardware
» Less area, less power

- Adopted in most GPUs and embedded CPUs



(2) SIMD (single instruction, multiple data)

- Same instruction executed on multiple data items

Cl|:1.+1:| +=5 ALU1| |ALU2| |ALU3| [ALU4
ALU .
(Execute) - ALU5| [ALU6| |ALU7| |ALUS

“scalar”
(sequential) . “vector”

Cl['i_ +7:| +=5 (parallel)

==

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —



http://15418.courses.cs.cmu.edu/spring2016/lectures

Scalar vs SIMD operations

SIMD Mode Scalar Mode

Image: https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html



Requires programmer’s (or compiler’s)
intervention!

Implementing SIMD

- SIMD extensions: special registers and functional units

- Multiple generations of SIMD extensions
- SSE4.x = 128 bits

- AVX/AVX2 = 256 bits (most available CPUs, DAS-5 included)
- AVX-512 = 512 bits (Intel Xeon Phi, partial in most recent CPUs)

512 0
Rt 512 bits ~=-==============="=noon- >
-ommmeaee 256 bits =-------~ >

<-- 128 bits --»

ZMM31 YMM31




SIMD programmer intervention

- Auto-vectorization

- Typically enabled with “-O” compiler flags
- Compiler directives

- Specifically add directives in the code to foree persuade the compiler to vectorize code
- C or C++ intrinsics

- Wrappers around ASM instructions
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly instructions
- Can write assembly to target SIMD



Requires programmer’s (or compiler’s)

intervention and OS (operating system) support!

(3) Multi-core parallelism

- Two (or more cores) to execute different streams of instructions.

ALU ALU
(Execute) (Execute)

= || B

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —
httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires


http://15418.courses.cs.cmu.edu/spring2016/lectures

Multi-core programmer intervention

- Must define concurrent tasks to be executed in parallel
- Typically called (software) threads

- Threads are executed per core

- Under the OS scheduling
- Some control can be exercised with additional programmer intervention

Core 0
fori=1...n
do_something(i)
Core 1
fori=1...3"n fori=n+1 ... 2*n
do_something(i) do_something(i)
Core 2

fori=2*n+1 ... 3*n
do_something(i)



Computer architecture talk



e
CPU features for ILP

- Instruction pipelining
- Multiple instructions “in-flight”

- Superscalar execution
- Multiple execution units

- Out-of-order execution
- Any order that does not violate data dependencies

- Branch prediction
- Speculative execution



Superscalar, Out-of-order

- A superscalar processor can issue and execute multiple instructions in one
cycle.

- The instructions are retrieved from a sequential instruction stream and are usually
scheduled dynamically.

- An out-of-order processor can reorder the execution of operations in
hardware.

- Superscalar, out-of-order processors can take advantage of the instruction
level parallelism that most programs have.

- Most modern CPUs are superscalar and out-of-order.
- Intel: since Pentium (1993)
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Modern CPU Design
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Areal CPU ...
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Hardware multi-threading (or hyperthreading®)



"Are there hardware threads?!”

- Hardware (supported) multi-threading

- Core manages thread context
- Interleaved (temporal multi-threading) — employed in GPUs

- Simultaneous (co-located execution) — e.g., Intel Hyperthreading
Issue slots

I Thread 0
B Thread 1
[ Thread 2
] Thread 4

Time




e
Why bother?

- Interleave the processing of multiple instruction streams on the same core to
hide the latency of stalls

- Requires replication of hardware resources
- Each thread uses its own PC to execute the instruction stream
- Requires replication of register file

- Performance improvement: higher throughput



Advantage: increased throughput

Thread 1
. Elements0...7
Time

o o o o

1 Core (1 thread)
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Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements16...23 Elements 24... 31

OOo0oOoOoOooo oooooooo OoOooooooo oooooooo

© o

1 Core (4 hardware threads)

Runnable




Advantage: increased throughput

Thread 1 Thread 2 Thread 3 Thread 4
Time Elements0...7 Elements8...15 Elements 16... 23 Elements 24... 31

Oo0ooOoOOooo oooooooo oOoOoooooo oooooooo

© 4

1 Core (4 hardware threads)

Runnable

- e

Runnable
Done! b 4
Runnable




What about the memory?

.

L3 cache
(8 MB)

25 GB/sec

<)

- Three levels of cache: L1 (separate 1$ and D$, per-core), L2 (per-core), L3
(=LLC, shared)

Memory
DDR3 DRAM

(Gigabytes)




e
Putting it all together

- A modern CPU has a mix of all these features...

SIMD Exec 2 SIMD Exec 2 SIMD Exec 2 SIMD Exec 2

| . | | 110 .| 200

[ - - [ [ I
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache

% < On-chip
Interconnect

Memory
L3 Cache Controller

Memory Bus l
(to DRAM)



SIMD programming



Vectorization/SIMD options

- Auto-vectorization
- Both gcc and icc have support for it
- Successful for simple loops and data structures

- Compiler directives
- Both gcc and icc allow for specific pragma’s to enable vectorization
- Pragma’s are used to “force” the compiler to vectorize
/- C or C++: intrinsics )
- Declare vector variables
- Name instruction
- Work on variables, not registers

- Assembly Instructions
- Execute on vector registers




Using intrinsics

- https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions

- https://software.intel.com/sites/landingpaqge/IntrinsicsGuide/

- Requirements:
- Using aligned data structures (aligned to the size of the vector)



https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Examples of intrinsics

float data[l1l024];
// init: data[0] = 0.0, data[l] = 1.0, data[2] = 2.0, etc.
init (data) ;

// Set all elements in my vector to zero.

element 0 1 2 3
V21l 0.0 0.0 0.0 0.0

_ _ml28 myVector0 = mm setzero ps();

// Load the first 4 elements of the array into my vector.

~_ml28 myVectorl = mm load ps(data); element 0 1 2 3
\'zI-w 0.0 1.0 20 3.0

// Load the second 4 elements of the array into my vector.

128 Vector2 = load data+4) ;
_m myVector _mm_load ps(data+4) clement [OEEEEEE

\V'zI0:® 40 50 6.0 7.0




Examples of intrinsics

// Add vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector3

_mm_add ps (myVectorl, myVector2);

element 0 1 2

'zl 40 6.0 8.0 10.0

3

element 0 1 2 3
20 3.0

0.0 1.0

value

+

element 0 1 2 3

40 5.0 6.

value

// Multiply vectors 1 and 2; instruction performs 4 FLOP.

_ _ml28 myVector4

~mm mul ps(myVectorl, myVector2);

element 0

1

2

3

\c\':3 0.0 5.0 120 21.0

element 0 1 3

value } A1) 1.0 3.0

N
(=)

X

element 0

1

2

3

value b “X1) 5.0 6 7.0

I

// MM SHUFFLE (w,x,y,z) selects w&x from vecl and y&z from vec2.

__ml28 myVector5

_mm shuffle ps(myVectorl, myVector2,

_MM SHUFFLE(2, 3, 0, 1));

element 0 1 2 3

\'elI0Y 20 3.0 40 5.0

N
(=)

element 0 1

value p A1) 1.

0

2

3
3.0

S

element 0

value b “H)

1
5.

0

2
6

7.0

I




Steps for vectorization

- Identify (loop) to vectorize
- Unroll (by the intended SIMD width)
- Use the correct intrinsics to vectorize computation

- Move data from arrays to vectors



e
Vector add

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i1=0; i<size; i++) {
c[i] = a[i] + b[i];



-
Vector add with SSE: unroll loop

void vectorAdd(int size, float* a, float* b, float* c) {
for (int i=0; i<size; i += 4) {
c[i+0] = a[i+0] + b[i+O0];
c[i+l] = a[i+l] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];



Vector add with SSE: vectorize loop

void vectorAdd(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i += 4) {
~ ml28 vecA = mm load ps(a + i); // load 4 elts from a
~ ml28 vecB = mm load ps(b + i); // load 4 elts from b
~ ml28 vecC = mm add ps(vecA, vecB); // add four elts

~mm store ps(c + i, vecC); // store four elts



Many-core GPUs



Generic GPU
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... or, using our CPU “symbols”

- Instructions operate on 32 pieces of data at a
time (called “warps”).
- Warp = thread issuing 32-wide vector instructions
- Up to 48 warps are simultaneously interleaved

- Over 1500 elements can be processed
concurrently by a core

- Full board: 15 cores (SMs)!

NVIDIA GTX 480 core

L]
L]

L) D
LI

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

= SIMD function unit,

control shared across 16 units
(1 MUL-ADD per clock)

*Diagrams adapted from CMU’s course "Parallel Computer Architecture and Programming” —

httn:-//15418 courses c< cmtl edu/sorina?2016/lectuires


http://15418.courses.cs.cmu.edu/spring2016/lectures

Inside an NVIDIA GPU architecture

PCI Express 3.0 Host Interface

Memory Controller
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e
Inside an NVIDIA GPU architecture

GigaThread Engine

SM’s = streaming multiprocessors
GPC = graphics processing clusters

TPC = texture processing clusters
L2 cache

Memory controllers

NVLink




PolyMorph Engine 2.0
Vertex Fetch Tessellator | | Viewport Transform

| I Stream Output

Instruction Cache

u u u >
n e e m n e Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
S I a r a I u I rO C S S O r Dispatch Unit Dispatch Unit  Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit  Dispatch Unit  Dispatch Unit
£ RS 1z R 2 S S 2 I

Register File (65,536 x 32-bit)

4 4 4+ 3 3 3 4 I 4 3 3 I
Core Core Core Core [Core Core LD/ST SFU |Core Core Core Core

- Different types of cores

Core Core Core Core Core Core SFU Core [Core Core Core

® CU DA Cores (I NT/ F P32) Core Core Core Core Core Core SFU [Core (Core (Core Core
° LD / ST Core (Core (Core Core Core Core SFU [Core| (Core [Core Core

Core Core Core Core Core Core SFU Core Core Core Core
° Special fu nction units Core Core Core Core Core Core SFU |Core [Core Core [Core
Core Core Core Core Core Core SFU Core Core Core Core
n L]
o Reg ISter fl Ie Core Core Core Core Core Core SFU Core [Core Core Core
Core Core Core Core Core Core SFU Core [Core Core [Core
PY Wa rp SCh edl ller Core Core Core Core Core Core SFU [Core (Core Core Core
Core Core Core Core Core Core SFU [Core [Core Core Core
PY Data CaCh eS Core Core Core Core Core Core SFU Core Core Core Core
Core Core Core Core Core Core SFU |Core Core Core Core
n
- Instruction buffers/caches
Core | Core Core Core Core Core LD/ST SFU |[Core Core Core Core
: Texture Cach
ure Cacl |
- Texture units :

64 KB Shared Memory / L1 Cache

Uniform Cache

Maxwell




L1 Instruction Cache
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GPU Integration into the host system

- Typically based on a PCI Express bus

- Transfer speed (effectively, CPU-to-GPU):
16 GT/s per lane x 16 lanes

- Can be NVLink (~10x faster) for specialized motherboards




NVIDIA GPUs (8+ years)
—mmmm

GTX480 GK180 GM200 GP100 GV100

Compute 2.X 3.5 5.2 6.0 7.0
capability (CC)

FP32 Cores / SM

FP64 “Cores” / SM

Clock[MHZ]

Peak FP32 1.35 5.04 6.8 10.6 15.7
[TFLOPS]

Peak FP64 0.168 1.68 21 9.3 7.8

[TFLOPS]



Other players on the market

- AMD (former ATI)

- Much better performance
- Programmed using OpenCL (standard!)
- Poorer software drivers and infrastructure (so far)
- Alot less libraries and tools
- Much smaller community effort

- arm (formerly ARM © )
- Low-power devices (mobile platforms mostly)
- Programmed using OpenCL
- Lower performance than ATI and Intel, by choice

- Intel
- To support own CPUs with integrated graphics
- Programmed using OpenCL

RADEON

GRAPHICS

AMDC

Intel

GRAPHICS



e
All GPUs ...

- Have a similar architecture
- Massively parallel
- Simple cores
- Complex memory system

- Are programmed in a similar way
- Fine-grain (SIMD/SIMT) parallelism

- Programming models ?
- OpenCL is the de-facto standard for GPU programming
- Lots of efforts for C++
- Many other libraries and models on top of CUDA / OpenCL



GPU Levels or Parallelism

- Data parallelism (fine-grain)
- Write 1 thread, instantiate a lot of them

- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
« Same instruction
- Different data elements
« HW automatically handles divergence

- Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading

- HW resource allocation & thread scheduling
« Excess of threads to hide latency
« Context switching is (basically) free

- Task parallelism is “emulated” (coarse-grain)

- Hardware mechanisms exist
- Specific programming constructs to execute multiple tasks.

- Heterogeneous computing
- CPU is always present ...

*http://lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



GPUs vs CPUs



e
Why so different?

- Different goals produce different designs!
- CPU must be good at everything
- GPUs focus on massive parallelism
- Less flexible, more specialized
- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic
- GPU: maximize throughput of all threads
- # threads in flight limited by resources => lots of resources (registers, etc.)

- multithreading can hide latency => no big caches
- share control logic across many threads



CPU vs. GPU
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e
CPU vs GPU

CPU vs. GPU memory hierarchies

L;;altshe
25 GB/sec Memory
Core 1
L2 cache ﬁ DDR3 DRAM
(256 KB)
(Gigabytes)
L3 cache
(8 MB)
L1 cache
(32KB)
CoreN (PU:
Pl Big caches, few threads, modest memory BW
Rely mainly on caches and prefetching
GFX
texture
cache
(12KB)
Core1 ——— 177 GB/sec Memory
L1 cache DDR5 DRAM
(64 KB)
L2 cache (~1GB)
=1 |(768KB)
texture
cache
(12KB) GPU:
CoreN
scratchpad Small caches, many threads, huge memory BW
L1 cache . . .
(64KB) Rely mainly on multi-threading
| CMU 15-418/618, Spring 2016
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CPU vs. GPU: the movie

- The Mythbusters

- Jamie Hyneman & Adam Savage
- Discovery Channel

- Appearance at NVIDIA's NVISION 2008:
https://www.youtube.com/watch?v=-P28LKWTzrl
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https://www.youtube.com/watch?v=-P28LKWTzrI

Scaling out: Multi-node systems => supercomputers
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Putting it all together

- Multiple nodes
- Potentially grouped/clustered in islands

- Communication network
- Latency & throughput differences compared to intra-node

- Homogeneous vs. Heterogeneous

- Peak Performance: summing all up
- Energy consumption: summing it all up
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Putting it all together: IBM’s BLUGENE/L

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board
(32 chips, 4x4x2)
16 Compute Cards

Compute Card

(2 chips, 2x1x1) '. 180/360 TF/s

16 TB DDR

295.7TF/s
256 GB DDR

1 90/180 GFs
sl 8 GB DDR
— 56M11.2 GF/s
2.8/5.6 GF/s 0.5 GB DDR

4 MB



Putting it all together: IBM’s BlueGene/Q

4. Node Card:
32 Compute Cards,
Optical Modules, Link Chips; 5D Torus

3. Compute card:
One chip module,
16 GB DDR3 Memory,

Heat Spreader for H,O Cooling

2. Single Chip Module

5b. IO drawer:
8 10 cards w/16 GB
8 PCle Gen2 x8 slots
SD I/O torus

5a. Midplane:
16 Node Cards

6. Rack: 2 Midplanes

7. System:
96 racks, 20PF/s

*Sustained single node perf: 10x P, 20x

* MF/Watt: (6x) P, (10x) L (~2GF/W, Green 500 criteria)

» Software and hardware support for programming models
for exploitation of node hardware concurrency

© 2011 IBM Corporation
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Putting it all together: FUGAKU

& ¢ :
a1
1 .
B, !
i
o
L P
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//

CPU MU BoB Shelf Rack System

Figure 4. System Configuration
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Putting it all together: SUMMIT

Compute System

Summit Overview 10.2 PB Total Memory
256 compute racks
4,608 compute nodes
Compute Rack Mellanox EDR IB fabric
‘ OpenPOWER 18 Compute Servers 200 PFLOPS
Warm water (70°F direct-cooled ~13 MW
components) ,
Compute Node RDHX for air-cooled components
2 x POWER9
c 6 x NVIDIA GV100
omponents NVMe-compatible PCle 1600 GB SSD
IBM POWER9 TR :
+ 22 Cores et [
« 4 Threads/core I
« NVLink P
g 39.7 TB Memory/rack i
25 GB/s EDR IB- (2 ports) 55 KW max porv:erlrack G > Blle Systom
512 GB DRAM- (DDR4) 250 PB storage
96 GB HBM- (3D Stacked) 2.5 TB/s read, 2.5 TB/s write

Coherent Shared Memory

NVIDIA GV100
«7TF

+ 16 GB @ 0.9 TB/s
* NVLink

¥ OAK RIDGE | e

- Nadional Laboratory | FACILITY



Zoom-out: Parallel machine models



(Parallel) Systems Models

- Why do we need parallel system models?
- Provide an abstraction of the real machine
- Dictate the properties of “dedicated” programming models
- Enable the selection of an appropriate programming model

- Organization-based classification
- Shared Memory
- Distributed Memory
- Virtual shared Memory
- Hybrids

- Processing-based classification
- Single/Multi Instruction, Single/Multi Data (items)



Parallel Machine Models

- Shared Memory
- Multiple compute nodes
- One single shared address space
- Typical example: multi-cores

- Distributed Memory

- Multiple compute nodes
- Multiple, local (disjoint) address spaces

- Virtual shared memory: software/hardware layer “emulates” shared memory

- Typical example: clusters

- Hybrids
- Multiple compute nodes, typically heterogeneous
- Mixed address space(s), some shared, some global memory
- Typical example: supercomputers

%

STl

CPU

Shared memory

====EEE CPU

Netwods

Memocy

CcPU

--------- CPU CPU

Distributed memory

Netw odc

Ty
s

* 0

Interconnection Network




Parallel Machine Models

- Shared Memory

CPU

Shared memory

===~ |EEEU CPU

Netwods

Memocy

CPU

--------- CPU CPU

Distributed memory

Netw odc

4 )
Programming: multi-threading
Programming models: OpenMP, pthreads, TBB, ...
- J
- Distributed Memory
4 )
Programming: message passing
Programming models: MPI, Big-data models, ... es” shared memory
- J
- Hybrids
f >
Programming: very diverse, depending on the l"y =
hardware configuration @
- J




Examples

- Multi-core CPUs ?
- Shared memory with respect to system memory
- Hybrid when taking caches into account

- Clusters ?
- Distributed memory
- Could be shared if middleware for virtual shared space is provided

- Supercomputers ?
- Usually hybrid
- GPUs ?
- Architectures with GPUs?

- Distributed for traditional, off-chip GPUs
- Shared for new APUs



Major issues

- Shared Memory model
- Scalability problems (interconnect)
- Programming challenge: RD/WR Conflicts
- Distributed Memory model
- Data distribution is mandatory
- Programming challenge: remote accesses, consistency
- Virtual Shared Memory model
- Significant virtualization overhead
- Easier programming
- Hybrid models

- Local/remote data more difficult to trace



PART 2: IN SUMMARY....




Parallelism in Computer Systems

- Multi-core and many-cores are the current building blocks of supercomputers

- Accelerators are here to stay
- ... and annoy us during programming ...

- Supercomputers are distributed combinations (see previous talks) of multi-
and many-cores

- Programming these systems is a mix of programming models
- For efficiency, we need to understand their archtiectures



