Reproducibility of Linear Algebra Operations

Roman lakymchuk ${ }^{1}$

joint work with
Sylvain Collange, David Defour, Erwin Laure, Enrique S. Quitana Ortí and Stef Graillat

${ }^{1}$ KTH Royal Institute of Technology, CSC, CST/PDC riakymch@kth.se

MS237: Algorithmic Revolution in Post Moore's Era:
Auto-Tuning and Accuracy Assurance SIAM CSE17, Feb 27th - Mar 3rd, 2017, Atlanta, GA, USA

Linear Algebra Libraries

LAPACK

Basic Linear Algebra Subprograms (BLAS)
Refer. BLAS MKL, cuBLAS OpenBLAS
\Downarrow

$$
\begin{array}{llll}
\text { BLAS-1 [1979]: } & y:=y+\alpha x & \alpha \in \mathbb{R} ; x, y \in \mathbb{R}^{n} & 2 / 3 \\
& \alpha:=\alpha+x^{T} y & & \\
\text { BLAS-2 [1988]: } & A:=A+x y^{T} & A \in \mathbb{R}^{n \times n} ; x, y \in \mathbb{R}^{n} & 2 \\
& y:=A^{-1} x & & \\
\text { BLAS-3 [1990]: } & C:=C+A B & A, B, C \in \mathbb{R}^{n \times n} & n / 2 \\
& C:=A^{-1} B & &
\end{array}
$$

Goals

- To ensure BLAS kernels yield precise and numerical reproducible results with comparable performance on a wide range of architectures

ExBLAS - Exact BLAS

- ExBLAS-1: ExSUM, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
- Use the ExBLAS kernels to construct exact higher-level operations such as matrix factorization

Outline

(9) Computer Arithmetic
(2) Exact Multi-Level Parallel Reduction
(3) ExBLAS and Reproducible LU

4 Performance Results
(5) Conclusions and Future Work

Outline

(9) Computer Arithmetic

(2) Exact Multi-Level Parallel Reduction

(3) ExBLAS and Reproducible LU

4 Performance Results
(5) Conclusions and Future Work

Computer Arithmetic

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations $(+, \times)$ are commutative but non-associative
$(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right) \quad$ in double precision

Computer Arithmetic

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations $(+, \times)$ are commutative but non-associative

$$
2^{-53} \neq 0 \quad \text { in double precision }
$$

Computer Arithmetic

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations $(+, \times)$ are commutative but non-associative
$(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right) \quad$ in double precision
- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result
- Reproducibility - ability to obtain bit-wise identical results from run-to-run on the same input data on the same or different architectures

Sources of Non-Reproducibility

- Changing Data Layouts:
- Data partitioning
- Data alignment
- Changing Hardware Resources
- Number of threads
- Fused Multiply-Add support
- Intermediate precision (64 bits, 80 bits, 128 bits, etc)
- Data path (SSE, AVX, GPU warp, etc)
- Number of processors
- Network topology

Outline

(1) Computer Arithmetic

(2) Exact Multi-Level Parallel Reduction
(3) ExBLAS and Reproducible LU

4 Performance Results
(5) Conclusions and Future Work

Exact Multi-Level Parallel Reduction

Background

- Fixed FP expansions (FPE) with Error-Free Transformations
\rightarrow Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 FPE of size 2 (Dekker and Knuth)
Function $[r, s]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& \text { 1: } r \leftarrow a+b \\
& \text { 2: } z \leftarrow r-a \\
& \text { 3: } s \leftarrow(a-(r-z))+(b-z)
\end{aligned}
$$

Exact Multi-Level Parallel Reduction

Background

- Fixed FP expansions (FPE) with Error-Free Transformations
\rightarrow Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 FPE of size 2 (Dekker and Knuth)
Function $[r, s]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& \text { 1: } r \leftarrow a+b \\
& \text { 2: } z \leftarrow r-a \\
& \text { 3: } s \leftarrow(a-(r-z))+(b-z)
\end{aligned}
$$

- "Infinite" precision: reproducible independently from the inputs
\rightarrow Example: Kulisch accumulator (considered inefficient)

Exact Multi-Level Parallel Reduction

- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
\rightarrow bit-wise reproducibility

Level 1: Filtering

Level 2 and 3: Scalar Superaccumulator

Level 4 and 5: Reduction and Rounding

Outline

(1) Computer Arithmetic
(2) Exact Multi-Level Parallel Reduction
(3) ExBLAS and Reproducible LU
(4) Performance Results
(5) Conclusions and Future Work

ExBLAS Highlights

ExBLAS Status

- ExBLAS-1: ExSUM ${ }^{a}$, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
${ }^{\text {a }}$ Routines in blue are already in ExBLAS

ExSCAL

- $x:=\alpha * x \rightarrow$ correctly rounded and reproducible

ExBLAS Highlights

ExBLAS Status

- ExBLAS-1: ExSUM ${ }^{a}$, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
${ }^{\text {a }}$ Routines in blue are already in ExBLAS

ExSCAL

- $x:=\alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x:=1 / \alpha * x \rightarrow$ not correctly rounded

ExBLAS Highlights

ExBLAS Status

- ExBLAS-1: ExSUM ${ }^{\text {a }}$, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
${ }^{\text {a }}$ Routines in blue are already in ExBLAS

ExSCAL

- $x:=\alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x:=1 / \alpha * x \rightarrow$ not correctly rounded
- ExInvSCAL: $x:=x / \alpha \rightarrow$ correctly rounded and reproducible

ExGER

- General case: $A:=\alpha * x * y^{T}+A$

ExBLAS Highlights

ExBLAS Status

- ExBLAS-1: ExSUM ${ }^{\text {a }}$, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
${ }^{\text {a }}$ Routines in blue are already in ExBLAS

ExSCAL

- $x:=\alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x:=1 / \alpha * x \rightarrow$ not correctly rounded
- ExInvSCAL: $x:=x / \alpha \rightarrow$ correctly rounded and reproducible

ExGER

- General case: $A:=\alpha * x * y^{T}+A$
- Within LU: $A:=x * y^{T}+A$. Using FMA \rightarrow correctly rounded and reproducible

Matrix-Vector Product

DGEMV: $y:=\alpha A x+\beta y$

Triangular Solver

```
    1: for i= 0 : blsz : n do
2: for k=i:i+blsz do
3:
4:
5:
6:
7:
8:
9:
10:
11: end for
12: for k=i+blsz:n do
13: for j=i:i+blsz do
14: }\quad[r,e]\leftarrowTwoProd (l lkj, -x )
15: ExpansionAccumulate(r)
16: ExpansionAccumulate(e)
17: end for
18: end for
19: end for
```


Partitioning of a lower triangular matrix L

LU Factorization

$$
A x=b \Rightarrow A=L U
$$

LU Factorization

$$
A=L U
$$

LU Factorization

$$
A=L U
$$

An unblocked LU Factorization

LU Factorization

$$
\left.\begin{array}{ll}
\left(\frac{a_{01}}{\alpha_{11}}\right. \\
a_{21}
\end{array}\right):=P\left(p_{0}\right)\left(\frac{a_{01}}{\alpha_{11}}\right)\left(\begin{array}{ll}
a_{21}
\end{array}\right)=\begin{array}{ll}
\text { (swap) } \\
a_{01}:=L_{00}^{-1} a_{01} & \text { (dot) } \\
\alpha_{11}:=\alpha_{11}-a_{10}^{T} a_{01} & \text { (gemv) } \\
a_{21}:=a_{21}-A_{20} a_{01} & \text { (max) } \\
\pi_{1}:=\text { PivIndex }\left(\frac{\alpha_{11}}{a_{21}}\right) & \\
\left(\frac{\alpha_{11}}{a_{21}}\right):=P\left(\pi_{1}\right)\left(\frac{\alpha_{11}}{a_{21}}\right) & \text { (swap) } \\
a_{21}:=a_{21} / \alpha_{11} & \text { (scal) }
\end{array}
$$

3×3 partitioning of A

Outline

(1) Computer Arithmetic
(2) Exact Multi-Level Parallel Reduction
(3) ExBLAS and Reproducible LU

4 Performance Results
(5) Conclusions and Future Work

Parallel Reduction

Performance Scaling on Intel Xeon Phi

Parallel Reduction

Data-Dependent Performance on NVIDIA Tesla K20c

$$
n=67 e 06
$$

Dynamic range

Dot Product

Performance Scaling on NVIDIA Tesla K20c

DDOT: $\alpha:=x^{T} y=\sum_{i}^{N} x_{i} y_{i}$
Parallel DDOT
Superacc
FPE3 + Superacc
FPE4 + Superacc
FPE8 + Superacc
FPE8EE + Superacc

Matrix-Vector Product

Performance Scaling on NVIDIA Tesla K80

$$
\text { GEMV: } y:=\alpha A x+\beta y
$$

- Blocked ExGEMV
- Based on ExDOT

Matrix-Vector Product

Accuracy

$$
\text { GEMV: } y:=A x
$$

Triangular Solver

Performance Scaling on NVIDIA Tesla K420

DTRSV: $A x=b$

- Blocked ExTRSV
- Internal ExGEMV
- Based on ExDOT

Triangular Solver

Accuracy

TRSV: $A x=b$

1: $x_{1} \leftarrow f l\left(b_{1} / l_{11}\right)$
2: for $i=2 \rightarrow n$ do
3: $\quad s \leftarrow b_{i}$
4: \quad for $j=1 \rightarrow i-1$ do
5: $\quad s \leftarrow s-l_{i j} x_{j}$
6: end for
7: $\quad x_{i} \leftarrow f l\left(R N D N(s) / l_{i i}\right)$
8: end for
$\operatorname{cond}(A, x)=\frac{\left\|\mid A^{-1}\right\| A\|x\|_{\infty}}{\|x\|_{\infty}}$

LU Factorization

Performance Scaling on NVIDIA Tesla K420

$$
A=L U
$$

LU Factorization

Accuracy

$$
A=L U
$$

- Slightly better accuracy than DLU
- But, always reproducible

Condition number

Outline

(1) Computer Arithmetic
(2) Exact Multi-Level Parallel Reduction
(3) ExBLAS and Reproducible LU
(4) Performance Results
(5) Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
- Data permutation, data assignment
- Warps/threads scheduling
- Partitioning/blocking
- Reduction trees

Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
- Data permutation, data assignment
- Warps/threads scheduling
- Partitioning/blocking
- Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations

Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
- Data permutation, data assignment
- Warps/threads scheduling
- Partitioning/blocking
- Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- Reproducible underlying kernels \rightarrow reproducible LU

Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
- Data permutation, data assignment
- Warps/threads scheduling
- Partitioning/blocking
- Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- Reproducible underlying kernels \rightarrow reproducible LU

Future directions

- Lightweight approach for compute-intensive operations
- Performance portability
- Applicability in real-world codes

Thank you for your attention!

https://exblas.lip6.fr

ExBLAS

- ExBLAS-1: ExSUM ${ }^{a}$, ExSCAL, ExDOT, ExAXPY, ...
- ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
${ }^{\text {a R Routines in }}$ blue are already in ExBLAS

Higher Level Operations

- Unblocked LU factorization variants, including GER+SCAL
- Towards blocked LU factorization

Parallel Summation with MPI

Performance Scaling on Mesu cluster; $n=16 e 06$

Efforts on Reproducibility

Standardalization

- IEEE 754-2018: TwoSum and TwoProd
- Jim Demmel et. al.: "A Proposal for a Next-Generation BLAS"

Journals

- TOMS: Replicated Computational Results

Conferences, Workshops, and Minisymposiums

- ARITH 2016-17: Arithmetic challenges in HPC and exascale computing (accuracy, reproducibility, ...)
- SC 2015-16: Workshop on Numerical Reproducibility at Exascale
- IPDPS 2017 and Euro-par 2014-16: Workshop on Reproducibility in Parallel Computing
- SIAM PP 2016: Numerical Reproducibility for High-Performance Computing
- SIAM CSE 2017: Algorithmic evolution in Post Moore's Era: Auto-Tuning and Accuracy Assurance

