Reproducibility of Linear Algebra Operations

Roman lakymchuk¹

joint work with

Sylvain Collange, David Defour, Erwin Laure, Enrique S. Quitana Ortí and Stef Graillat

¹KTH Royal Institute of Technology, CSC, CST/PDC

riakymch@kth.se

MS237: Algorithmic Revolution in Post Moore's Era: Auto-Tuning and Accuracy Assurance SIAM CSE17, Feb 27th - Mar 3rd, 2017, Atlanta, GA, USA

Linear Algebra Libraries

$$\begin{array}{lll} \text{BLAS-1 [1979]:} & y := y + \alpha x & \alpha \in \mathbb{R}; x, y \in \mathbb{R}^n & 2/3 \\ & \alpha := \alpha + x^T y & & \\ \text{BLAS-2 [1988]:} & A := A + xy^T & A \in \mathbb{R}^{n \times n}; x, y \in \mathbb{R}^n & 2 \\ & y := A^{-1} x & & \\ \text{BLAS-3 [1990]:} & C := C + AB & A, B, C \in \mathbb{R}^{n \times n} & n/2 \\ & C := A^{-1}B & & \end{array}$$

Goals

• To ensure BLAS kernels yield precise and numerical reproducible results with comparable performance on a wide range of architectures

ExBLAS – Exact BLAS

• **ExBLAS-1**: EXSUM, EXSCAL, EXDOT, EXAXPY, ...

• ExBLAS-2: EXGER, EXGEMV, EXTRSV, EXSYR, ...

• **Ex**BLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

 Use the ExBLAS kernels to construct exact higher-level operations such as matrix factorization

Outline

- 2 Exact Multi-Level Parallel Reduction
- 3 ExBLAS and Reproducible LU
 - 4 Performance Results
- 5 Conclusions and Future Work

Outline

Computer Arithmetic

- 2 Exact Multi-Level Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1) + 2^{-53} \neq -1 + (1+2^{-53})$ in double precision

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $2^{-53} \neq 0$ in double precision

Problems

- Floating-point arithmetic suffers from rounding errors
- Floating-point operations (+,×) are commutative but non-associative

 $(-1+1)+2^{-53}\neq -1+(1+2^{-53}) \quad \text{in double precision}$

- Consequence: results of floating-point computations depend on the order of computation
- Results computed by performance-optimized parallel floating-point libraries may be often inconsistent: each run returns a different result
- **Reproducibility** ability to obtain bit-wise identical results from run-to-run on the same input data on the same or different architectures

Sources of Non-Reproducibility

• Changing Data Layouts:

- Data partitioning
- Data alignment

Changing Hardware Resources

- Number of threads
- Fused Multiply-Add support
- Intermediate precision (64 bits, 80 bits, 128 bits, etc)
- Data path (SSE, AVX, GPU warp, etc)
- Number of processors
- Network topology

- 2 Exact Multi-Level Parallel Reduction
 - 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Exact Multi-Level Parallel Reduction

Background

- Fixed FP expansions (FPE) with Error-Free Transformations
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 FPE of size 2 (Dekker and Knuth)

```
Function[r, s] = TwoSum(a, b)
```

1:
$$r \leftarrow a + b$$

2: $z \leftarrow r - a$

3:
$$s \leftarrow (a - (r - z)) + (b - z)$$

Exact Multi-Level Parallel Reduction

Background

- Fixed FP expansions (FPE) with Error-Free Transformations
- $\rightarrow\,$ Example: double-double or quad-double (Briggs, Bailey, Hida, Li) (work well on a set of relatively close numbers)

Algorithm 1 FPE of size 2 (Dekker and Knuth)

```
Function[r, s] = TwoSum(a, b)
```

1:
$$r \leftarrow a + b$$

2:
$$z \leftarrow r - a$$

3:
$$s \leftarrow (a - (r - z)) + (b - z)$$

• "Infinite" precision: reproducible independently from the inputs

Example: Kulisch accumulator (considered inefficient)

Exact Multi-Level Parallel Reduction

- Parallel algorithm with 5-levels
- Suitable for today's parallel architectures
- Based on FPE with EFT and Kulisch accumulator
- Guarantees "inf" precision
- \rightarrow bit-wise reproducibility

Level 1: Filtering

Level 2 and 3: Scalar Superaccumulator

Level 4 and 5: Reduction and Rounding

Outline

Computer Arithmetic

- 2 Exact Multi-Level Parallel Reduction
- 3 ExBLAS and Reproducible LU
 - 4 Performance Result
 - 5 Conclusions and Future Work

ExBLAS Status

- ExBLAS-1: ExSUM^a, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: Exger, Exgemv, Extrsv, Exsyr, ...
- ExBLAS-3: EXGEMM, EXTRSM, EXSYR2K, ...

^aRoutines in blue are already in ExBLAS

ExSCAL

• $x := \alpha * x \rightarrow$ correctly rounded and reproducible

ExBLAS Status

- ExBLAS-1: ExSUM^a, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: Exger, Exgemv, Extrsv, Exsyr, ...
- ExBLAS-3: Exgemm, Extrsm, Exsyr2k, ...

^aRoutines in blue are already in ExBLAS

ExSCAL

- $x := \alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x := 1/\alpha * x \rightarrow \text{not}$ correctly rounded

ExBLAS Status

- ExBLAS-1: ExSUM^a, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: Exger, Exgemv, Extrsv, Exsyr, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

^aRoutines in blue are already in ExBLAS

ExSCAL

- $x := \alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x := 1/\alpha * x \rightarrow \text{not}$ correctly rounded
- ExInvSCAL: $x := x/\alpha \rightarrow$ correctly rounded and reproducible

ExGER

• General case: $A := \alpha * x * y^T + A$

ExBLAS Status

- ExBLAS-1: ExSUM^a, ExSCAL, ExDOT, EXAXPY, ...
- ExBLAS-2: Exger, Exgemv, Extrsv, Exsyr, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

^aRoutines in blue are already in ExBLAS

ExSCAL

- $x := \alpha * x \rightarrow$ correctly rounded and reproducible
- Within LU: $x := 1/\alpha * x \rightarrow \text{not}$ correctly rounded
- ExInvSCAL: $x := x/\alpha \rightarrow$ correctly rounded and reproducible

ExGER

- General case: $A := \alpha * x * y^T + A$
- Within LU: A := x * y^T + A. Using FMA → correctly rounded and reproducible

Triangular Solver

1:	for $i = 0: blsz: n$ do
2:	for $k = i: i + blsz$ do
3:	for $j=1:k-1$ do
4:	$[r, e] \leftarrow TwoProd(l_{kj}, -x_j)$
5:	ExpansionAccumulate(r)
6:	ExpansionAccumulate(e)
7:	end for
8:	$ExpansionAccumulate(b_k)$
9:	$\widehat{s} \leftarrow RNDN(acc(k))$
10:	$x_k \leftarrow \widehat{s}/l_{kk}$
11:	end for
12:	for $k = i + blsz : n$ do
13:	for $j = i : i + blsz$ do
14:	$[r, e] \leftarrow TwoProd(l_{kj}, -x_j)$
15:	ExpansionAccumulate(r)
16:	ExpansionAccumulate(e)
17:	end for
18:	end for
19:	end for

Partitioning of a lower triangular matrix *L*

$$A = LU$$

Roman lakymchuk (KTH)

$$A = LU$$

LU Factorization				
$\left(\begin{array}{c} \underline{a_{01}}\\ \hline \underline{\alpha_{11}}\\ \hline \underline{a_{21}} \end{array}\right) := P(p_0) \left(\begin{array}{c} \underline{a_{01}}\\ \hline \underline{\alpha_{11}}\\ \hline \underline{a_{21}} \end{array}\right)$	(\mathbf{swap})			
$a_{01} := L_{00}^{-1} a_{01}$	(\mathbf{trsv})			
$\alpha_{11} := \alpha_{11} - a_{10}^T a_{01}$	(\mathbf{dot})			
$a_{21} := a_{21} - A_{20}a_{01}$	(\mathbf{gemv})			
$\pi_1 := PivIndex\left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{max})			
$\left(\frac{\alpha_{11}}{a_{21}}\right) := P(\pi_1) \left(\frac{\alpha_{11}}{a_{21}}\right)$	(\mathbf{swap})			
$a_{21} := a_{21} / \alpha_{11}$	(scal)			

	i	1	p
i	A_{00}	a_{01}	A_{02}
1	a_{10}^{T}	α_{11}	a_{12}^T
p	A_{20}	a_{21}	A_{22}

 3×3 partitioning of A

Outline

Computer Arithmetic

- 2 Exact Multi-Level Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 P
 - Performance Results
 - Conclusions and Future Work

Parallel Reduction

Performance Scaling on Intel Xeon Phi

Parallel Reduction

Data-Dependent Performance on NVIDIA Tesla K20c

n = 67e06

Roman lakymchuk (KTH)

Dot Product

Performance Scaling on NVIDIA Tesla K20c

Time [secs]

Matrix-Vector Product

Performance Scaling on NVIDIA Tesla K80

GEMV:
$$y := \alpha A x + \beta y$$

Matrix-Vector Product

Accuracy

- Preserve every bit of information
- Correctly-rounded

•
$$\operatorname{cond}(A, x) = \frac{\||A| \cdot |x|\|}{\|A \cdot x\|}$$

Triangular Solver

Performance Scaling on NVIDIA Tesla K420

Triangular Solver

Accuracy

Performance Scaling on NVIDIA Tesla K420

Accuracy

 Slightly better accuracy than DLU

reproducible

Outline

Computer Arithmetic

- 2 Exact Multi-Level Parallel Reduction
- 3 ExBLAS and Reproducible LU
- 4 Performance Results
- 5 Conclusions and Future Work

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Warps/threads scheduling
 - Partitioning/blocking
 - Reduction trees

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Warps/threads scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Warps/threads scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- Reproducible underlying kernels \rightarrow reproducible LU

Conclusions

- Compute the results with no errors due to rounding
- Provide bit-wise reproducible results independently from
 - Data permutation, data assignment
 - Warps/threads scheduling
 - Partitioning/blocking
 - Reduction trees
- Deliver comparable performance to the classic implementations of the memory-bound operations
- $\bullet~$ Reproducible underlying kernels \rightarrow reproducible LU

Future directions

- Lightweight approach for compute-intensive operations
- Performance portability
- Applicability in real-world codes

Thank you for your attention!

ExBLAS

- ExBLAS-1: EXSUM^a, EXSCAL, EXDOT, EXAXPY, ...
- ExBLAS-2: ExGER, EXGEMV, EXTRSV, EXSYR, ...
- ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...

^aRoutines in blue are already in ExBLAS

Higher Level Operations

- Unblocked LU factorization variants, including GER+SCAL
- Towards blocked LU factorization

Parallel Summation with MPI

Performance Scaling on Mesu cluster; n = 16e06

Efforts on Reproducibility

Standardalization

- IEEE 754-2018: TwoSum and TwoProd
- Jim Demmel et. al.: "A Proposal for a Next-Generation BLAS"

Journals

TOMS: Replicated Computational Results

Conferences, Workshops, and Minisymposiums

- ARITH 2016-17: Arithmetic challenges in HPC and exascale computing (accuracy, reproducibility, ...)
- SC 2015-16: Workshop on Numerical Reproducibility at Exascale
- IPDPS 2017 and Euro-par 2014-16: Workshop on Reproducibility in Parallel Computing
- SIAM PP 2016: Numerical Reproducibility for High-Performance Computing
- SIAM CSE 2017: Algorithmic evolution in Post Moore's Era: Auto-Tuning and Accuracy Assurance

Reproducibility of LA ops

