
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2011/07-1

22/July/2011

Modeling Performance through Memory-Stalls

R. Iakymchuk and P. Bientinesi

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through

grant GSC 111 is gratefully acknowledged.

©R. Iakymchuk and P. Bientinesi 2011. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

Modeling Performance through Memory-Stalls

Roman Iakymchuk
AICES, RWTH Aachen

Schinkelstr. 2
52062 Aachen, Germany

iakymchuk@aices.rwth-aachen.de

Paolo Bientinesi
AICES, RWTH Aachen

Schinkelstr. 2
52062 Aachen, Germany

pauldj@aices.rwth-aachen.de

ABSTRACT
We aim at modeling the performance of linear algebra al-
gorithms without executing either the algorithms or any
parts of them. The performance of an algorithm can be
expressed in terms of the time spent on CPU execution
and memory-stalls. The main concern of this paper is to
build analytical models to accurately predict memory-stalls.
The scenario in which data resides in the L2 cache is con-
sidered; with this assumption, only L1 cache misses oc-
cur. We construct an analytical formula for modeling the
L1 cache misses of fundamental linear algebra operations
such as those included in the Basic Linear Algebra Subpro-
grams (BLAS) library. The number of cache misses occur-
ring in higher-level algorithms—like a matrix factorization—
is then predicted by combining the models for the appropri-
ate BLAS subroutines. As case studies, we consider the LU
factorization and GER—a BLAS operation and a building
block for the LU factorization. We validate the models on
both Intel and AMD processors, attaining remarkably accu-
rate performance predictions.

Keywords
Performance prediction, Performance model, Cache misses,
Memory-stalls.

1. INTRODUCTION
Predicting the performance of an algorithm is a problem

that, although widely investigated, is still far from solved.
Cuenca et al. [8] developed an analytical model to represent
the execution time of self-optimizing individual routines as
a function of problem size, system and algorithmic param-
eters. In another work by Cuenca et al. [9], the study was
extended to the development of automatically tuned linear
algebra libraries. The execution time of the higher-level rou-
tines is modeled by using information generated from the
lower-level routines. Phansalkar et al. [14] proposed two
simple techniques to predict performance and cache miss-
rates based on the similarity of applications.

In contrast to the aforementioned works, our objective is
to predict performance without executing neither the tar-
get algorithm nor parts of it. We first focus on basic linear
algebra operations like the ones included in the BLAS li-
brary [11]. For these, we develop analytical models that
predict the amount of computation and data movement to
be performed. The performance of higher-level algorithms,
like those included in the LAPACK library [3], is then built
by composing the models for the BLAS subroutines used

within the algorithm.
In general, the performance of an algorithm is defined

as the ratio between the number of floating point opera-
tions (#FLOPS) performed by the algorithm and the Exe-
cution time:

Performance =
#FLOPS

Execution time
. (1)

For direct algorithms, #FLOPS can be calculated a priori;
the prediction of performance therefore reduces to the pre-
diction of the Execution time. In contrast to a model based
on timing samples, we aim at obtaining Execution time by
virtue of analytical formulas. This is of particular rele-
vance in combination with techniques of automatic algo-
rithm generation and tuning [4], in which dozens of algo-
rithmic variants—written in terms of BLAS routines—have
often to be evaluated. Once the models for BLAS are estab-
lished, the prediction reduces to assembling and evaluating
simple arithmetic formulas. In this paper we demonstrate
the process by means of the LU factorization.

Our strategy consists of exploiting detailed information
about the algorithm, the CPU, and the memory hierarchy.
Since memory-stalls idle the CPU and add a significant over-
head to the computational time, we model Execution time
not only by means of the CPU execution time, but also
through the time in which the CPU is idle due to memory-
stalls. This last factor plays an especially important role
in operations—like those included in the Levels 1 and 2
of BLAS, and the unblocked algorithms in the LAPACK
library—that are memory-bound. Conversely, Level 3 BLAS
operations are compute bound; for those, the execution time
can be predicted rather accurately by a mere count of the
floating point operations to be performed. For this reason,
here we focus on the more challenging goal of predicting
performance for memory-bound operations.

We restrict this study to a scenario where data resides in
L2 cache, so only L1 data cache misses (L1 misses) occur.
In our experiments, we use an unblocked variant of an LU
factorization [5] that is built on top of the BLAS routines
GER and SCAL [11]. SCAL only operates on one vector and
its impact on the total number of floating point operations
is negligible. Consequently, we model the cache misses for
the unblocked LU factorization by modeling the misses for
GER, for which we provide an analytic formula.

We validate our approach on two architectures with dif-
ferent processor types and memory systems. By working on
two different architectures, we show that the basic formula
needs to be tailored according to a number of parameters.
Nevertheless, the advantage of the formula is that it can be

used for other algorithms with the same structure.
The paper is organized as follows. Section 2 reviews the

main aspects of memory hierarchies. Section 3 describes the
high-level performance model, while Section 4 introduces an-
alytical models for L1 cache misses. We evaluate the models
in Section 5, and discuss future work and conclusions in Sec-
tions 6 and 7, respectively.

2. MEMORY HIERARCHY
In a typical memory hierarchy, the storage devices get

larger, slower and cheaper as we move from higher to lower
levels. The highest level consists of several very fast CPU
registers that can be accessed in one clock cycle. Next levels
down are two or three small to moderate-size cache memo-
ries (cache levels or caches) that the CPU can access in few
(between 3 and 20) clock cycles. The caches are followed by
a large main memory that can be accessed in several dozens
or few hundreds clock cycles [6].

The storage at each memory level k is partitioned into
contiguous chunks called blocks (blocks in caches - - cache
lines). Copying data between memory levels is performed
by blocks, e.g. between L2 and L1 caches by cache lines
of 8 words. In order to know whether a piece of data is
in cache and, if so, in which cache line, the hardware im-
plements a mapping between the memory locations and the
locations in the cache. The most widely used mapping is a
set associative [6].

To proceed with the computation, a program needs to
bring blocks of data from memory to registers. Before get-
ting a block of data d from level k+1, the program first looks
for d at level k. If d is cached at level k, then a cache hit
occurs. The time needed to access the level k is called cache
hit time, it includes the time needed to determine whether
the access is a hit or not. On the other hand, if d is not
found at level k, then a cache miss occurs. The time needed
to serve the cache miss is called cache miss time, which is
the time to fetch the block of data from level k+1 to level k
and the delivery time of this block to the processor. Due to
the smaller and the faster upper levels, the hit time is much
smaller than the miss time [6, 13].

Our main focus is on modeling L1 misses for problems that
reside in the L2 cache. Determining the number of L1 misses
is a complex task that depends on the data access pattern of
an algorithm as well as the associativity of the L1 cache and
the processor type. For instance, a 2-way associative cache
has more cache misses than 8-way associative cache [13].

One of the important features supported by processors is
hardware prefetching. In general, prefetching means bring-
ing data or instructions from the memory into the cache be-
fore they are needed. Usually hardware prefetching is very
efficient, but in case of mis-prediction of data (when redun-
dant data are prefetched) it pollutes the cache and causes
unexpected cache misses [7]. The data access pattern of an
algorithm is also crucial. The development of algorithms is
mainly based on taking advantage of cached data. To ex-
ploit the temporal (data in cache) and spatial (data in cache
line) localities, algorithms are adapted to the organization
of the cache and the processor type. Thus, the organization
of the cache, the processor type and the data access pat-
tern of an algorithm are tightly coupled and altogether they
dictate the behavior of L1 misses.

3. THE MODEL

A simple formula for modeling Execution Time combines
the number of clock cycles required by the algorithm and
the duration of one clock cycle [13]:

Execution time = CPU clock cycles× time(clock cycle). (2)

CPU clock cycles can be divided into the cycles that the
CPU spends executing the algorithm and those caused by
waiting for the memory system. Hence,

Execution Time = [CPU execution clock cycles

+ Memory-stall clock cycles] (3)

× time(clock cycle).

The memory-stalls, caused by both cache and TLB misses,
are divided into read-stalls and write-stalls. The write-stalls
may occur without influencing the execution time, since data
can be copied in the background. For this reason, in the fol-
lowing we only consider read-stalls. Modeling read-stalls can
be a quite complex task that requires a deep understanding
of the memory system behavior.

In order to obtain a more detailed model, the quantities
CPU execution clock cycles and Memory-stall clock cycles in
Eq. (3) should be refined into smaller components. CPU
execution clock cycles—which represents the actual compu-

tation (and includes the L1 cache hits)— can be written as
follows

CPU execution clock cycles = #FLOPS

× time(FLOP),

where #FLOPS is the number of floating point operations
performed. Memory-stall clock cycles can be split into 3 or
4 components depending on the number of cache levels in
the memory hierarchy:

Memory-stall clock cycles =
n∑

i=1

Li cache misses× time(Li cache miss)

where n is the number of cache levels. Thus Eq. 3 [13]
becomes

Execution Time = (4)
n∑

i=1

αi × Li cache misses× time(Li cache miss)

+ β × TLB misses× time(TLB miss)

+ γ ×#FLOPS× time(FLOP).

The balancing weights αi, β, γ are used to model the overlap
between the computation and data movement. For compute-
bound algorithms, γ ≈ 1 and both αi and β are close to zero.
For memory-bound algorithms, the situation is reversed.

Our goal is the analytical modeling of L1 misses. Being
able to accurately model L1 misses when data resides in the
L2 cache is key to accurately model the execution time.

4. MODELING L1 MISSES
For our experiments we chose an unblocked variant of

the LU factorization without pivoting, see Algorithm 1 [5].
Such algorithm is built on top of two BLAS subroutines [11],
namely SCAL and GER. Our focus is on GER since it has

quadratic complexity, as opposed to linear, and is a major
source of L1 misses. We will model the number of L1 misses
for the LU factorization through the number of L1 misses
for GER. We first consider GER in isolation, and then as
part of the LU factorization.

Partition

A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

While size(ATL) < size(A) do

Repartition(
ATL ATR

ABL ABR

)
→

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22

where α11 is 1× 1

a21 := a21/α11 (SCAL)

A22 := A22 − a21aT12 (GER)

Continue with(
ATL ATR

ABL ABR

)
←

A00 a01 A02

aT10 α11 aT12
A20 a21 A22

endwhile

Algorithm 1: An unblocked variant of the LU factorization.

GER is the BLAS level-2 subroutine that computes a
rank-1 update of a general m× n matrix A:

A := αxyT +A, (5)

where α is a scalar, x is a vector of size m and y is a vector
of size n. GER performs 2mn FLOPS over mn + m + n
data, which means that mn + m + n elements of the ma-
trix and vectors have to be loaded into the CPU registers to
proceed with the computation. Theoretically, each of those
elements may cause an L1 miss. However, the elements of
the matrix—stored by columns—and are contiguous, mean-
ing that adjacent entries along one column are stored next
to one another in memory. Since the data movement in the
cache is organized by cache lines, only one cache miss per
accessed cache line occurs.

We make the following assumptions.

1. The matrix A and the vectors x and yT are aligned to
the beginning of a cache line—the first elements of the
matrix and the vectors are the first elements in cache
lines.

2. The L1 cache is large enough to keep both x and yT

and also some elements of the matrix A.

3. Once the vectors x and yT are loaded into the L1 cache,
they remain there for the whole computation.

With these assumptions, the number of L1 misses of GER
can be modeled by

L1 misses =

⌈
mn

d

⌉
+

⌈
m

d

⌉
+

⌈
n

d

⌉
, (6)

where d is the number of double precision floating point val-

ues in a cache line;
mn

d
is the number of L1 misses when

reading the contiguous matrix A;
m

d
and

n

d
are the numbers

of cache misses when reading the contiguous vectors x and
yT , respectively. Eq. 6 covers only the simple scenario of the
matrix and vectors being contiguous in the memory. In case
of the unblocked variant of an LU factorization, the matrix
A22 and vector aT12 needed for GER are not contiguous any-
more. Therefore, this influences the number of L1 misses
and adds complexity to the model.

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m− i− 1

i 1 n− i− 1

Figure 1: 3× 3 partitioning of the matrix A.

Algorithm 1 presents the unblocked algorithm for com-
puting the LU factorization. The notation does not operate
with indexes and makes it easier to identify what regions
of the matrix are updated and used, see Fig. 1. At each
iteration i of the loop, the algorithm updates the matrix
A22 and the vector a21 using SCAL and GER subroutines,
respectively. To denote the size of the matrix A22 we will
use p × q, where p = m − i − 1 and q = n − i − 1. As
the algorithm progresses, the matrix A22 decreases in size
starting from m − 1 × n − 1 till 0 × 0. At the end of the
computation the matrix A will be overwritten by the upper
triangular matrix U and unit lower triangular matrix L.

The storage of the matrices A and A22, and the vectors
a21 and aT12 is organized as follows: A is stored by columns
and it is contiguous in the memory; the leading dimension of
A, which is denoted LDA, is the memory distance between
the start of each row (LDA = m); A22, which is the bottom-
right part of A, is partially contiguous, see Figs. 2(a)-2(b);
a21 is contiguous as it is the part of a column of A; and aT12 is
non-contiguous since each element of it belongs to a different
column of A. As the matrix A22 is the major source of L1
misses in GER, we use a simplified case where the vector
aT12 is also contiguous. By taking this into account, Eq. 6
can be modified as shown below

L1 misses =

⌊mq
d

⌋
+
⌈p
d

⌉
+
⌈ q
d

⌉
, if m−

⌊p
d

⌋
d < d

ζ +
⌈p
d

⌉
+
⌈ q
d

⌉
, otherwise

(7)

The quantities

⌊mq
d

⌋
and ζ =

⌈p
d

⌉
+

n−1∑
i=1

⌈p+ (mi mod d)

d

⌉
indicate L1 misses when loading the matrix A22 from the L2
cache. The quantity ζ represents cache misses when loading
each column of the matrix A22 including a ”tail” (mi mod d)
from the previous column, see Fig. 2(b).

Eq. 7 with two cases covers all two possible scenarios of
the matrix A22 being a part of the matrix A. These two
scenarios are illustrated by two plots in Fig. 2. On each of
these plots, the storage of the matrix A and partitioning of
the elements of A into cache lines (8 elements per a cache
line) is shown. The first figure, Fig. 2(a), represents the
situation when the matrix A22 is the bottom-right part of

A and m −
⌊p
d

⌋
d < d. Thus, the whole matrix A22 and

redundant data between two columns of A22 will be loaded.

Accordingly, we use
⌊mq
d

⌋
to model L1 misses on reading

A22. The second figure, Fig. 2(b), illustrates the situation

when m−
⌊p
d

⌋
d ≥ d. Therefore, only some redundant data

between two columns of the matrix A22 will be loaded as it
is represented by ζ (mi mod d) in Eq. 7.

A

A22

(a) m−
⌊p
d

⌋
d < d

A

A22

(b) m−
⌊p
d

⌋
d ≥ d

Figure 2: Alignment of cache lines within matrix A22.

In the next two sections we show how the basic formula for
modeling L1 misses, Eq. 7, captures the behavior of GER on
two different architectures: AMD Barcelona and Intel Core
2.

4.1 AMD Barcelona
For our experiments we used an AMD Opteron 8356 pro-

cessor (code name Barcelona). Each of the four cores runs
at 2.3 GHz and can execute 3 FLOPS per cycle for a peak
performance of 6.9 GFLOPS/s per core or 27.6 GFLOPS/s
per socket. Memory-wise, each core contains a 64 KB L1
data cache and a 512 KB L2 unified cache1. In addition,
each chip has a 2 MB L3 unified cache shared among all
four cores.

Barcelona has two prefetching units: one for the code and
another for the data. The data prefetching unit fetches data
only into the L2 cache [12]. Thus, the mis-prediction of
hardware prefetching does not play a role in modeling L1
misses. Accordingly, the modeling on Barcelona can be done
by Eq. 7.

4.2 Intel Core 2
The Intel Core 2 P8600 (code name Penryn) is the second

testbed for our experiments. Each of the two cores operates
at 2.4 GHz, and can execute 4 FLOPS per cycle, for a peak
performance of 9.6 GFLOPS/s per core. Memory-wise, each

1A cache is said to be ”unified” when data and instructions
can be stored.

core includes a 32 KB L1 data cache and each chip has a
shared 3 MB L2 unified cache.

Our interest in the Intel Penryn processor is due to the
different organization of the cache system with respect to the
AMD Barcelona processor. Also, unlike Barcelona, Penryn
has a powerful prefetching mechanism: a dedicated unit de-
tects multiple reads from a single cache line and loads the
next line into the L1 cache [10]. This may lead to the mis-
prediction of data that causes unexpected L1 misses. By
including L1 misses due to the mis-prediction of hardware
prefetching into the model, Eq. 7 can be rewritten as

L1 misses =

⌊mq
d

⌋
+
⌈p
d

⌉
+
⌈ q
d

⌉
+ 3, if m−

⌊p
d

⌋
d < d

ζ
′

+
⌈p
d

⌉
+
⌈ q
d

⌉
+ 3, otherwise

(8)
In the first case, due to the prefetching of 1 extra cache line
after the loading of an operand, three misses are added (1 for
the matrix and 2 for the vectors). In the second case, cache
misses caused by the hardware prefetching mis-prediction
are also included. For instance,

ζ
′

=
⌈p
d

⌉
+

n−1∑
i=1

(⌈p+ (mi mod d)

d

⌉
+ η(i)

)
,

where η(i), which represents the number of L1 misses per
each column of the matrix A22 due to the mis-prediction, is
given as

η(i) =

1, if
⌊m+ (mi mod d)

d

⌋
−
⌈p+ (mi mod d)

d

⌉
> 0

0, otherwise.

5. EVALUATION
In this section we verify the accuracy of the models for

GER and the LU factorization by comparing with the num-
ber of misses measured in practice.

The measurements were performed on two versions of
GER, namely from the reference BLAS [2] and from the
highly optimized GotoBLAS library [11]. The libraries were
compiled with the -O2 optimization flag. The GOTO NUM

THREADS variable was set to one, i.e., only one core was used
in all experiments. The PAPI library [1] was used to access
the processor’s performance counters, We calculated the de-
viation (percentage) between the modeled and the measured
results by

Deviation =
|Measured−Modeled|

Measured
100%. (9)

5.1 AMD Barcelona
Fig. 3 reports the accuracy of our model for L1 misses

on the AMD Barcelona processor. For GER from the ref-
erence BLAS, we plot the expected and measured misses,
as well as the relative deviation, for problems of size p = q
and leading dimension m. We chose the problem size in the
interval [16, 256] as a typical size for the unblocked variant
(Algorithm 1) of an LU factorization. The unblocked vari-
ant in fact operates with problems that are small enough
to fit in the L2 cache memory. Moreover, we concentrate
on small sizes because—as our results suggest—the model
for L1 misses becomes more accurate as the problem size

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140
 0

 1

 2

 3

 4

 5

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p=q

Measured
Modeled

Deviation

(a) LDA = 128

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180 200
 0

 1

 2

 3

 4

 5

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p=q

Measured
Modeled

Deviation

(b) LDA = 192

Figure 3: Deviation between predicted and measured L1 misses
for GER on Barcelona; p = q.

Table 1: Deviation between modeled and measured L1 misses
for an unblocked LU factorization on Barcelona.

m=LDA Modeled Measured Deviation[%]

64 12,601 12,612 0.087
96 40,977 41,306 0.797

128 94,889 95,899 1.053
192 312,089 313,926 0.585
256 729,737 732,501 0.377

increases. The results of the model are always satisfacto-
rily accurate, even for small problems; in most cases, the
deviation is below 2%.

In order to simulate the behavior of GER within Algo-
rithm 1, we fix m and vary the problem size (p = q) from
p = m and down to p = 16. Figs. 3(a)–3(b) show the results
for LDA = 128 and 192, respectively.

Fig. 4 refers to the more general scenario of p ≥ q, which
covers the shapes of A most commonly encountered in a fac-
torization. In the figure, LDA = 512. As for the case p = q,
the deviation is small, usually less then 2 %. The only ex-
ception is for problems of very small size (the deviation is
around 4-5%), which anyway carry little or no weight at all
when considered as part of a factorization. This statement
is confirmed by the numbers in Table 1: Since our focus is
on GER as the computational kernel for the LU factoriza-
tion, we are interested in the sequence of problems (p = q)
from the interval [1,m]. In Table 1, we add the number of
modeled L1 misses of GER for different values m. The re-
sult compared with the number of misses measured during

 50 100 150 200 250p 0
 50

 100
 150

 200
 250

q
 0

 1

 2

 3

 4

 5

D
ev

ia
ti

o
n

 [
%

]

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

Figure 4: Deviation between predicted and measured L1 misses
for GER on Barcelona; p ≥ q, LDA = 512.

an LU factorization. In this scenario, the model attains an
even higher level of accuracy: the deviation is mostly less
than 1 %.

5.2 Intel Core 2
For space considerations, we omit the results relative to

GER from the reference BLAS, and only present results for
the GotoBLAS library. Its level of sophistication, together
with the fact that we did not attempt to study its source
code, makes this a more difficult object to model.

The case p = q is illustrated in Figs. 5(a)-5(b) for LDA =
128 and 256, respectively. The deviation is largest for prob-
lems of size smaller than p = 40. This is due to the small
number of L1 data cache misses; even a slight difference of
2-6 cache misses between the model and the measurement
becomes significant in terms of deviation. In general, for
most problems the deviation is less than 3 %. In summary,
except for the smallest problem sizes, the model is very ac-
curate.

Table 2: Deviation between modeled and measured L1 misses
for an unblocked LU factorization on Penryn.

m=LDA Modeled Measured Deviation[%]

64 14,009 13,500 3.770
96 44,433 43,698 1.682

128 101,289 100,643 0.642
192 327,065 326,145 0.282
256 756,822 753,946 0.382

In Table 2, we model the number of misses for the LU
factorization by adding up all the predictions of GER from
p = 1 to p = m. The deviation of the combined results is
mostly less than 2 %. This demonstrates that the relatively
high deviation for small problem sizes is negligible in the
context of a factorization.

Fig. 6 presents the results of modeling L1 misses of GER
in the more general scenario p ≥ q (LDA = 512). The figure
indicates that in the area close to the origin the deviation is
slightly higher than for the rest of the spectrum. However,
as demonstrated above, such deviations do not affect the
accuracy of the model for the whole LU factorization.

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140
 0

 1

 2

 3

 4

 5

 6

 7

 8

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p=q

Measured
Modeled

Deviation

(a) LDA = 128

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p=q

Measured
Modeled

Deviation

(b) LDA = 256

Figure 5: Deviation between predicted and measured L1 misses
for GER on Penryn; p = q.

Finally, we look at the scenario in which the unblocked
algorithm Alg. 1 is a building block for a blocked variant of
the LU factorization; in this case, q is small, p ≥ q, and LDA
might be much greater than p. To model the L1 misses of
Alg. 1, we aggregate the models for GER from of size p× q,
p − 1 × q − 1, down to p − q + 1 × 1. Fig. 7 shows the
modeled and measured L1 misses for LDA = 2048 and two
fixed q (q = 64 and 128). Since q is fixed and only p varies,
the modeled and measured cache misses demonstrate linear
behavior. In summary, the results are very accurate—the
model is within 2-4% of the measurements.

6. FUTURE WORK
The work described in this paper represents a successful

first step towards the ultimate goal of predicting the per-
formance of linear algebra computations. In order to gain
applicability, the model has to be extended in a number of
ways. First off, larger problems will not fit in the L2 cache,
therefore causing not only L1 but also L2 misses. Lifting
memory constraints and incorporating L2 cache misses into
the model is the natural next step; for even larger prob-
lems, TLB misses must be taken into account too. In this
document we only present models for one BLAS operation;
many others building blocks are needed. Conceptually our
model can be adapted to other level 1 and level 2 BLAS
operations without major hurdles. The modeling for level 3
operations is substantially different, as those operations are
CPU-bound; as a consequence, data movement–and cache
misses–are of secondary importance for accurate timing pre-
dictions.

The reader might be wondering whether the accurate pre-

 50 100 150 200 250p 0
 50

 100
 150

 200
 250

q
 0

 5

 10

 15

 20

D
ev

ia
ti

o
n

 [
%

]

 0
 2
 4
 6
 8
 10
 12
 14
 16

Figure 6: Deviation between predicted and measured L1 misses
for GER on Penryn; p ≥ q, LDA = 512.

diction of cache misses translates to accurate timing predic-
tion. Our preliminary results suggest a positive answer: In
Fig 8 we show predicted and measured execution time of
GER when the operands reside in the L2 cache. For the
prediction, we used Eq. 4 in conjunction with the model for
L1 cache misses and a suitable choice of the parameters α1,
and γ.2 The outcome is quite encouraging. The deviation
is always below 6%, even for small problems, and in most
cases is around or lower than 2%.

7. CONCLUSIONS
We set out to predict the performance of linear algebra

algorithms without any actual code execution. In fact, we
proposed an analytical model solely based on detailed knowl-
edge of the algorithm as well as the CPU and the memory
hierarchy. As it was shown, modeling performance is equiv-
alent to modeling both the CPU execution time and the
time spent on memory-stalls. This paper focuses mainly
on memory-stalls. We considered the scenario in which the
input data resides in the L2 cache, and we built an an-
alytical formula for modeling L1 cache misses. As target
algorithms, we considered fundamental linear algebra oper-
ations like those included in the BLAS library. To verify
the model, we conducted a set of experiments using GER
from the reference BLAS and the GotoBLAS libraries. By
working on two architectures, we tailored the basic formula
for different processor types and memory systems. In all
cases, the model resulted extremely accurate, with devia-
tions normally lower than 2%. We chose the GER kernel
because responsible for most of the computation of an un-
blocked variant of the LU factorization. Thus, by compos-
ing modeled L1 misses of GER, we predicted the number
of misses for the LU factorization. A comparison between
the model and the actual measurements yielded deviations
below 3 %. Finally, we presented initial evidence that an ac-
curate model for cache misses leads to accurate predictions
for the execution time.

2We set both α2 and β to zero as the problems reside in the
L2 cache.

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

2.5e+05

3.0e+05

3.5e+05

4.0e+05

 0 300 600 900 1200 1500
 0

 1

 2

 3

 4

 5

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p

Measured
Modeled

Deviation

(a) q = 64, LDA = 2048

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

 0 300 600 900 1200 1500
 0

 1

 2

 3

 4

 5

L
1
 m

is
se

s

D
ev

ia
ti

o
n
 [

%
]

p

Measured
Modeled

Deviation

(b) q = 128, LDA = 2048

Figure 7: Deviation between predicted and measured L1 misses
for Algorithm 1 when used as part of a blocked LU factorization.

Acknowledgments
We would like to thank Prof. Enrique S. Quintana Ort́ı and
Diego Fabregat Traver for their advices and many useful
discussions.

The authors gratefully acknowledge the support received
from the Deutsche Forschungsgemeinschaft (German Research
Association) through grant GSC 111.

8. REFERENCES
[1] Performance Application Programming Interface

(PAPI). Available via the WWW.
http://icl.cs.utk.edu/papi/.

[2] The reference BLAS. Available via the WWW.
http://www.netlib.org/blas/.

[3] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,
A. McKenney, J. Du Croz, S. Hammerling,
J. Demmel, C. Bischof, and D. Sorensen. LAPACK: a
portable linear algebra library for high-performance
computers. In Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, Supercomputing ’90,
pages 2–11. IEEE Computer Society Press, 1990.

[4] Paolo Bientinesi, Brian Gunter, and Robert A. van de
Geijn. Families of algorithms related to the inversion
of a Symmetric Positive Definite matrix. ACM Trans.
Math. Softw., 35(1):1–22, 2008.

[5] Paolo Bientinesi and Robert A. van de Geijn.
Representing dense linear algebra algorithms: A
farewell to indices. FLAME Working Note #17.
Technical Report TR-2006-10, The University of
Texas at Austin, Department of Computer Sciences,
February 2006.

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
[c

y
cl

es
]

D
ev

ia
ti

o
n
 [

%
]

p=q

Measured
Modeled

Deviation

Figure 8: Deviation between predicted and measured execution
time of GER on Penryn; LDA = 512.

[6] Randal E. Bryant and David R. O’Hallaron.
Computer Systems – a Programmers Perspective.
Pearson Education, 2011.

[7] Shannon Cepeda. What you need to know about
prefetching, August 2009. Available via the WWW.
http:

//software.intel.com/en-us/blogs/2009/08/24/.

[8] Javier Cuenca, Domingo Giménez, and José González.
Modeling the behaviour of linear algebra algorithms
with message-passing. In Proceedings of the Euromicro
Workshop on Parallel and Distributed Processing,
Mantova, Italy, pages 282–289. IEEE Press, 2001.

[9] Javier Cuenca, Domingo Giménez, and José González.
Architecture of an automatically tuned linear algebra
library. Parallel Comput., 30(2):187–210, February
2004.

[10] Franck Delattre and Marc Prieur. Intel Core 2 Duo –
test, July 2006. Available via the WWW.
http://www.behardware.com/articles/623-6/.

[11] Kazushige Goto. GotoBLAS. Available via the
WWW. http:
//www.tacc.utexas.edu/resources/software/#blas.

[12] Yury Malich. AMD K10 micro-architecture, August
2007. Available via the WWW.
http://www.xbitlabs.com/articles/cpu/display/

amd-k10_9.html.

[13] David A. Patterson and John L. Hennessy. Computer
Organization and Design: The Hardware / Software
Interface, Fourth Edition. Morgan Kaufmann, 2009.

[14] Aashish Phansalkar and Lizy K. John. Performance
prediction using program similarity. In Proceedings of
the 2006 SPEC Benchmark Workshop, January 2006.

