
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2010/04-2

03/April/2010

HPC on Competitive Cloud Resources

P. Bientinesi, R. Iakymchuk and J. Napper

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through

grant GSC 111 is gratefully acknowledged.

©P. Bientinesi, R. Iakymchuk and J. Napper 2010. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

HPC on Competitive Cloud Resources

Paolo Bientinesi and Roman Iakymchuk and Jeff Napper

April 3, 2010

Abstract

Computing as a utility has reached the mainstream. Scientists can now easily rent
time on large commercial clusters that can be expanded and reduced on-demand in
real-time. However, current commercial cloud computing performance falls short of
systems specifically designed for scientific applications. Scientific computing needs
are quite different from those of the web applications that have been the focus of
cloud computing vendors.

In this chapter we demonstrate through empirical evaluation the computational
efficiency of high-performance numerical applications in a commercial cloud envi-
ronment when resources are shared under high contention. Using the Linpack bench-
mark as a case study, we show that cache utilization becomes highly unpredictable
and similarly affects computation time. For some problems, not only is it more ef-
ficient to underutilize resources, but the solution can be reached sooner in realtime
(wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied
environment is the best for price to performance ration.

In light of the high-contention we witness, we believe that alternative defini-
tions of efficiency for commercial cloud environments should be introduced where
strong performance guarantees do not exist. Concepts like average, expected per-
formance and execution time, expected cost to completion, and variance measures—
traditionally ignored in the high-performance computing context—now should com-
plement or even substitute the standard definitions of efficiency.

1 Introduction
The cloud computing model emphasizes the ability to scale compute resources on de-
mand. The advantages for users are numerous. Unlike conventional cluster systems,
there is no significant upfront monetary or time investment in infrastructure or peo-
ple and ongoing expenses are simplified. When resources are not in use, total cost
can be close to zero. Instead of allocating resources according to average or peak
load, the cloud user can pay costs directly proportional to current need. Individuals
can quickly create and scale-up a custom compute cluster, paying only for sporadic

1

usage. However, there are also some disadvantages. Costs can be divided into dif-
ferent categories that are billed separately: for example, network, storage, and CPU
usage. This model can be complex when attempting to minimize costs [16]. Fur-
ther, the setup time for computation resources is currently quite long (on the order of
minutes for Amazon), and the granularity for billing CPU resources is coarse: by the
hour. These two factors imply that resources should be very conservatively scaled in
current clouds, reducing some of the benefits of scaling on demand. Finally, in many
cloud environments, physical resources are shared among virtual nodes belonging to
different users, which can negatively impact performance.

The ability to allocate on demand nodes in current commercial cloud environ-
ments implies a new problem in scientific computing: contention. Good high-per-
formance computing clusters balance the CPU, memory, and network usage of appli-
cations to maintain efficiency while scaling up resource usage but assume exclusive
access to these resources by an application. For example, the RoadRunner super-
computer at Los Alamos National Laboratory can solve a linear system using 100K
cores while maintaining 90% efficiency of CPU usage. This feat requires carefully
balancing the application’s needs across CPU, memory, and the network. With ex-
clusive access, developers of applications and compute libraries can achieve such
balanced computing by reducing the noise in resource usage that prevents efficient
synchronization. For example, one node out of a large system might run extra soft-
ware for monitoring that causes it to reach the end of a computation slower than the
other nodes. If all nodes must synchronize at the end of a computation, all other
nodes in the system must wait for the slowest node to finish. Small amounts of noise
can significantly affect the overall performance of a tightly coupled application [14].

Although cloud environments typically provide a small degree of resource avail-
ability guarantees, they do not provide a complete facsimile of an unshared virtual
node or strong performance guarantees. Contention is visible along almost all re-
sources: memory bandwidth, last-level cache space, network bandwidth and la-
tency [20], and even CPU time. In addition to introducing the kind of noise discussed
above, such contention can severely limit the use of resources shared between virtual
environments. For example, memory contention can increase the compute time of a
simple matrix multiplication by an order of magnitude.

To run scientific applications efficiently, cloud computing needs to provide re-
sources to scientific applications comparable to current well-balanced, exclusive-
access high-performance computing (HPC) systems. Isolation between different vir-
tual machines in the cloud should provide predictable performance for developers of
compute-intensive applications and libraries. However, our evaluation of the Ama-
zon EC2 cloud—currently the largest commercial cloud environment—demonstrates
that significant work is still needed to isolate virtual machines in the cloud or to ad-
just HPC libraries to adapt to the dynamic, contentious environment of the cloud.
The Amazon EC2 cloud system was built for web service workloads (that is, with-
out extremely fast interconnects) and cannot compare favorably with purpose-built,
heavily-engineered HPC supercomputers for many tightly-coupled scientific compu-

2

tations such as dense linear algebra. Although we do not expect comparable perfor-
mance, the dynamic scalability of the environments holds some promise for smaller
workloads.

In order to determine the achievable efficiency of current cloud systems for HPC,
we consider the execution of dense linear algebra, which provides a favorable ratio
of computation to communication: O(n3) operations on O(n2) data. Dense linear
algebra algorithms can thus overlap the slow communication of data with quick
computations over much more data [2]. Cloud systems will generally be limited
by slow communication more than specialized HPC systems given their relatively
cheap, slow interconnects. We are concerned primarily with the efficiency of shared
cloud systems as they scale up and show that the effects of contention can far out-
weigh (at least in current offerings) the imbalance caused by an underprovisioned
interconnect. We thus focus on CPU costs, ignoring possible associated (and signif-
icantly less per computation) storage and networking costs.

This chapter empirically explores computational efficiency in a cloud environ-
ment when resources are shared under high contention. We consider single node
performance of dense linear algebra operations while nodes are shared with unknown
other applications on Amazon EC2 [15]. Further, we analyze how the performance
changes on clusters of up to 64 compute cores. Our results show that the perfor-
mance of single nodes available on EC2 can be as good as nodes found in current
HPC systems [18], but the average performance is much worse and shows high vari-
ability. In fact, dense linear algebra algorithms do not appear to scale well on cloud
systems with high levels of contention. Contention skews the balance of node’s CPU
and memory resource availability to network capacity to prevent efficient usage of
the resources. Cache utilization becomes highly unpredictable and similarly affects
computation time. We show that for some problems, not only is it more efficient to
underutilize CPU resources, but the solution can even be reached sooner in realtime
(wall-time).

In light of the high-contention we witness, we believe that alternative definitions
of efficiency for cloud environments should be introduced where strong performance
guarantees do not exist. Concepts like average expected performance and execution
time, expected cost to completion, and variance measures—traditionally ignored in
the HPC context—now should complement or even substitute the standard defini-
tions of efficiency. In addition to standard metrics such as GFLOP/sec and efficiency
used in HPC, we introduce $/GFLOP (dollars per billions of floating point opera-
tions) to analyze in depth the pros and cons of clouds. The $/GFLOP metric allows
users to estimate straightforward costs—currently limited to CPU usage—for differ-
ent applications with respect to computational efficiency.

2 Related Work
Cloud computing has been proposed as a service to scale out or share existing sci-
entific clusters. The Eucalyptus project provides an open source cloud management

3

tool [12]. Similarly, the Nimbus project provides cloud management tools for clus-
ters [7]. These tools do not typically provide for multi-tenancy—unlike the commer-
cial cloud environments we study—and thus observe different performance charac-
teristics closer to existing scientific clusters with exclusive access. We are concerned
in this chapter with the effects of contention on HPC applications when multiple
VMs share resources.

Tikotekar et al. run different HPC benchmarks in virtual machines to determine
the effects of virtualization on high-performance computing applications [17]. The
results show isolating the effects of multiple VMs on the same machine is difficult,
but in general virtualization has little effect on the performance of compute inten-
sive HPC applications. Similarly, Youseff et al. see little performance impact on
the memory hierarchy behavior of linear algebra libraries under virtualization [21].
However, this study does not consider contention between multi-tenant VMs.

The impact of virtualization on the networking performance of EC2 is analyzed
empirically by Wang and Ng [20]. They report heavy network instabilities and de-
lays, especially on small 32-bit nodes. We observe poor performance on the HPL
parallel benchmark using multiple instances but are more concerned with the scaling
properties. Although the instances do not approach peak performance, the paral-
lel job can scale (for tens of nodes) with poor network performance provided the
instances have enough installed RAM due to the high ratio of computation to com-
munication in dense linear algebra. Our experiments (see Figure 8) demonstrate this
effect.

The effects of sharing the last-level cache in multi-core processors is discussed
by Iyer et al. [6]. The paper discusses different approaches to improving the per-
formance guarantees of each core with respect to cache behavior. Using these tech-
niques could greatly increase the predictability of performance on cloud platforms.

Previously, Edward Walker has compared EC2 nodes to current HPC systems [19].
Our results here are similar to his for the small clusters of 4 nodes that he used. We
previously reported preliminary results in [10].

3 Background
We perform our experiments on the Amazon Elastic Compute Cloud (EC2) service as
a case study for commercial cloud environments [15]. Although there are competing
cloud offerings that were publicly available at the time [9, 5], Amazon’s service is the
largest that provides highly configurable virtual machines. The nodes allocated by
EC2 run a kernel or operating system configured by Amazon, but all software above
this level is configured by the user. Many other cloud offerings by other providers
limit applications to certain APIs or languages. To use existing highly optimized
dense linear algebra libraries, we use Amazon as a case study.

Nodes allocated through EC2 are called instances. Instances are allocated from
Amazon’s data centers according to unpublished scheduling algorithms. Allocations

4

are initially limited to 20 total instances, but this restriction can be lifted upon re-
quest. Data centers are combined into entities known as an availability zone, Ama-
zon’s smallest logical geographic entity for allocation. These zones are further com-
bined into regions, which consist of only the US and Europe at the moment.

After allocation, each instance automatically loads a user-specified image con-
taining the proper operating system (in our case Linux) and user software (described
below). Images are loaded automatically by Amazon services onto one or more vir-
tualized processors using the Xen virtual machine (VM) [1]. Each processor is itself
multi-core, resulting in a total of 2 to 8 virtual cores for the instances we reserved.
The Terms of Service provided by Amazon do not provide strong performance guar-
antees. Most importantly for this study, they do not limit Amazon’s ability to imple-
ment multi-tenancy; that is, to co-locate VMs from different customers. We discuss
the performance characteristics of different instances below.

Tools written to Amazon’s public APIs provide the abilities to allocate extra
nodes on demand, release unused nodes, and create and destroy images to be loaded
onto allocated instances. Using these tools and developing our own, we built im-
ages with the latest compilers provided by the hardware CPU vendors AMD and
Intel. We use HPL 2.0 [13] from the University of Tennessee, compiled with Goto-
BLAS 1.26 [4] from the Texas Advanced Computing Center (TACC), and MPICH2
1.0.8 [8] from the Argonne National Laboratory. Using our tools we can allocate
and configure variable size clusters in EC2 automatically, including support for MPI
applications.

Although we developed tools to automatically manage and configure EC2 nodes
for our applications, there are also other publicly available tools for running scien-
tific applications on cloud platforms (including EC2) [11, 12]. Further, as the cloud
computing platform matures, we expect much more development for specific appli-
cations such as high-performance computing to reduce or eliminate much of the ini-
tial learning curve for deploying scientific applications on cloud platforms. Already,
for example, public images are available on EC2 supporting MPICH [3].

3.1 Overview of Amazon EC2 Setup
Our case study was carried out using various instance types on the Amazon Elastic
Compute Cloud (EC2) service from November 2008 through January 2010. Table 1
describes the salient differences between the instance types: number of cores per in-
stance, installed memory, theoretical peak performance, and the cost of the instance
per hour. We only used instances with 64-bit processors so that we treat the m1.large
as the smallest instance although Amazon provides a smaller 32-bit m1.small in-
stance. The costs per node vary by a factor of 7 from $0.34 for the smallest to $2.40
for nodes with significant installed memory. We note that cost scales more closely
with installed RAM than with peak CPU performance—the c1.xlarge instance be-
ing the outlier. Peak performance is calculated using processor-specific capabilities.
For example, the c1.xlarge instance type consists of 2 Intel Xeon quad-core proces-

5

Table 1: Information about various instances types: processor type, number of cores
per instance, installed RAM (in Gigabytes), and theoretical peak performance (in
GFLOP/sec). Prices are on Amazon EC2 as of January, 2010.

Instance Processor Cores RAM Peak Price
(GB) (Gflops) ($/hr)

m1.large Intel Xeon E5430 2 7.5 21.28 $0.34
m1.large AMD Opteron 270 2 7.5 8.00 $0.34
m1.xlarge Intel Xeon E5430 4 15 42.56 $0.68
m1.xlarge AMD Opteron 270 4 15 16.00 $0.68
c1.xlarge Intel Xeon E5345 8 7 74.56 $0.68
m2.2xlarge Intel Xeon X5550 4 34.2 42.72 $1.20
m2.4xlarge Intel Xeon X5550 8 68.4 85.44 $2.40

sors operating at a frequency of 2.3 GHz with a total memory of 7 GB. Each core is
capable of executing 4 floating-point operations per clock cycle, leading to a theo-
retical peak performance of 74.56 GFLOP/sec per node. There are additional costs
for bandwidth used into and out from Amazon’s network and for long-term storage
of data, but we ignore these costs in our calculations because they are negligible
compared to the costs of the computation itself in our experiments.

In regards to multithreaded parallelism provided by the multi-core processors, ex-
tensive testing typically delivered the best performance when we set the Goto BLAS
library to use as many threads as available cores per socket—4 and 2, for the Xeon
and the Opteron, respectively. We provide the number of threads used to obtain spe-
cific results in the following section when presenting peak achieved efficiency. With
these settings and using the platform-specific libraries and compilers, we reached
76% and 68% of theoretical peak performance (as measured in GFLOP/sec) for the
Xeon E5345 and Opteron 270, respectively, for single node performance on xlarge
instances. We thus believe the configuration and execution of LINPACK in HPL on
the high-CPU and standard instances is efficient enough to use as an exemplar of
compute-intensive applications for the purposes of our evaluation.

All instance types (with Intel or AMD CPUs) execute the RedHat Fedora Core 8
operating system using the 2.6.21 Linux kernel. The 2.6 line of Linux kernels sup-
ports autotuning of buffer sizes for high-performance networking, which is enabled
by default. The specific interconnect used by Amazon is unspecified [15] and multi-
ple instances might even share a single hardware network card [20]. Therefore, the
entire throughput might not be available to any particular instance. In order to reduce
the number of hops between nodes to the best of our ability, we run all experiments
with cluster nodes allocated in the same availability zone.

6

3.2 Overview of HPL
Our goal is to determine the suitability of commercial cloud environments for cer-
tain kinds of scientific applications. We focus on the HPL benchmark [13] as the
exemplar of tightly coupled, highly parallel scientific applications. HPL computes
the solution of a random dense system of linear equations via LU factorization with
partial pivoting and triangular solves. This algorithm requires O(n3) floating point
operations on O(n2) data; that is, HPL is compute-intensive, and represents a re-
alistic upper bound for the performance of such scientific applications. The actual
implementation is driven by more than a dozen parameters, all of which may have
a significant impact on the resulting performance and therefore require fine tuning.
We describe the HPL parameters that were tuned below:

1. Block size (NB). It is determined in relation to the problem size and the per-
formance of the underlying BLAS kernels. We used four different block sizes,
namely 192, 256, 512, and 768.

2. Process grid (p× q). This is the number of process rows and columns of the
compute grid. As with most clusters, we empirically observed that on EC2 it
is better to use process grids where p≤ q. This is a product of the data flow of
the algorithms used in HPL.

3. Broadcast algorithm (BFACT). It depends on the problem size and network
performance. Testing suggested that the best broadcast parameters are 3 and
5. For large machines featuring fast nodes compared to the available network
bandwidth, algorithm 5 is observed to be best.

With respect to the other HPL settings, we kept them fixed for all the experiments.

4 Intranode Scaling
We begin our empirical analysis of EC2 performance for linear algebra by evaluat-
ing the consistency of achievable performance on a single node. In order to evaluate
the consistency in performance delivered by EC2 nodes, we executed DGEMM—
the matrix-matrix multiplication kernel of BLAS—and HPL tests for 24 hours, re-
peating the experiment over different days. We first focus on the DGEMM results,
then discuss results from HPL. DGEMM is at the core of the Basic Linear Algebra
Subroutines (BLAS) library. Implementing the basic operation of multiplying two
matrices, DGEMM is the building block of all the other Level-3 BLAS routines and
of virtually every linear algebra algorithm. It is highly optimized for each target ar-
chitecture and its performance, often in the 90+% range of efficiency, is ordinarily
interpreted as the processor peak achievable performance.

7

 0

 50

 100

 150

 200

 250

 300

 350

 400

16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

s)

Time of day

Figure 1: Execution time of repeated DGEMM using 4 (of 8) cores over 6 hours on
c1.xlarge instance. Average execution is 191.8 s with a standard deviation of 68.6 s.
The input sizes for each DGEMM are identical. On a stand alone node all executions
would be identical.

4.1 DGEMM Single Node Evaluation
In our DGEMM experiment we initialize three square matrices A,B and C of a fixed
size and then invoke the GotoBLAS implementation of DGEMM [4]. We only time
the call to the BLAS library and not the time spent allocating and initializing the
matrices. Due to the dense nature of the matrices involved in the experiments—most
of the entries are non-zero—we expect little to no fluctuations in the execution time
on a single node independent of problem size and the number of cores used.

Figure 1 presents the time to complete the same DGEMM computation repeat-
edly over six hours on EC2. For space reasons we focus on six hours; however, the
rest of the time shows similar behavior. In this experiment, only four of the eight
cores of a c1.xlarge instance were used. The results show very high variability in
execution time with an average of 191.8 seconds and standard deviation of 68.6 sec-
onds (36% of average). There are several possible sources for such variability: 1) the
process is not being run for extended, variable periods of time, 2) the threads are be-
ing scheduled on different cores each time (reducing first-level cache performance),
and 3) the last-level cache shared by all cores is less available to each thread (because
it is being used by another thread on a different core).

Figure 2 shows a similar experiment to Figure 1 but using only one of the eight
cores. The experiment shows none of the variability when using only one core that is
present using more cores. With an average execution time of 227.9 s, the standard de-
viation is only 0.23 s. The results for using all eight cores shows even higher levels of

8

 0

 50

 100

 150

 200

 250

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

s)

Time of day

Figure 2: Execution time of repeated DGEMM using 1 (of 8) core over 6 hours on
c1.xlarge instance. Average execution is 227.9 s with a standard deviation of 0.23 s.
The input sizes to each DGEMM are identical.

variability than Figure 1. The reduced variability of a single core demonstrates cause
(1) above is unlikely. The process is scheduled similarly, but performance is much
more predictable. Cause (2), however, cannot be ruled out because Amazon EC2
provides no mechanism to pin threads to particular cores so that the thread always
executes on the same physical core of the processor. Finally, we conjecture cause
(3) plays at least as significant a role as (2), and we look at different experiments to
explore these effects.

The effects of using different numbers of cores is easily observed. The average
and minimum execution time against the number of cores appear in Figure 3. In
this graph, DGEMM was executed over several hours on a matrix of size n = 10k
so that the matrices (each 762 MB) cannot fit in the 8 MB last-level cache of the
Intel XEON running the c1.xlarge instance. The results presented are average and
minimum execution times for the DGEMM. Again, allocation and initialization of
memory are not included in the timings. Error-bars show the standard deviation of
the average. There are several notable characteristics of the graph:

1. The best performance in graphs (minimum line) shows that we can reach roughly
90% efficiency. Such performance is close to the optimal achievable. For ex-
ample, such performance would be expected in a stand alone node. We note
that virtualization alone clearly does not have a significant impact on peak per-
formance.

2. The average performance shows that similar computations will not likely ever
reach optimal. The average efficiency—as given by the inverse of the spread in

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 227.5
min 2cores = 113.9
min 4cores = 57.16
min 6cores = 39.37
min 8cores = 29.86

Figure 3: Average execution time of repeated DGEMM with n = 10k on c1.xlarge
instance by number of cores used. The matrices cannot fit within the last-level cache.
The inputs sizes for each DGEMM are identical. Error bars on average show one
standard deviation.

graph between the min and average—drops dramatically. The best average per-
formance at two cores is still several times worse than the minimum execution
time at eight cores.

3. As the number of cores increases, the average significantly increases along
with the standard deviation. The standard deviation increases by four orders of
magnitude. Expected performance diverges so significantly from best perfor-
mance that when using eight cores one would rarely expect to achieve the best
performance.

4. Underutilization is a good policy on EC2. Using two cores appears to be the
sweet spot in this experiment. Efficiency is good and the average and expected
performance are the best and in line with optimal. Using four cores already
takes longer on average than using two, although using four is still slightly
faster than a single core, and the trend only worsens as the number of cores
increases. Note that the fastest expected time is obtained by only using only a
quarter of the machine!

While we can attribute the performance degradation when using more than two
cores per node in Figure 3 to ever worse cache behavior, we cannot easily distinguish
which caches are being missed. In the multicore processors in these instances, cores
have individual caches and a large shared last-level cache (LLC). Pinning a thread to
a particular core would help the thread maintain cache consistency for the individ-
ual caches while reducing memory demand of the threads would reduce contention

10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 0.031
min 2cores = 0.029
min 4cores = 0.022
min 6cores = 0.024
min 8cores = 0.020

Figure 4: Average execution time of repeated DGEMM with n = 500 on c1.xlarge
instance by number of cores used. All the matrices fit within the last-level cache at
once. The inputs sizes for each DGEMM are identical. Error bars on average show
one standard deviation.

on the shared LLC. However, the kernels supplied by Amazon EC2 do not provide
support to allow us to pin threads. To attempt to distinguish these effects without the
ability to fix threads to particular cores, we performed similar DGEMM experiments
with smaller matrices that all fit within the LLC of the processor.

Figure 4 shows the average and minimum execution times using different num-
bers of cores for a DGEMM on small matrices n = 500 yielding matrices of 1.9 MB
that can easily fit within the 8 MB LLC. The error-bars on the average execution
times give a standard deviation from the mean. Again, allocation and initialization
of memory are not included in the timings. We note several characteristics of the
graph:

1. As with the out-of-cache DGEMM, the minimum execution times are consis-
tent with the expected performance of a stand-alone node.

2. Contention is likely for the last-level cache. The two orders of magnitude
performance degradation between a single core and eight cores is also the dif-
ference in time between accessing the last-level cache and main memory.

3. The ability to pin threads to cores would probably help significantly. Using
multiple cores always performs worse than with a single core, implying sig-
nificant overhead from coordination. Since the minimum scales well, we con-
jecture that the average suffers from poor cache behavior. However, the aver-
age time with multiple cores does not become orders of magnitude worse—as
would be caused by going to main memory—until all of the cores are used.

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 1203.42
min 2cores = 612.490
min 4cores = 321.110
min 6cores = 228.250
min 8cores = 182.440

Figure 5: Average execution time of repeated HPL with n = 25 k on c1.xlarge in-
stance by number of cores used. The matrices cannot fit within the last-level cache.
The input configuration to each execution of HPL is identical. Error bars on average
show one standard deviation.

Lower level cache misses are thus more likely when underutilizing the instance
with fewer than eight cores.

4.2 HPL Single Node Evaluation
In order to determine whether the effects we have seen using DGEMM scale to mul-
tiple nodes, we use the HPL benchmark [13] that solves a system of linear equations
via LU factorization. HPL can scale to large compute grids. However, we first con-
sider HPL given similar matrices to the previous DGEMM experiments, namely,
solving a system of linear equations on a single node where the data does fit and
does not fit into the LLC of the processor. In the following section, we extend HPL
to examine internode scaling using parallel algorithms.

In Figure 5 we repeatedly execute HPL with n = 25 k on the Amazon EC2
c1.xlarge instance. We plot average and minimum execution times against the num-
ber of cores. As with the DGEMM experiments, error bars show one standard de-
viation. As with the first DGEMM experiment, these matrices do not fit within the
LLC of the processor, but do fit within the main memory of a single instance. The
results are quite similar to DGEMM, but show slightly different trends. We do not
directly compare the DGEMM and HPL experiments because of the use of very dif-
ferent algorithms. We only point out that the trends show similar behavior on a single
node.

In the last single node figure, we show HPL with a matrix of size n = 1 k so

12

 0

 10

 20

 30

 40

 50

 60

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 0.100
min 2cores = 0.060
min 4cores = 0.070
min 6cores = 0.070
min 8cores = 0.090

Figure 6: Average execution time of repeated HPL with n = 1 k on c1.xlarge instance
by number of cores used. The matrices fit within the last-level cache. The input
configuration to each execution of HPL is identical. Error bars on average show one
standard deviation.

that all data for the computation fits within the LLC. Figure 6 plots the average
(and one standard deviation) and minimum execution times of repeated runs of the
HPL benchmark. The results show similar behavior to the corresponding DGEMM
experiment. We could not find a source for the anomalous improved performance at
six cores as compared to four or eight. In the following section, we extend HPL to
multiple nodes to take a look at the effects of contention on parallel computations in
a commercial cloud environment.

From the single node experiments we conclude that the very high variance in
performance implies that the best achieved performance is not a good measure of
expected performance. The average expected performance can be several orders of
magnitude worse depending on the cache behavior of the algorithm in both efficiency
and time to solution. In our experiments, the best average expected performance
is obtained on Amazon using much less of the machine than is allocated: In an
experiment accessing a large amount of main memory, using only a quarter of the
machine provided the best expected performance!

5 Internode Scaling
The previous section demonstrates the significant effects of contention on single node
performance in a commercial cloud environment. In this section, we extend our em-
pirical analysis to parallel multi-node algorithms using the HPL benchmark. The

13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20000 30000 50000 80000

N
u

m
b

er
 o

f
n

o
d

es

Matrix size

m1(c1).(x)large
m1.xlarge

m2.2xlarge
m2.4xlarge

Figure 7: Required number of nodes for different input matrix sizes n. The number
of nodes is determined by maximizing usage of RAM on each node. We could not
allocate enough m1.large nodes of AMD type to solve a problem of size n = 80k.

HPL benchmark represents tightly coupled, highly parallel algorithms frequently
used in scientific applications. We executed the HPL benchmark on different in-
stance types on Amazon EC2, varying the parameters as described in Section 3.2.
Using different instance types allowed us to see the effects on performance, effi-
ciency, and cost of varying the amount of RAM available and the problem size.

Tables 2–5 show the parameters used to obtain the best results over different
problem sizes, instance types, and number of cores used per node. To calculate
the total number of cores used for a particular execution, use the result of p× q×
Threads. Due to the numerous parameters of HPL, it was necessary to try different
input configurations to maximize performance. To maximize the performance, we
minimized reliance on the interconnect by maximizing the memory allocation per
node used to solve a particular problem size. Figure 7 shows the number of nodes
used for different instance types to solve each problem size. Only the m2.4xlarge
instance with 68.4 GB of RAM is large enough to solve all problem sizes on a single
node. We used this as a reference point in Figure 8 to bound the effects of network
usage on the performance.

In Figures 8–13 we present different aspects of the results of our HPL benchmark
experiments given in Tables 2–5. We first discuss the best results obtained to give
a reasonable lower bound on performance in a contentious commercial cloud envi-
ronment. In these parallel experiments, the minimum times do not differ as greatly
from the average as the single node experiments for several reasons: 1) the elapsed
time required (more than an hour for large problem sizes) implies an averaging effect

14

Table 2: Results of HPL benchmarks for matrix size n = 20 k. Columns are, in
order: Amazon EC2 instance type, CPU type (Xeon or Opteron), block size (NB),
process grid (p× q), number of threads used in the BLAS routines, broadcast algo-
rithm (BFACT), best elapsed time, and corresponding efficiency using the theoretical
peak performance from Table 1. A more detailed description of the parameters can
be found in Section 3.2.

Instance Proc. Block p×q Threads Bcast Time Efficiency
size (min:sec) (% peak)

m1.large Xeon 256 1x1 2 3 06:29.35 64.38
m1.large Opt. 192 1x2 1 3 12:24.21 89.62
m1.xlarge Xeon 256 1x1 4 3 05:07.30 40.78
m1.xlarge Opt. 256 1x2 2 3 06:28.16 85.88
c1.xlarge Xeon 512 1x1 8 3 01:51.85 63.96
m2.2xlarge Xeon 256 1x2 2 3 03:19.74 62.50
m2.4xlarge Xeon 256 1x1 8 3 01:44.55 59.71

Table 3: Results of HPL benchmarks for matrix size n = 30 k.

Instance Proc. Block p×q Threads Bcast Time Efficiency
size (min:sec) (% peak)

m1.large Xeon 256 1x1 2 3 20:20.82 69.31
m1.large Opt. 256 1x2 1 3 41:21.01 90.75
m1.xlarge Xeon 256 1x2 2 3 11:00.73 64.00
m1.xlarge Opt. 192 1x2 2 3 21:20.46 87.88
c1.xlarge Xeon 512 1x1 8 3 05:19.10 75.66
m2.2xlarge Xeon 256 1x2 2 3 11:12.15 62.69
m2.4xlarge Xeon 512 1x1 8 3 05:46.53 60.80

15

Table 4: Results of HPL benchmarks for matrix size n = 50 k.

Instance Proc. Block p×q Threads Bcast Time Efficiency
size (hr:min:sec) (% peak)

m1.large Xeon 512 1x3 2 5 35:55.66 60.56
m1.large Opt. 256 1x3 2 3 1:09:44.47 83.00
m1.xlarge Xeon 512 1x2 4 5 28:07.85 58.00
m1.xlarge Opt. 512 1x4 2 5 1:00:46.59 71.41
c1.xlarge Xeon 512 3x1 8 5 18:14.36 34.04
m2.2xlarge Xeon 256 1x2 2 3 51:09.45 63.11
m2.4xlarge Xeon 256 1x2 8 3 26:16.52 61.87

Table 5: Results of HPL benchmarks for matrix size n = 80 k.a

Instance Proc. Block p×q Threads Bcast Time Efficiency
size (hr:min:sec) (% peak)

m1.large Xeon 768 2x4 2 5 1:01:06.31 54.69
m1.xlarge Xeon 512 1x4 4 3 1:14:57.67 44.58
m1.xlarge Opt. 512 2x2 4 5 3:27:46.61 42.78
c1.xlarge Xeon 768 1x8 8 5 2:17:50.49 0.07
m2.2xlarge Xeon 512 1x2 4 3 1:50:56.69 60.02
m2.4xlarge Xeon 512 1x1 8 3 1:46:06.05 62.76

a We could not allocate enough m1.large nodes of Opteron type to solve a problem
of size n = 80k.

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20000 30000 50000 80000

E
ff

ic
ie

n
cy

 (
%

)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 8: Efficiency scaling by problem size. Efficiency is determined with respect
to the theoretical peak given in Table 1 multiplied by the number of nodes used.

and 2) the overhead for parallel jobs is higher than single node experiments due to
network usage. Finally, we note that in these figures the line for m1.large instances
using the Opteron processor does not extend to n = 80 k because we could not allo-
cate enough m1.large instances with Opteron CPUs in a single availability zone to
solve a problem of size n = 80k.

5.1 HPL Minimum Evaluation
Figure 8 demonstrates that efficiency is generally better than 60% for problem sizes
below 80 k. Here, efficiency is considered to be percentage of theoretical peak given
in Table 1 multiplied by the number of nodes used. We consider 60% to be reasonable
performance given the relatively slow interconnect provided by Amazon EC2 com-
pared to purpose-built HPC systems. The balance of resources available to the com-
putation is clearly important. For example, the m2.2xlarge and m2.4xlarge instances
have roughly equal performance at 80 k although HPL needs two of the m2.2xlarge
instances and only one m2.4xlarge. In this case the interconnect does not have a
significant effect because the nodes are provisioned with enough RAM to keep the
CPU busy. The c1.xlarge instances suffer severe performance degradation, however.
At n = 80 k, the c1.xlarge instances perform two orders of magnitude worse than a
single node. We conjecture that the 7 GB of RAM of c1.xlarge nodes is insufficient
to keep the CPU busy given the same interconnect between instances. In general,
nodes with more RAM clearly scale up in problem size much better as expected due
to the high ratio between the required number of operations and the data size to solve

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20000 30000 50000 80000

T
im

e
(h

o
u

rs
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 9: Total time to solution for different instance types by problem size.

a dense linear system.
While efficiency is important to gauge the scalability of the implementation, for

any particular experiment the most important concern is generally time to solution.
Figure 9 shows the total time to solution for different instance types by problem size.
This graph shows that although the efficiency of larger nodes is somewhat better
than that of the smaller ones, in most cases the smaller nodes reach the solution
faster. The c1.xlarge instances, recommended for high-compute applications, and the
m2.2xlarge and m2.4xlarge instances, recommended for high-memory applications,
are generally the slowest.

One of the important concerns when using commercial cloud environments are
the differing costs of different instances. Figure 10 provides the cost to solution for
different instance types by problem size. In this graph, the cost is prorated to the
second to illustrate the marginal costs incurred when allocating a cluster to solve
several problems. Figure 11 provides the comparable actual costs of using the differ-
ent instance types to solve a single execution each problem size; that is, this graph
includes the costs of the remaining hour after the execution completes. The salient
difference between the figures is the relation of the largest nodes to the smaller nodes.
Using absolute cost, the largest nodes are cheapest for large problems, but using pro-
rated costs they are more expensive. Since the prorated trends are more informative
for different problem sizes and for multiple jobs, we conclude the smaller instances
m1.large and m1.xlarge are the most cost effective for parallel jobs.

In addition to cost to solution, we also consider a more general cost measure,
$/GFLOP, calculated using the ratio between the total GFLOPS returned by the HPL
benchmark and the (prorated) cost for the specific computation. This measure allows

18

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20000 30000 50000 80000

C
o

st
 (

$
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 10: Cost to solution prorated to actual time spent for different instance types
by problem size.

 0

 2

 4

 6

 8

 10

 12

 20000 30000 50000 80000

C
o

st
 (

$
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 11: Actual cost to solution for different instance types by problem size. Exe-
cution time is rounded to the nearest hour for cost calculation.

19

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20000 30000 50000 80000

C
o

st
 p

er
 G

fl
o

p
 (

$
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 12: Cost per GFLOP ($/GFLOP) prorated to actual time spent for different
instance types by problem size.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20000 30000 50000 80000

C
o

st
 p

er
 G

fl
o

p
 (

$
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Figure 13: Actual cost to solution per GFLOP ($/GFLOP) for different instance types
by problem size. Execution time is rounded to the nearest hour for cost calculation.

20

a rough conversion of expected cost for other problem sizes including other scientific
applications characterized by similar computational needs. Figures 12 and 13 show
the results of the HPL benchmarks giving the cost per GFLOP for different instances
by problem size. The cost per GFLOP measure magnifies the differences between the
instance types, but of course the best instance type in Figures 10 and 11—m1.large—
is still the best for the price to performance ratio.

The m1.large instance is the fastest by Figure 9 and the best for price to per-
formance by Figure 10, leading us to recommend the smallest (64-bit) instance for
most parallel linear algebra compute jobs on the Amazon EC2 cloud environment
according to the empirical upper bound on performance. The high-compute and
high-memory instances are not worth the extra costs in our experiments. Given the
high variability in performance of single nodes, we examine in the following section
the expected performance from instances instead of the upper bound to determine if
our recommendation holds also for expected average performance.

5.2 HPL Average Evaluation
The minimum execution times from the previous section provide a rough upper
bound for performance. In this section, we examine the average execution times
for HPL to provide a better estimate of the expected performance of applications
with dense linear algebra. Figures 14–17 provide the minimum and average (and
standard deviation) execution times for different instances by problem size. We do
not show the m2.2xlarge or m2.4xlarge instances due to insufficient data. These large
instances are also quite expensive to allocate.

As with the single node experiments, Figures 14 through 17 show that the ex-
pected performance is worse than the best performance, but by a much smaller mar-
gin. Indeed, for the m1.large instances in Figure 14, the expected performance at n =
80 k is only 22% worse than the best execution time. Generally, the average for the
HPL experiments is between 30% and 2× worse than the minimum execution times.
As we mentioned at the beginning of this section, we believe the smaller differences
between the expected execution time and the best times are due to an averaging effect
from the length of the experiments and the greater overhead of the HPL benchmark
from network traffic (as compared to the DGEMM experiments in Section 4.1).

The m1.large instance—the smallest that we tested—remains the best instance
on EC2 for tightly coupled, compute intensive, parallel jobs. Although the average
expected time is longer than the minimum by 20% for the largest problem size, the
expected time is still faster than the next fastest minimum time (m1.xlarge Xeon).
Given that the m1.large also costs half as much as the m1.xlarge, the smallest in-
stance is the clear winner for the tightly-coupled, dense linear algebra computation
that we evaluated, and the high marginal costs for high-compute or high-memory
nodes is not cost effective.

21

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 389.35 avg/min = 1.41
30k min = 1220.8 avg/min = 1.68
50k min = 2155.7 avg/min = 1.30
80k min = 3666.3 avg/min = 1.22

Figure 14: Minimum and average execution time of HPL on m1.large (Xeon) in-
stances by problem size. Error bars on average show one standard deviation.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 388.160 avg/min = 1.82
30k min = 1280.46 avg/min = 1.53
50k min = 3646.59 avg/min = 1.46
80k min = 11115.6 avg/min = 1.12

Figure 15: Minimum and average execution time of HPL on m1.xlarge (Opt.) in-
stances by problem size. Error bars on average show one standard deviation.

22

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 307.30 avg/min = 2.67
30k min = 660.73 avg/min = 1.33
50k min = 1687.8 avg/min = 1.71
80k min = 4497.7 avg/min = 1.84

Figure 16: Minimum and average execution time of HPL on m1.xlarge (Xeon) in-
stances by problem size. Error bars on average show one standard deviation.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 111.85 avg/min = 2.98
30k min = 319.10 avg/min = 4.35
50k min = 674.63 avg/min = 6.36
80k min = 6410.2 avg/min = 2.08

Figure 17: Minimum and average execution time of HPL on c1.xlarge instances by
problem size. Error bars on average show one standard deviation.

23

6 Conclusions
In this chapter we demonstrated empirically the computational efficiency of high-
performance numerical applications in a commercial cloud environment when re-
sources are shared under high contention. Through a case study using the Linpack
benchmark, we show that cache utilization becomes highly unpredictable and sim-
ilarly affects computation time. For some problems, not only is it more efficient
to underutilize resources, but the solution can be reached sooner in realtime (wall-
time). We also show that the smallest, cheapest (64-bit) instance on the Amazon EC2
commercial cloud environment is not only the fastest, but also the best for price to
performance ratio.

We presented the average expected performance and execution time, expected
cost to completion, and variance measures—traditionally ignored in the high per-
formance computing context—to determine the efficiency and performance of the
Amazon EC2 commercial cloud environment. Under omnipresent contention for re-
sources, the expected performance in the cloud environment diverges by an order of
magnitude from the best achieved performance. We conclude that there is significant
space for improvement in providing predictable performance in such environments.

Acknowledgements
The authors wish to acknowledge the Aachen Institute for Advanced Study in Com-
putational Engineering Science (AICES) as sponsor of the experimental compo-
nent of this research. Financial support from the Deutsche Forschungsgemeinschaft
(German Research Association) through grant GSC 111 is gratefully acknowledged.
Also, support from the XtreemOS project, which is partially funded by the European
Commission under contract #FP6-033576 is gratefully acknowledged.

References
[1] Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neuge-

bauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Sym-
posium on Operating Systems Principles, pp. 164–177. Bolton Landing, New
York (2003)

[2] Dongarra, J., van de Geijn, R., Walker, D.: Scalability issues affecting the
design of a dense linear algebra library. Journal of Parallel and Distributed
Computing 22(3), 523–537 (1994)

[3] Gemignani, C., Skomoroch, P.: Elasticwulf: Beowulf cluster run on Amazon
EC2. Available via the WWW. Cited 1 Jan 2010. http://code.google.
com/p/elasticwulf/

24

[4] Goto, K.: GotoBLAS. Available via the WWW. Cited 1 Jan 2010. http:
//www.tacc.utexas.edu/resources/software/#blas

[5] Hosting, S.D.: GoGrid cloud hosting. Available via the WWW. Cited 1 Jan
2010. http://gogrid.com

[6] Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Solihin,
Y., Hsu, L., Reinhardt, S.: Qos policies and architecture for cache/memory in
cmp platforms. SIGMETRICS Perform. Eval. Rev. 35(1), 25–36 (2007). DOI
http://doi.acm.org/10.1145/1269899.1254886

[7] Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual workspaces for scientific
applications. In: SciDAC 2007 Conference (2007)

[8] Laboratory, A.N.: MPICH2: High-performance and widely portable MPI.
Available via the WWW. Cited 1 Jan 2010. http://www.mcs.anl.gov/
research/projects/mpich2/

[9] xcalibre communications ltd: FlexiScale cloud computing. Available via the
WWW. Cited 1 Jan 2010. http://www.flexiscale.com

[10] Napper, J., Bientinesi, P.: Can cloud computing reach the Top500? In: Uncon-
ventional High-Performance Computing (UCHPC) (2009)

[11] Nimbus science clouds. Available via the WWW. Cited 1 Jan 2010. http:
//workspace.globus.org/

[12] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff,
L., Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. In:
Proceedings of Cloud Computing and Its Applications [online] (2008)

[13] Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - a portable im-
plementation of the high-performance LINPACK benchmark for distributed-
memory computers. Available via the WWW. Cited 1 Jan 2010. http:
//www.netlib.org/benchmark/hpl/

[14] Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of ASCI
Q. In: SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting, p. 55. IEEE Computer Society, Washington, DC, USA (2003)

[15] Services, A.W.: Amazon elastic compute cloud (EC2). Available via the
WWW. Cited 1 Jan 2010. http://aws.amazon.com/ec2

[16] Strebel, J., Stage, A.: An economic decision model for business software ap-
plication deployment on hybrid cloud environments. In: M. Schumann, L.M.
Kolbe, M.H. Breitner (eds.) Tagungsband Multikonferenz Wirtschaftsinfor-
matik (2010). Forthcoming

[17] Tikotekar, A., Vallée, G., Naughton, T., Ong, H., Engelmann, C., Scott, S.L.:
An analysis of HPC benchmarks in virtual machine environments. In: Euro-Par
2008 Workshops - Parallel Processing: VHPC 2008, UNICORE 2008, HPPC

25

2008, SGS 2008, PROPER 2008, ROIA 2008, and DPA 2008, Las Palmas
de Gran Canaria, Spain, August 25-26, 2008, Revised Selected Papers, pp. 63–
71. Springer-Verlag, Berlin, Heidelberg (2009). DOI http://dx.doi.org/10.1007/
978-3-642-00955-6 8

[18] TOP500.Org: Top 500 supercomputer sites. Available via the WWW. Cited 1
Jan 2010. http://www.top500.org/

[19] Walker, E.: Benchmarking Amazon EC2. ;LOGIN: pp. 18–23 (2008)

[20] Wang, G., Ng, E.: The impact of virtualization on network performance of
Amazon EC2 data center. In: INFOCOM ’10: Proceedings of the 2010
IEEE Conference on Computer Communications. IEEE Communication So-
ciety (2010)

[21] Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of
paravirtualized memory hierarchy on linear algebra computational kernels and
software. In: HPDC ’08: Proceedings of the 17th international symposium on
High performance distributed computing, pp. 141–152. ACM, New York, NY,
USA (2008). DOI http://doi.acm.org/10.1145/1383422.1383440

26

